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ABSTRACT 

Determining the risks from space debris involve a number 
of statistical calculations.  These calculations inevitably 
involve assumptions about geometry - including the 
physical geometry of orbits and the geometry of satellites.  
A number of tools have been developed in NASA’s 
Orbital Debris Program Office to handle these 
calculations; many of which have never been published 
before.  These include algorithms that are used in NASA’s 
Orbital Debris Engineering Model ORDEM 3.0, as well as 
other tools useful for computing orbital collision rates and 
ground casualty risks.  This paper presents an introduction 
to these algorithms and the assumptions upon which they 
are based.   

1 INTRODUCTION 
Computation of collisions and other long-term behaviours 
of orbiting objects are often computed using statistical 
tools.  That is because it is often difficult to predict where 
a particular satellite will be at some time far into the future, 
especially the detailed position within its orbit.  Instead, 
we rely on the location probability of a satellite at any 
particular time in the future.  This information is computed 
in terms of probability distributions in the relevant 
parameters, which can be converted to spatial density.   

Spatial density is a useful quantity, because it can be 
converted directly into collision probability under the 
assumptions of kinetic gas theory.  This assumes that 
orbiting objects have dimensions much smaller than the 
scale of the changes in the spatial density.  Under such 
conditions, the flux of a distribution of objects can be 
computed as 

 

 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  (1) 

And number of collisions is  

 

 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

(2) 

where “area” is the area of the orbiting object.  In order for 
this relation to hold, the area/size of the satellite must be 
much smaller than the scale over which the spatial density 
varies.  In this paper, we will discuss cases where this 
assumption breaks down, and how to compute the 
collision rate in those cases. 

For much of the work in this paper, we will assume that 
objects orbit in idealized Kepler orbits.  In reality, the 
effects of atmospheric drag, the non-spherical gravity of 
the Earth, and the effects of the gravity of the Sun and 
Moon mean that this assumption is only an approximation.   

2 KESSLER EQUATION 
Kessler [1] used a spatial density equation to compute the 
collision rates of Jupiter’s moons.  These equations have 
been used uncounted times since then to compute the 
collision probabilities of debris striking Earth-orbiting 
satellites.  In order to develop the tools for this paper, we 
must first re-derive the Kessler equations, but in a way that 
opens up other possibilities for computation.  Note that 
many of the equations used in this section parallel those in 
Dennis [2]. 

The probability distribution function (PDF) of a periodic 
parameter can be computed using the localized time rate 
of change of that parameter.  For instance, for any periodic 
parameter x, 
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For example, the radial velocity of a Kepler orbit is 
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(4) 

where a is the semi-major axis, µ the gravitational 
constant, and rA and rP are the apoapsis and periapsis radii, 
respectively.  The radius of a satellite oscillates between 
rA and rP during each orbit period, so we can apply 
equation 3 to determine the normalized PDF of the orbit 
radius over a long period of time. 



 

 
𝑝𝑝(𝑟𝑟)𝑑𝑑𝑑𝑑 =

𝑟𝑟 𝑑𝑑𝑑𝑑
𝜋𝜋 𝑎𝑎 �(𝑟𝑟𝐴𝐴 − 𝑟𝑟)(𝑟𝑟 − 𝑟𝑟𝑃𝑃)

  
(5) 

Unlike the approximation used by Kessler, there is an 
exact analytic solution to the integral of this equation. 
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(6) 

Of course, this only applies for r between rP and rA; the 
PDF is zero otherwise.  This radial equation is useful in 
computing how much time a satellite spends between two 
altitudes for computing equivalent spatial density. 

Kessler used the assumption that the ascending node and 
argument of periapsis of an orbit are uniformly distributed 
from 0° to 360°.  This is a good assumption for many types 
of orbits, especially if averaging over long periods of time. 

A similar formula for PDF of the latitude λ can be 
computed for an orbit with inclination i, assuming that the 
argument of periapsis is uniformly distributed.  This 
equation is applicable for sin2(λ) ≤ sin2(i) (the PDF is zero 
otherwise) 

 

 
𝑝𝑝(𝜆𝜆)𝑑𝑑𝑑𝑑 =  
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𝜋𝜋 �𝑠𝑠𝑠𝑠𝑛𝑛2(𝑖𝑖) −  𝑠𝑠𝑠𝑠𝑛𝑛2(𝜆𝜆) 
 

  

(7) 

This equation can also be integrated analytically 
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(8) 

These latitude equations are used to compute the re-entry 
risk to populations on the ground for satellites decaying in 
an uncontrolled manner.  Equation 8 is used to compute 
the fraction of time a satellite spends at each latitude, 
which will correspond to the probability the satellite will 
re-enter at that location.  Combined with a model of how 
humans are distributed on the Earth, an estimate of the 
average density of people beneath a particular orbit can be 
computed [3]. 

The third parameter is the longitude φ.  Because the 

ascending node is assumed to be uniformly distributed, the 
longitude distribution is simply 
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(9) 

In order to compute the spatial density, we need the 
equation for a small element of volume in spherical 
coordinates 

 

 

𝑑𝑑𝑑𝑑 = 𝑟𝑟2 cos(𝜆𝜆)  𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑  (10) 

The spatial density is, then 
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(11) 

and is valid for radius rP ≤ r ≤ rA and latitude sin2(λ) ≤ 
sin2(i), otherwise the density is zero.  This is equivalent to 
Kessler’s spatial density equation [1].   

For completeness, the velocity components are given by 
the radial velocity equation 4, and by 
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(13) 

 

3 THE TRUE ANOMALY PDF 
It is a good point in this discussion to introduce a very 
useful equation that describes the PDF for position within 
a Kepler orbit, using the true anomaly ν.  Using equation 
3 for the time rate of change of the true anomaly,  



 

 

 

𝑝𝑝(𝜈𝜈) 𝑑𝑑𝑑𝑑 =  
(1 − 𝑒𝑒2)3/2

2𝜋𝜋 (1 + 𝑒𝑒 cos(𝜈𝜈))2
 𝑑𝑑𝑑𝑑   

(14) 

What is so useful about this equation is that there is no 
need to integrate over mean anomaly and convert to true 
anomaly at each step using Kepler’s equation in order to 
solve for the time spent at each location.  We can now 
simply integrate over the more “natural” geometric true 
anomaly and apply this weighting function.   

So, consider a satellite A moving along its orbit through a 
spatial density of another satellite B.  The position of 
satellite A is a function of the true anomaly, as well as 
other parameters of satellite A’s orbit, which we will 
define as 𝑟𝑟(ν).  It will also have a three-dimensional 
velocity vector dependent on its position in the orbit 
𝑉𝑉�⃗𝐴𝐴(𝑟𝑟(ν)).  Using the spatial density of object B, ρB, and its 
velocity 𝑉𝑉�⃗𝐵𝐵 which are both a function of position 𝑟𝑟(ν), the 
two can be combined to find the integrated flux on A from 
B due to its travels through B’s spatial density 

 

 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  
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(15) 

Note that the norm of the difference between the two 
vector velocity terms is simply the relative speed of the 
two objects at that point in space. 

Equation 15 only needs to have a way to the handle the 
spatial density of object B and its velocity to solve the flux 
equation.  Much of the rest of this paper consists of 
methods of determining ρB for a variety of different types 
of orbits. 

Note that in general there are several velocity values 𝑉𝑉�⃗𝐵𝐵 
associated with each location 𝑟𝑟(𝜈𝜈).  As described in 
Kessler [1], the total flux will be computed for each 
velocity case and averaged to get the total flux. 

4 AVERAGING THE KESSLER EQUATION 
It has long been recognized that at the periapsis and 
apoapsis, and at the northernmost and southernmost 
latitudes of an orbit, the PDFs and the corresponding 
spatial density gives infinite values.  PDFs often have this 
property, and as long as the integrals of the PDF are finite 
(which these are), this does not introduce any unrealistic 
behaviour.  However, if undertaking a numerical 
integration of equation 15 and you encounter an infinite 
density, this could result in an incorrect flux.  

One technique is to deliberately choose a small finite 
“box” in space, and compute the average spatial density.  
This has the effect of “blurring” the distribution so that the 
“infinities” go away.  Using equations 6 and 8, a precise 
analytical solution for this “averaged” spatial density can 
be computed.  When the “box” is between radii r1 and r2, 
and between latitudes λ1 and λ2, the  
“averaged” spatial density is  

 

 

〈𝜌𝜌(𝑟𝑟, 𝜆𝜆,𝜙𝜙)〉

=  �
�(𝑟𝑟𝐴𝐴 − 𝑟𝑟)(𝑟𝑟 − 𝑟𝑟𝑃𝑃)

𝜋𝜋 𝑎𝑎
 

−  
1
𝜋𝜋
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �

2(𝑎𝑎 − 𝑟𝑟)
𝑟𝑟𝐴𝐴 − 𝑟𝑟𝑃𝑃

��
𝑟𝑟1

𝑟𝑟2

∗  
�− 1

𝜋𝜋 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑠𝑠𝑠𝑠𝑠𝑠(𝜆𝜆)
𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖)��𝜆𝜆1

𝜆𝜆2

2𝜋𝜋
3 (𝑟𝑟23 − 𝑟𝑟13)(sin(𝜆𝜆2) − sin(𝜆𝜆1))

 

  

(16) 

One problem with computing this way is that the 
averaging “box” is not clearly defined.   

A more self-consistent way to handle these infinite values 
is to make use of the fact that we are often dealing with 
families of orbits with a distribution of orbital parameters. 

In Matney and Kessler [4], Divine’s [5] meteoroid model 
was reformulated to implement these distributions in 
orbital parameters.   
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(17) 

D(rP,rA,i) represents the PDF that describes how the 
satellite or satellites are distributed in orbital elements, 
either because they represent a family of objects, or the 
time average of a single satellite as its orbit evolves over 
time.  Note that the orbit distribution can be in terms of 
any similar combination of orbital elements appropriate to 
describe the system of interest.  For instance, we could use 
rP, e (the orbit eccentricity), and i, which is the distribution 
used by the NASA ORDEM3.0 Engineering Model. 

Equation 11 actually represents the special case of 
equation 17 where the orbit distribution PDF consists of 
Dirac delta functions in the orbital elements. 



The reason why equation 17 is superior to equation 16 is 
that the averaging is now correctly computed over a 
known distribution of orbit elements.  By integrating over 
orbit elements, the probability of having an orbit where the 
density at a point in space has exactly an infinite value 
(such as r = rP) becomes vanishingly small, and the infinite 
values of the spatial density are replaced by finite values. 

For an example of how distributions of orbits would be 
implemented, consider a simplified version using the 
radial density equation 5.  Assume a semi-major axis of 
1.0, and an eccentricity of 0.5, such that the periapsis is 0.5 
and the apoapsis is 1.5.  Now consider a similar case, with 
fixed apoapsis at 1.5, but with a uniform distribution of 
periapses from rP1 = 0.4 to rP2= 0.6.  The radial density 
equation would be   

 

 
𝑝𝑝(𝑟𝑟)𝑑𝑑𝑑𝑑

= � 𝐷𝐷�𝑟𝑟𝑝𝑝�
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𝑟𝑟 𝑑𝑑𝑑𝑑
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�  𝑑𝑑𝑟𝑟𝑃𝑃  

(18) 

 

Note that the limits of integration must be adjusted to 
make sure rP ≤ r.  Fig. 1 shows the radial PDFs of these 
two cases.  Note that when the radial PDF is computed by 
integrating over a distribution of periapses, the infinite 
value of the PDF near perigee goes away and the new PDF 
remains finite.  For the full 3D density or PDF, all of the 
infinite values disappear when distributions over the 
orbital elements are considered. 

 
 

Figure 1. These two curves show the radial PDFs for the 
two cases described in the text.  The blue curve is for the 

case with fixed periapsis 0.5 and apoapsis 1.5.  The 
orange curve has the same apoapsis, but with a uniform 
distribution of periapses between 0.4 and 0.6.  The blue 
curve has infinite values at periapsis and apoapsis, but 
the orange curve has finite PDF values throughout the 

periapsis region. 

For practical numerical computation, integration of 
equation 17 over a distribution in orbital elements can still 
result in computing points with an infinite value of 
density.  It is suggested that the integral be evaluated using 
the Second Euler-Maclaurin summation formula [6].  One 
can always break up any integral into the sum of multiple 
integrals such that the infinite values are at the limits of 
each sub-integration.  This numerical technique samples 
points arbitrarily close to the limits of integration, yet 
avoids evaluating the troublesome points right at the 
limits.  

5 VARIATIONS ON THE KESSLER EQUATION 
One problem that arises with Kessler’s equation is when 
the orbit in question is circular.  Then the radial equation 
5 becomes a Dirac delta function.  While accurate, this is 
not a very useful equation.  A more useful form is to 
assume that one or more satellites are distributed in 
circular orbits with some semi-major axis distribution, 
given as a density per unit altitude. 

 

 
𝑝𝑝(𝑟𝑟)𝑑𝑑𝑑𝑑 = 𝐷𝐷(𝑎𝑎) 𝑑𝑑𝑑𝑑 = 𝐷𝐷(𝑟𝑟) 𝑑𝑑𝑑𝑑  (19) 

This results in the following useful spatial density 
equation for a distribution of purely circular orbits 

 

 
𝜌𝜌(𝑟𝑟, 𝜆𝜆,𝜙𝜙) =

𝐷𝐷(𝑟𝑟)
2𝜋𝜋2 𝑟𝑟2�𝑠𝑠𝑠𝑠𝑛𝑛2(𝑖𝑖) − 𝑠𝑠𝑠𝑠𝑛𝑛2(𝜆𝜆) 

 

  

(20) 

One could use this density in equation 15 to integrate the 
flux point-by-point.  However, it is also possible to 
integrate this flux in a different way.   

Consider two circular orbits oriented in such a way that 
the ascending nodes are uniformly distributed relative to 
one another.  This only requires that at least one of the two 
orbits has randomized nodes; for instance one orbit can be 
polar with fixed ascending node, while the other is not and 
has randomized nodes over time.  

Given the two inclinations i1 and i2, and the two ascending 
nodes Ω1 and Ω2, the angle α between the two planes is 
computed by taking the dot product of the two angular 
momentum vectors  



 

 
cos(𝛼𝛼) =  ℎ�1 ∙ ℎ�2

= (sin(𝑖𝑖1) sin(𝛺𝛺1) 𝑥𝑥� −  sin(𝑖𝑖1) cos(𝛺𝛺1) 𝑦𝑦�
+  cos(𝑖𝑖1) 𝑧̂𝑧)
∙ (sin(𝑖𝑖2) sin(𝛺𝛺2) 𝑥𝑥� −  sin(𝑖𝑖2) cos(𝛺𝛺2) 𝑦𝑦�
+  cos(𝑖𝑖2) 𝑧̂𝑧)
= cos(𝑖𝑖1) cos(𝑖𝑖2)
+ sin(𝑖𝑖1) sin(𝑖𝑖2) cos (𝛺𝛺1 − 𝛺𝛺2)  
= cos(𝑖𝑖1) cos(𝑖𝑖2)
+ sin(𝑖𝑖1) sin(𝑖𝑖2) cos (ΔΩ)  

  

(21) 

So the angle between the orbit planes is a function of the 
two inclinations, and the difference between the ascending 
nodes.  For our random node case, we simply integrate ∆Ω 
from 0 to 2π to sample all possible orientations.  

One further trick is to realize that we can place one orbit 
in the x-y plane with “inclination” zero, and the second 
orbit tilted with “inclination” α.  If all the orbits involved 
are circular orbits, the “ascending node” of the “inclined” 
orbit is irrelevant, so we can treat this case as a circular 
orbit with “inclination” zero at “latitude” zero 
encountering another orbit with “inclination” α.  
Assuming our “inclined” orbit has altitude distribution 
D(r), the other circular orbit “sees” density (cf. equation 
20) 
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To compute the flux, the relative velocity is  
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So, the flux integral would be 
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where K is the incomplete elliptical integral of the first 
kind.  This expression is similar to that computed by Su & 
Kessler [7].  Fig. 2 shows a plot of this analytic flux 
expression for the full range of possible inclinations.  Note 
that a high-flux “ridge” exists when the sum of that two 
inclinations equals 180° (the angles are supplementary).  
This is the case where the two orbits can be coplanar and 
counter-rotating (depending on the ascending nodes).  
This creates an infinite spatial density problem when 
performing numerical calculations.   

 
Figure 2. This chart shows the relative flux between two 
sets of circular orbits with inclinations i1 and i2.  There is 
a high-flux “ridge” when the two inclination angles are 
supplementary, which corresponds to the case where the 

two orbits can be coplanar and counter-rotating. 

Whenever the angle between the orbit planes approaches 
zero, the sin(α) term in the denominator drives up the 
spatial density.  Therefore, there should be a similar high-
density “ridge” for i1 = i2.  In that case, the orbits can be 
co-rotating and coplanar.  However, in the special analytic 
case with circular orbits, the relative velocity drops to 
zero, and the product of the relative velocity with the 
infinite density results in a finite flux.  However, any 
eccentricity at all will introduce a similar “ridge” along the 
i1 = i2 line where the flux values approach infinity.  As 
above, the solution to this problem is to compute spatial 
density with a distribution in inclination values. 

6 THE 2D DENSITY 
The discussion in the last section introduces another useful 
idea, that of describing the PDF within an orbit plane.  In 
this case, we preserve the assumption that the argument of 
perigee is uniformly distributed, but now the ascending 
node is fixed.  Because the orbit is a 2D distribution, we 
use an areal density function, assembled from equation 5.  



The areal density for an elliptical orbit will be 
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Similarly, for a collection of circular orbits with 
distribution D(r) with altitude 
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This distribution is “disc” that would look like a common 
CD or DVD, with a large “hole” in the center for r < rP.  
We can choose the “disc” orbit B as being in the x-y plane.  
The other orbit A will cross the disc twice (unless they are 
coplanar), and the flux is computed at each crossing. 

The encounter geometry is shown in Fig. 3.  For 
calculation purposes, the “disc” of orbit B is temporarily 
assumed to have a small thickness δ, much smaller than 
the scale of the orbits, but much larger than the size of the 
satellites.  The relative velocity is obtained by subtracting 
the velocity of B from A.  This is the velocity in the frame 
where B has zero local velocity.  This results in an angle ξ 
that the relative velocity makes to the B orbit plane. 

 
Figure 3.  This is the geometry of the case described in 
section 6.  The “disc” of object B’s orbit has a small 
thickness δ.  In the lower panel, the same encounter 

geometry is show from the locally stationary frame of 
object B.  In this frame the relative velocity 𝑣⃗𝑣𝑅𝑅𝑅𝑅𝑅𝑅 makes 

an angle ξ with respect to the disc. 

The local 3D density is  
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(27) 

and the path length of A through the disc is  
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Using the period of satellite A, τA, the flux for each transit 
through the disc will be  
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Where the temporary thickness δ disappears from the 
equation.  The total flux is computed by summing over the 
flux at the two points where orbit A transits the “disc”. 

In actuality, there are two radial velocities in the disc at 
any point (equation 4) corresponding to the inbound and 
outbound cases for B, and will, in general, result in 
different ξ values.  The relative velocity and the flux will 
need to be computed for each case and the results averaged 
for each plane crossing.  The total flux is then the sum of 
the fluxes for each of the two plane crossings.  

7 THE GENERALIZED ORBIT CASE 
The discussions so far have dealt with distributions that 
are randomized in argument of perigee or ascending node, 
or where one satellite or another is in a circular orbit.  How 
is the flux handled between two orbits with fixed nodes 
where the only parameter randomized is the position in the 
orbit? 

To handle this case, we take a page from the collision 
avoidance community.  They actually follow an 
uncertainty covariance associated with an object around 
its orbit.  If we could “smear” out that probability ellipse 
over time, the orbit probability distribution and spatial 
density would look something like a long “fuzzy 
caterpillar” in space.  The “thickness” of this “caterpillar” 
could be thought to represent the differences between a 
pure Kepler orbit and a real orbit, uncertainty in the orbit 
elements, or perhaps just a tool to create a spatial density 
much larger than the satellites themselves. 

The first thing we will need is the linear density of a 
satellite along its orbit ℒ.  This is computed using the 
following relation 
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where V(ν) is the speed of the satellite at true anomaly ν 
and τ is the period of the orbit.  This comes from the fact 
that if the object has one object in it, we ought to see that 
object once per orbit period. 

Using the equation for the speed of an orbit as a function 
of r, 
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(31) 

This equation represents the number of satellites per unit 
length along a stretch of orbit at position ν averaged over 
time.  The linear density is lower near periapsis where the 
orbit velocity is higher, and higher near apoapsis. 

The next step is to add the “caterpillar fuzz” along this 
orbit.  This is accomplished by adding a symmetric 2D 
normal distribution perpendicular to the orbit with 
standard deviation σ much smaller than the scale of the 
orbit but much larger than the satellites themselves. 
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Here the vector 𝑞⃗𝑞(𝑟𝑟) is the point along the orbit closest to 
the point 𝑟𝑟, and the term ‖𝑟𝑟 − 𝑞⃗𝑞(𝑟𝑟)‖ represents the 
perpendicular distance from the orbit to point 𝑟𝑟.  In 
general, it must be computed numerically. 

As with the other densities discussed in this chapter, the 
density in equation 32 can be used in computing flux in 
equation 15.  Experience has shown that numerically 
calculating the flux using equation 32 is extremely 
computer intensive if integrated over time, because only 
during specific geometries do two orbits usually overlap 
enough to give non-trivial “caterpillar” density. 

One last thought – these distributions form a hierarchy.  If 
we summed over many arguments of perigee, the 
“caterpillar” distribution would look very much like the 
2D “disc” distribution.  If we tilted the 2D “disc” and 
rotated it around all possible ascending nodes, the 
resulting density would be the Kessler spatial density. 

8 CONCLUSIONS 
The discussions in this paper have dealt with some tools to 
make accurate flux calculations for a variety of 
assumptions.  Hopefully, many of these will provide 
useful tools for the space debris community, as they have 

for NASA’s Orbital Debris Program Office. 

The use of distributions of orbital elements (section 4) has 
allowed the ability to compute accurate fluxes for NASA’s 
ORDEM3.0 model, especially near GEO where the 
ascending node of the satellites cannot be assumed to be 
uniformly distributed.  While sometimes these 
computations are slow, we are always finding ways to 
increase their speed and accuracy. 
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