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Background
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• The Magnetospheric Multiscale Mission (MMS) consists of 4 satellites, 
each with an identical Fluxgate Magnetometer (FGM) instrument suite 
consisting of an Analog Fluxgate (AFG) and a Digital Fluxgate (DFG).  All 8 
magnetometers were successfully deployed by 17 March 2015.

• Detailed and accurate ground calibrations were performed for each 
magnetometer.  

• In order to meet mission goals, in-flight calibrations are necessary to 
evaluate and track changes in offset, alignment, gain and orthogonality.

• In addition, calibrated magnetometer data is necessary for instrument 
suite operations as well as ground data processing for other instruments.

• The calibration effort for the MMS Analog Fluxgate (AFG) and Digital 
Fluxgate (DFG) magnetometers is a coordinated effort between three 
primary institutions:  

– University of California, Los Angeles (UCLA)

– Space Research Institute, Graz, Austria (IWF)

– NASA Goddard Space Flight Center (GSFC)  

• This presentation will focus on the calibration effort at GSFC.
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MMS Mission Requirements 
and Goals for FGM
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• Shall provide science quality FGM data (Level 2) 
within 30 days of data downlink.

• Mission goals for Level 2 FGM accuracy
– Absolute accuracy:  0.3 nT.

– Relative accuracy between spacecraft: 0.1 nT

– High relative accuracy between spacecraft is needed to 
assure accurate measurements of electric current density 
using curlometer

• Provide preliminary calibrated magnetometer data 
(L2pre) for instrument suite operations and ground 
data processing within 2 weeks of data downlink.
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Fundamentals of In-flight Calibration
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• The calibration fundamentally consists of 12 parameters (e.g. 
9 matrix elements and 3 offsets)
– Offset, orthogonalization, alignment, and gain

– Each instrument (AFG and DFG) has two ranges (Low-field and High-
field), each of which has its own set of 12 parameters.

– Total of 24 parameters for each instrument.

• Full determination of all parameters requires application of 
different calibration methods
– Orthogonalization

– Spin-axis offset from EDI

– Earth Field Comparison

– Range Joining and Instrument cross-calibration

• Each method has an effect on some subset of the 24 
parameters for each instrument.
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Leveraging the Ground Calibrations
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• Ground calibrations, performed largely at TUBS, 
provide measurements that are difficult, if not 
impossible to measure more accurately in space:

– Temperature-dependence of gain

– Non-linearity of gain

• These calibrations are applied to all data as the first 
step of data processing.

– In-flight gain parameters thus indicate a delta relative to 
the ground calibration

– Ground calibrations provide initial values for most other 
parameters, which may be compared to the in-flight 
calibration results.



FIELDS FIELDS

FIELDS

Temperature-Dependence of Gain
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High Field Gain Non-Linearity
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FGM Approach to In-flight Calibration
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• The in-flight calibration is performed after the ground calibrations have 
been applied to the gains, so all gains are referred to as ‘delta-gains’.

• A method developed at IWF modifies the standard calibration equation to 
optimize physical parameters independently rather than in a joint way.

– Allows keeping parameters constant that may be considered “fixed” – at least 
in comparison to others.

– Allows, e.g. keeping sensor orthogonality constant during maneuvers that 
affect the spin axis orientation, by treating the latter as pure rotations. 

• In-flight calibration parameters are separated into the following 
categories:

– Offset subtraction

– Relative delta-Gain of spin plane sensors. 

– Absolute delta-gain of spin plane and spin axis.

– Orthogonalization of the sensor triad

– Alignment to spin axis

– Absolute phase correction.
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Orthogonalizing the Sensor Triad; 
Applying  Gains and Offsets
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Orthogonalization: 
referenced to 

spin-axis sensor

Absolute 
delta-gain

Relative
spin-plane
delta-gain

Offset
subtraction

θ1

θ2

φ12

ZORTHO =

sensor 3

sensor 1
sensor 2

YORTHOXORTHO
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Aligning the Sensor Triad
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sx,	sy	 The	X	and	Y	components	of	the	spin-axis	
sensor,	with	respect	to	Spin-Aligned	(SA)	
Sensor	Coordinates.	

	

SA	coordinates	
	X-axis		 To	a	good	approximation,		

ORTHO	X-axis	is	in	the	SA	X-Z	plane.		
	Z-axis		 Aligned	with	the	major	principal	axis	of	

inertia	(MPA).		
	

	

ϕabs	 absolute	rotation	around	spin	axis	
	

OMB	Coordinates	
X-axis	 Defined	by	the	nominal	AFG	boom	

coordinates.	AFG	X-axis	is	in	the	OMB		
X-Z	plane.	

Y-axis	 Completes	Right-handed	system	
Z-axis	 Aligned	with	MPA	
	

Alignment to spin-axis via solid-body rotation

Absolute Phase Correction

θ

sx

ZSA = 

Spin Axis
 ZORTHO

sy

YSAXSA

cosθ
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Team Approach to In-flight Calibration
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• A benefit of the IWF arrangement of the calibration equation is that it 

yields parameters for the in-flight calibration parameters which can be 

‘owned’ by a single optimization process.

– In contrast, for example, when using a coupling matrix, each element may be 

affected by Orthogonalization, Earth Field Comparison, Range Joining, etc.

– Full responsibility for a subset of parameters is delegated to each of the 

teams, according to the calibration methods they will employ.

• The order in which the in-flight calibration methods are applied is 

determined by

– The probability of change for a given parameter.

– Required integration time and need for “look-ahead”.

• The final result can be clearly understood in terms of the contributions of 

each of the teams and their respective calibration methods.
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Mapping Parameters to Calibration Processes, 
Calibration Processes to Institutions
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Low	field	

range

High	Field	

Range

spin	plane	

offsets
o1,	o2 o1,	o2

Minimize	spectral	power	at	ωspin	

in	the	spin	plane.

spin	plane	gain	

differential	and	

non-

orthogonality	

dg_SP
φ12

dg_SP
φ12

Minimize	spectral	power	at	2ωspin

in	the	spin	plane.	

elevation	angles	

of	spin	plane	

sensors	
θ1,	θ2 θ1,	θ2

Minimize	slope	of	regression	between	apparent	spin-plane	

sensor	offset	and	the	spin-axis	field.			

spin	axis	

alignment
sx,	sy sx,	sy

Minimize	spectral	power	at	ωspin

on	the	spin	axis.

ED
I

spin	axis	offset o3
Electron	time	of	flight	method:	Electron	Drift	Instrument	(EDI)	

provides	|B|.		

EA
R
TH

	F
IE
LD

	

high	range:

absolute	gains,	

absolute	phase

dg_SA_abs	
dg_SP_abs	
φ_abs

Fit	to	Data	to		Earth	Field	Model	using	weighted	linear	

regression.

spin	axis:

		low	range	gain,	

high	range	offset
dg_SA_abs	 o3

	Propagate	high	range	gains	to	low	range,		cross-calibrating	AFG,	

DFG,	4	observatories.		Propagate	low	range	offset	to	high	range.

low	range	
spin	plane:

absolute	gain,		
absolute	phase

dg_SP_abs	
φ_abs

Match	gain	and	phase	of	low	range	data	to	high	range	data,		
cross-calibrating	AFG,	DFG,	4	observatories.	

Physical	Methods	Used

C
A
LI
B
R
A
TI
O
N
	P
R
O
C
ES
S

R
A
N
G
E	
JO
IN
IN
G
	a
n
d
	

IN
TE
R
SP
A
C
EC

R
A
FT

"O
R
TH

O
G
O
N
A
LI
ZA

TI
O
N
"

Parameter	Names
Calibration	

Parameters

IWF

Owner

GSFC

UCLA
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UCLA

Data Week 

50

Mag Con 

#21
Mag Cal 

v20

GSFC

Data Week 

52

IWF

Data Week 

51

UCLA

Data Week 

51

Mag Cal 

v21

GSFC

Data Week 

53

IWF

Data Week 

52

Mag Con 

#22

UCLA

Data Week 

52

Mag Con 

#23
Mag Cal 

v22

GSFC

Data Week 

54

IWF

Data Week 

53

Mag Cal 

v23

Bringing Everything Back Together

• An interval of data (typically one week) is calibrated successively at GSFC, 
IWF, UCLA

– Each institution submits proposed changes to the calibration.

– A ‘change’ is not a delta, but a new value for a given 
parameter, to be used over a specific interval.

• Configuration control and merging is accomplished 
in weekly teleconferences (MagCons) 

– A single calibration file contains the 
merged result.  

– New cal file becomes 
reference for the 
next iteration at all 
institutions.

Calibration Data Flow
13

Data 
Time

Real Time
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v21

v20

v19

50

v23

54

v22

v23

53

v21v20

o1, o2, 

φ12, dg_SP, 

sx, sy, θ1, θ2

v22

52

v23v22

o3, dg_SA_abs, 

dg_SP_abs, 

φ_abs

v21o3 (low range)

51

Data Week

P
a

ra
m

e
te

rs

Best Calibration (L2)
Prelim. 
(L2pre)

Results Merged into a Single Calibration

Snapshot of Calibration File

• Latest time interval in calibration file contains L2pre calibration.
– L2pre data are processed and made available for ground processing by other instruments.

• Magcon decides when all parameters have been fully updated for a given 
interval.

– L2 data are processed and made available to the
science community.

• There are 16 calibration files in all:
– 4 observatories

– x2: AFG and DFG

– x2: High field range and 
Low field range

14
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CALIBRATION ACTIVITIES AT GSFC
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Approach to Spin-Plane Offset Calibration
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• Divide each orbit into ~15 minute 
intervals with 5 min. cadence.

• On each interval, optimize 
offsets to minimize power at ωS. 

Dynamic Offsets: 
o1 
o2
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Approach to Spin-Plane Offset Calibration
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• Divide each orbit into ~15 minute 
intervals with 5 min. cadence.

• On each interval, optimize 
offsets to minimize power at ωS. 

• Evaluate spin plane magnitude 
(B PERP) around ωS to derive 
empirical “error value”
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Approach to Spin-Plane Offset Calibration
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• Divide each orbit into ~15 minute 
intervals with 5 min. cadence.

• On each interval, optimize 
offsets to minimize power at ωS. 

• Evaluate spin plane magnitude 
(B PERP) around ωS to derive 
empirical “error value”

• Disregard offsets on intervals 
(shown in black) with ‘error 
value’ > error threshold

• Only use the ‘red’ points!
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Approach to Spin-Plane Offset Calibration
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• Divide each orbit into ~15 minute 
intervals with 5 min. cadence.

• On each interval, optimize 
offsets to minimize power at ωS. 

• Evaluate spin plane magnitude 
(B PERP) around ωS to derive 
empirical “error value”

• Disregard offsets on intervals 
(shown in black) with ‘error 
value’ > error threshold

• Only use the ‘red’ points!

• Choose one pair of offsets for 
each orbit.

• avoring the ROI:

• Average of ‘red’ points in a 
nominal ROI, indicated by green 
and red vertical bars.
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GENERAL APPROACH TO 
ORTHOGONALIZATION
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Summary of Methods for all Parameters in GSFC 
“Orthogonalization” Process
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spin	plane	

offsets
o1,	o2

Minimize	spectral	power	at	

ωspin	

in	the	spin	plane

spin	plane	gain	

differential	and	

non-

orthogonality	

dg_SP

φ12

Minimize	spectral	power	at	
2ωspin

in	the	spin	plane.	

elevation	angles	

of	spin	plane	
sensors	

θ1,	θ2

Minimize	slope	of	

regression	between	

apparent	spin-plane	sensor	
offset	and	the	spin-axis	

field.			

spin	axis	
alignment

sx,	sy

Minimize	spectral	power	at	

ωspin

on	the	spin	axis

Calibration	

Parameters
Physical	Methods	Used

Parameter	

Names Low	field	

range

High	Field	

Range

~15	min

(44	spins)

ambient	activity	around	

ωspin;	

high	spin-axis	field*

1	orbit	/	

5-7	orbits	

for	o(TS)

~15	min

(44	spins)

ambient	activity	around	
2ωspin;

low	spin-plane	field

1	orbit

~30	min
(88	spins)

ambient	activity	around	

ωspin;

1/ΔBz;
rate	of	change	of	sensor	

temperature

7	orbits	

(sometimes	
more)

~15	min
(44	spins)

ambient	activity	around	

ωspin;

low	spin-plane	field;

deviation	from	reference	

sensor	temperature

1	orbit	

Integration	Time	for	

final	result

Inbound,	

outbound

Dynamic	

Parameter	

Integration	
Time

Errorvalue	of	interval	

increases	with:
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3 More Parameter Pairs
spinx/spiny, dg_sp/phi12, theta1/theta2

22
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TEMPERATURE-DEPENDENT 
OFFSETS
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A Typical Week Without Shadows
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• Typical week: 21-28 January, 2016

• No eclipses

• Temperature variations in low 
range is minimal (~2 degrees).

• Temperature changes are mostly 
outside the ROI.

• We applied constant offsets for 
each orbit, optimized for the ROI

• Small amount of spin tone is 
noticeable outside of the 
ROI.

• Amplitude of residual spin 
tone generally < 0.2 nT

• Spin tone is much lower than the 
ambient signal within the ROI.

• Due to geophysical activity, some 
orbits have insufficient statistics 
to calculate offset: use value from 
last orbit.
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A Typical Week With Shadows
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• Constant offsets fail to remove 
spin tone during and after eclipses 
in this week of 21-27 April, 2016.

• Dynamic offsets differ from the 
orbit average by 0.3 – 0.5 nT for a 
significant time after eclipse.

• In Phase 2, this will affect primary 
science.

• Dynamic offsets are too noisy and 
sparse to be applied directly to the 
data. 

• The ‘noise’ may be 
geophysical signal at spin freq. 
that we do not want to remove.

• The dynamic offsets appear to 
follow a consistent pattern from 
orbit to orbit.
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Mapping Temperature Fits Back to the 
Time Domain
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• Excellent match to 

• Two possible approaches that 
characterize variations in offsets:

– Spline fit to superposed epoch 
(magenta in two middle panels)

– Spline fit to offset vs. temperature, then 
map back into the time domain (cyan)

• Temperature-based approach has a 
sound physical interpretation.
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Superposed-Epoch Analysis of Spin-Plane 
Offsets
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• o1, o2, and sensor temperature 
(STEMP) for 7 orbits from the previous 
slide plotted superposed-epoch.

– This analysis considers only the points 
with sufficiently low error values.

– Epoch 00:00 is the time of minimum 
temperature on each orbit (end of 
eclipse).

– Offsets stabilize 8 hours after end of 
eclipse.

• Spline fit to superposed epoch 
– Variations show multiple time scales.

– 15-minute bins required to capture 
detail in eclipse recovery.

– Overly variable where offset seems 
stable.

– Spline fit to offset vs. temperature, then 
map back into the time domain (cyan)

• Temperature-based approach has a 

+ dynamic offset
___ splined piecewise linear regression 

on 15-min bins  
___ o(TS) splines mapped to time domain
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Spline Fits to Temperature Trends

For each sensor, offsets are 
characterized by two distinct 
functions of sensor temperature.

1. ‘Adiabatic’ (red points) 
– Increasing temperatures during 

Eclipse Recovery

– Slowly decreasing temperatures 
(e.g. cooling after Earth’s albedo).

– Science requirement applies to 
data in this set. 

2. Eclipse (blue points) 
– Rapidly decreasing temperatures.

– Rapid change in offset: data can be 
improved, with limited accuracy.

– No science requirement.
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Orbit-constant 
offsets

29

Temperature-
dependent offsets

before after
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Temperature Trends of All 
Spin-Plane Sensor Offsets
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Application in Phase 1B (and improving 
Phase 1A)

31

• Old Method: 
• When the ambient noise is large, 

there are few good intervals in 
the ROI. 

• Poor statistics can cause errors 
in the offset from orbit to orbit.
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• Old Method: 
• When the ambient noise is large, 

there are few good intervals in 
the ROI. 

• Poor statistics can cause errors 
in the offset from orbit to orbit.

Application in Phase 1B (and improving 
Phase 1A)

32

New 
Method:

The 
temperature 
distribution 
of offsets for 
the 7 orbits 
is fully 
sampled!
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Application in Phase 1B (and improving 
Phase 1A)

33

• Mapping the STEMP fits 
to time domain (cyan 
traces) 

1. Leverages the statistics 
from outside of the ROI 
to give better results in 
the ROI.

2. Improves results 
outside of the ROI.

• Alternatively, 1-hour time-
spline bins give 
comparable results

• 1-hour bins would 
wash out most 
variations seen after 
eclipse:  A general 
implementation with 
time-domain splines 
would require an 
adaptive bin size.
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Conclusions

• In Phase 1A we achieved 0.2 nT accuracy in the offsets when reducing 
dynamic offsets to a single offset for each orbit.

• Temperature changes due to eclipse are accompanied by offset changes as 
large as 1 nT. Eclipses are followed by a recovery period as long as 12 
hours where the offsets continue to change as temperatures stabilize.

• The changes in offset with temperature are deterministic.
– At time scales of about a week, temperature-offset curves are well defined.

– Each sensor has a distinct temperature-offset curve, thus there are implications for any 
inter-spacecraft data analysis.

– Spin AXIS sensors likely exhibit similar, but distinct, temperature-dependent offsets.

• The temperature-dependent offset correction is in production for L2pre 
and L2 as of orbit 479 (2016-07-01 18:07:46).  This includes most of the 
Phase 1X season of long eclipses.  The algorithms are in place for Phase 2.

• Future work: 
– Account for electronics temperature and discrete jumps in offset during the week. 

– Re-process L2 to correct the remainder of Phase 1X and before.

– Explore temperature dependence of Spin AXIS offset
34
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Theta Angles vs Sensor Temperature

• Each high-range point 
represents an inbound or 
outbound leg of an orbit.

• Each low-range point 
represents one week of 
data.

• Generally good agreement 
between high and low 
range

• MMS3 DFG Theta1 is an 
exception.

– TUBS ground cal also showed 
significant difference between 
high and low. 

37

+ High range in-flight cal
___ High range in-flight linear fit
- - - High range TUBS poly fit
+ Low range in-flight cal

___ Low range in-flight linear fit
- - - Low range TUBS poly fit
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Spin Axis Alignment vs Temperature

38

• Effective orientation of spin 
axis sensor in S/C coordinates

• Includes combined thermal 
effect on sensor, electronics, 
boom, and bus. 

• Excellent agreement between 
low range and high range, 
except for MMS3 DFG, whose 
difference corresponds to the 
difference in Theta1.

• On AFG
– d(spinx)/dTS ≈ 0.5 d(theta1)/dTS

suggests spin-axis sensor is partly 
responsible for change in 
orthogonality.

• On AFG and MMS4 DFG, 
– Change in spin_y without 

corresponding change in theta2 
suggests twisting of boom.

+ High range in-flight cal
___ High range in-flight linear fit
+ Low range in-flight cal

___ Low range in-flight linear fit
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Comparison of temperature vs time fit
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• Temperature-domain 
splines, mapped back 
into the time domain 
(cyan), closely match 
time-domain splines 
(magenta).

• Features of 
Temperature splines:

– 1-degree bins follow 
the significant trends

– Gives stable results in 
the ROI 

• Features of time-
domain splines

– 15-minute bin size 
captures essential 
temperature variations.

– Too much variation 
when temperature is 
stable. TODO: let bin 
size increase as 
temperature stabilizes.
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A less ideal case

• The temperature trend 
of each orbit is not 
always identical.

40
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Determining offsets when there is 
geophysical activity

41

• Current Method takes orbit-averaged 
offsets in the ROI.

• Few good fits in the ROI
• Don’t have good statistics when 

we need them.

• 1-hour time-spline bins give 
comparable results.

• Mapping the STEMP fits to time 
domain gives excellent results in 
the ROI

• questionable at the end, but 
differences are < ~0.05 nT, and 
these are v4 cals.

However, the temperature 
range is fully sampled!



FIELDS FIELDS

FIELDS

‘Tails’ in distributions at high 
temperature may be due to Theta

42
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Offset for each orbit determined by 
fit to previous 7 orbits

43
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Comparing to Electronics 
Temperature

45
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OFFSET vs ETEMP
MMS1 AFG

Regression by eye:

• O1: (7.04 - 6.79) / 8
= 0.03125

• O2: ((-6.03) - (-5.78)) / 8
= -0.03125

46
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OFFSET vs ETEMP
MMS1 AFG

This time, etemp
calculated by averaging 
only the ‘good’ intervals.
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FIELDS

Subtracting E-temp Trend
Before After 
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Find slope 
of  Etemp
(b1, b2):
bilinear 
regress 

stemp > -30

b1 = 0.051  

b2 = -0.043  
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Using Both Sensor Temperature 
and Electronics Temperature
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