# Development of a Low Cost, Modular, IVA/EVA Compatible Cold-Gas Propulsion

## System at NASA-JSC

Chris Radke, Brian Banker, Bill Studak – NASA/JSC/EP4





(L) Tank, iso valve and transducer mounted on 3-D printed tank boss and (R) Thruster valves assembled with 3-D Printed thruster clusters

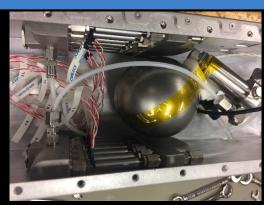
#### Problem statement and goals

Meet the demand for miniature propulsion systems which

- Are capable of IVA operation in the vicinity of crew
- Enable EVA proximity operations near human spacecraft
- Emphasize modularity and low cost over performance

In response, JSC has developed a 1U propulsion system using state of the art additive manufacturing with an emphasis on COTS components. The system provides:

- 6 DOF maneuverability
- A path to on-orbit recharge
- An integrated vehicle demonstration within 3U CubeSat (Dec '16) with roadmap to expanded 6U vehicle
- Lineage to JSC SAFER and AERCam development experience and hardware, enhanced for performance, manufacturability, cost, and modularity.


### **Capability and Innovation**

Current and future capabilities of the system include

- 5-10 m/s ΔV using GN<sub>2</sub> with roadmap to Tridyne and warm gas technologies for increased performance
- ~40-60 mN maneuvering thrust
- MAWP of up to 42 MPa (6,000 psi)
- Modular for application specific thrust impulse, layout, tank capacity, and number of thrusters
- Unit cost under 100k

Use of additive manufacturing and COTS components streamlined development

- Significant reduction in mass and complexity due to integrated components
- COTS component use has reduced development time to less than 1 year from concept to test



Propulsion system shown, integrated into 1U of 3U CubeSat



Assembled Seeker 3U- EVA inspection CubeSat

### Future work and growth path

Initial flight demonstration test of the Seeker EVA inspection CubeSat will further increase the fidelity of the propulsion subsystem and vehicle design though

- Additional component testing (burst, vibe, thermal)
- Integrated system testing (Vibe, thermal/vacuum)

#### Clear growth path

- Forward compatibility with Tridyne warm gas propulsion technology to increase ISP
- Further mass reduction with design iterations
- Continued evolution and utilization through partnerships with academia and industry