

Human Mars Mission Power Architectures

Michelle Rucker Mars Study Capability Team NASA Johnson Space Center

35th Space Power Workshop April 24-27, 2017 • Manhattan Beach 2

In-Space Power During Transit

 Solar Power makes sense
 Continuous sunshine
 Extensive experience on International Space Station and robotic Mars missions
 Solar Electric Propulsion in development

Mars surface is where things get interesting

NASA

Human Mars Mission by the Numbers No decisions have been made, current thinking

Multiple visits to a single landing site

Notional excursion from landing site
Goal to extend as far as possible
Robotic assets may rove further

Days maximum stay for any given missionDriven by orbital mechanics

Twenty Six

Months between opportunities Conjunction class missions

Crew to the surface (and return) per expedition

Here's What a Mars Campaign Might Look Like

5

FIRST send cargo, including a surface power system THEN send Ascent Vehicle and ISRU to fill empty prop tanks

WHEN tanks are full, crew lands and begins surface mission

SUBSEQUENT

crews land at same site, use infrastructure

Power System + Cargo

35th Space Power Workshop April 24-27, 2017 • Manhattan Beach

Ascent Vehicle + Propellant Manufacturing

Habitat + Crew + Cargo

Additional Crew + Ascent Vehicles + Cargo

Key To Successful Human Mars Surface Mission: Reliable Power

What we did on the Moon won't work on Mars

	Apollo	Mars
Surface Stay	3 days	500+ days
Peak Load	~4 kW	~40 kW

Apollo spacecraft were one-time use, each landing at a different site

 NASA is looking at multiple missions to a single Mars landing site, with reusable surface elements

Apollo crews ventured a few kilometers from landers

• Mars crews may "road trip" 100+ km

Key To Successful Human Mars Surface Mission: Reliable Power

What we did with Mars rovers won't work for humans

- Sojourner, Spirit, and Opportunity
 - Fixed solar arrays and batteries
 - Arrays were sensitive to dust accumulation

Curiosity

 Radioisotope Thermoelectric Generator (RTG) and batteries

	Rovers	Humans
Keep-Alive	<25 W	>25 <u>kW</u>
Peak Load	<650 W	>35 <u>kW</u>

Rovers Can Hibernate When Power Isn't Readily Available

But humans have to breathe, eat, stay warm (and possibly make return propellant)

Image courtesy of NASA/ JPL-Caltech/Cornell

Spirit Selfie on Sol 586

Image courtesy of Cornell University

Dust Accumulation on Spirit's solar arrays reduced available power

35th Space Power Workshop April 24-27, 2017 • Manhattan Beach Spirit Selfie on Sols 1,355 - 1,358

NASA

Surface Mission Power Example 4 Crew, 22.8 MT Ascent Propellant in 420 Days

9

So How Do We Power a Mars Surface Mission?

Two Primary Options Being Evaluated

Kilopower Fission System

Modules up to 10 kWe ganged together

2 Deployable Solar Arrays with Energy Storage

10

Possibly with RTG emergency backup

Other options (such as wind turbines) don't trade as well for mass, volume, reliability

Mars is Like a Bowl of Spaghetti

You can't make one decision without getting tangled up in other decisions

Example: If first decision is to pick a landing site, that dictates:

- Whether we can rely on solar power for surface operations
- Whether Mars water is readily available to make reactants for fuel cell energy storage
- Dust mitigation needs for seasonal dust storms

35th Space Power Workshop April 24-27, 2017 • Manhattan Beach Every technology decision has implications to other technology decisions

11

Image courtesy rgbstock.com

Fission vs. Solar				
		Fission Power	Solar Power	
Rea	diness Lower Higher			
Mas	S	Lower for most sites Higher		
Reliability	At night	High	Need energy storage	
	Dust storm	High	Risky	
	At equator	High	Good	
	At poles	High	Must be large	
Deployment Time		Lower	Depends on size	
Cost		High development, handling overhead	Lower	
Portability		Higher (compact)	Lower	
35 th Space Power Workshop April 24-27, 2017 • Manhattan Beach Studies are on-going, selection may depend on landing site				

Energy Storage For Night Use + Portable Equipment

13

Two Primary Options Being Evaluated

Goal: high energy density, long shelf life (4+ years), long service life (10-12 years), low maintenance, no Earth-origin resupply/consumables

2

Rechargeable Batteries

Fuel Cells

Reactants ideally from Martian resources

NASA

Managing Multiple Landers Close-but not <u>too</u> close-to each other

14

700 m descent plume hazard

1000 m radius safe zone

> 35th Space Power Workshop April 24-27, 2017 • Manhattan Beach

100 m dia landing site

Multiple Landers Complicates Power Management & Distribution

15

We'll need to power multiple elements, up to 1 km apart (some before crew arrive)

Autonomously Deployed Cable

Robotic Assembly

Multi-Element Power Management

Options include a single power lander, power generated at every lander, and/or distributed "charging stations"

Mars Power R&D Opportunities

16

Power Management and Distribution (PMAD)

- Tough, long life, high voltage power cable compatible with Martian temperatures/low pressure
- Autonomous cable deployment (up to 1 km)
- Robotically actuated, dust-resistant connectors

Energy Storage

- High energy density
- Long shelf life (4+ year)
- Long service life (10-12 years)
- Low maintenance
- No Earth-origin resupply/consumables

Mars Power R&D Opportunities

Solar Power

- Dust mitigation for solar arrays
- Lightweight solar array structures
- Autonomous solar array deployment mechanisms
- High efficiency solar cells

Fission Power

- Compact fission reactor
- Stirling development
- Heat pipe/core bonding
- Dust mitigation for radiator panels

17

Key Take-Aways Human Mars Mission Power

Modular	30-40 kWe
Infrastructure	High Peak &
Build-Up	Keep-Alive Power
Reliable	Portable
500-Day Missions	100+ km
>12-Year Life	Excursions

Exciting Mars research & development opportunities await!

NASA'S JOURNEY TO

NASA

NASA Johnson Space Center XM/Michelle Rucker Michelle.a.rucker@nasa.gov

EXPLORATION INTEGRATION AND SCIENCE DIRECTORATE

Questions?

19

35th Space Power Workshop April 24-27, 2017 • Manhattan Beach

#JOURNEYTO MARS