
Future Standardization of Space Telecommunications
Radio System with Core Flight System

Joseph P. Hickey (ZIN Technologies, Inc.); Janette C. Briones, Rigoberto Roche,
Louis M. Handler, and Steven Hall (NASA Glenn Research Center)

 2

The Core Flight System
(cFS)

and

Space Telecommunications
Radio System

(STRS)

This project aimed to provide interoperability between two
existing NASA software architectures:

 3

● An architecture for Software Defined Radios (SDR)
– A conventional radio has modulation/demodulation and

processing logic built into its hardware design

– An SDR shifts most of the logic into software & FPGAs

● SDR’s are highly reconfigurable
– Accommodates advances in technology

– Modulation techniques can be adapted on-the-fly

– Enables cognitive radio concepts

SDRs are commonplace in commercial and military industries.

Space Telecommunications Radio System

 4

SDR applications execute
on the GPM via the STRS
Operating Environment
(OE)

 5

STRS defines an API for initialization, configuration, and data
exchange between SDR components:

● Allows encapsulation of functionality.
● Allows multiple vendors to work on different parts of the radio at

once
● Allows updates to one part not to affect the other parts of the radio
● Allows portability of SDR logic: Software design and

implementation processes may be leveraged to lower risk and
increase reliability

Publicly published and released in NASA-STD-4009
http://strs.grc.nasa.gov

 6

● The Software Bus may be extended to exchange commands and telemetry
with other systems/processors, which may or may not be based on cFS.

● CCSDS standard 133.0-B-1 space packet protocol (with secondary
command/telemetry header) is used for all messages, internal and external.

cFS is a general-purpose flight software framework based on a
collection of modular “apps” that primarily communicate using a
message passing architecture called the “Software Bus”

Sofware Bus (SB)
Telemetry and Commands

Gateway app

Other Space
Systems

Ground
Station

CCSDS Space
Packet
Protocol

 7

Both technologies have considerable investment:

● CFS is used across NASA for flight software:

– Many missions, past & future: Morpheus, LADEE, GPM,
RBSP, MMS, LRO, Orion, EVA, GHAPS, etc.

– Many cFS compatible apps have been developed

● STRS Waveform Repository:

– Contains multiple reusable waveforms

– OE for JPL, Harris SDRs

It is desirable to leverage both sets of existing
applications and have them inter-operate

 8

Software Bus

 9

● Provides C implementation for the STRS-defined API calls
– Minimal “smarts” – only a dispatcher to other entities that must be defined

outside the library. Nothing CFS-specific.
● Provides STRS defined headers:

– STRS.h
– STRS_APIs.h
– STRS_ApplicationControl.h
– STRS_ComponentIdentifier.h
– STRS_ControllableComponent.h
– STRS_LifeCycle.h
– STRS_PropertySet.h
– STRS_Sink.h
– STRS_Source.h
– STRS_TestableObject.h
– STRS_Device.h

New “clean room” implementation of STRS API

 10

Objective: The OE library manages a global lookup table for all
STRS handle IDs.

Internal table contains:
● STRS API validity mask: Which STRS API calls are allowed.

● This restricts from calling e.g. STRS_MessageQueueDelete() on a non-
queue object, or STRS_FileClose() on a queue, etc.

● Pointer of type STRS_API_t* to API structure or “Branch Table” containing
specific implementations of APP API calls for the object.

● Object-specific instance pointer of type STRS_Instance_t*

Handle1

Handle2

File2

File1

“File”
API

API

Instance

Instance

API

 11

WF1
Dispatcher

WF2

STRS_Start(WF1, WF2)

1)Validate “WF2” handleID
using internal table

2)Retrieve API (branch
table) and Instance
Pointer for “WF2”

3)Verify “APP_Start” is
provided

APP_Start(Instance)

Objective: Provide core “dispatcher” functions for STRS APIs.
● All core functions are implemented in pure C (like other CFS libraries)
● Uses “branch table” approach to servicing STRS API calls

– All handles are equal, no special treatment of any ID.
– Any special behavior is in the implementation, not in the dispatcher.

 12

Objective: Provide suitable implementations for “File” and “Queue”
functions

File and Queue operations loosely map to existing APP API calls:
● “APP_Instance” can create a wrapper object
● “APP_Initialize” can obtain the underlying resources (filehandle, etc)
● “APP_ReleaseObject” can release the resource
● “APP_Read” and “APP_Write” serve the normal purpose

Any unique properties of special handles can be embedded entirely within the
underlying implementation functions:

● STRS_FileOpen() creates an STRS handle using the File API
● STRS_MessageQueueOpen() creates an STRS handle using the Queue API
● The “Validity Mask” implemented in the OE ensures that a user cannot directly

call other STRS APIs on these types of handles, such as
STRS_Initialize(), even though it may implement the APP call.

 13

Objective: Transparently support dispatching to waveforms
implemented in C++ as well as C

● C++ bindings are provided using the same branch table
● A C++ class provides compatible (extern “C”) implementations of the C API, which

in turn calls the C++ member function
● Dispatcher doesn’t know the difference, nothing special is done
● Fully portable; nothing compiler specific, minimal #ifdef conditional compilation, and

all C++ calling conventions are correctly adhered to.
● C++ is easily removed for targets that do not have C++ runtime libraries

WF1
Dispatcher

WF2

STRS_Start(WF1, WF2)

C++ Bindings

APP_Start(Instance)

Instance->APP_Start()

On the cFS side:
● Has its own thread
● It can subscribe to anything on the CFE

software bus.
● It can broadcast to the CFE software bus

On the STRS side:
● Instantiates required handle IDs:

– STRS_ERROR_QUEUE
– STRS_FATAL_QUEUE
– STRS_WARNING_QUEUE
– STRS_TELEMETRY_QUEUE

● Can make STRS calls
● Permits STRS applications to send or

receive CFS software bus messages
through STRS API

Dual personality: STRS and cFS application

 15

● STRS_ERROR_QUEUE
● STRS_FATAL_QUEUE
● STRS_WARNING_QUEUE
● STRS_TELEMETRY_QUEUE

These handles all utilize an “EventLogger” API implemented within FCI.

● Only STRS_Log() is allowed on these handles (direct STRS_Write is restricted)
● Implementation of APP_Write() forwards the event message and contextual data to the CFE

Event Services (EVS) subsystem
● Each STRS handle maps to a different CFE Event ID so each type of message can be identified

in the resulting telemetry stream

Objective: “Flight Computer Interface” (FCI) instantiates all
required log objects within the OE:

WF1
Dispatcher

EVS

STRS_Log(WF1, STRS_ERROR_QUEUE)

FCI
EventLogger

APP_Write(Instance) CFE_EVS_SendEvent()

Add contextual data Format output
for EVS

 16

● “MET” is a monotonic clock provided by the CFE TIME subsystem.

– This clock may be correlated with other clocks, such as UTC/earth time,
using a “spacecraft time correlation factor” (STCF).

● This provides basis for STRS_GetTime() and STRS_SetTime()

– STRS defines API calls only; it does not stipulate any particular clocks that
must exist or how they operate

● OE specifies the actual clocks and the handle name(s) it provides

– MET access is provided via a normal STRS HandleID

● STRS_GetTime() implemented as APP_Read()
● STRS_SetTime() implemented as APP_Write()
● Direct STRS_Read() / STRS_Write() on this handle are restricted

Objective: “Flight Computer Interface” (FCI) instantiates an STRS
handle to access the CFE “Mission Elapsed Time” (MET)

 17

It is a common paradigm for cFS applications to accept
application-defined commands sent from remote sources.

● FCI allows STRS API calls to be made using an interface
that “looks and feels” like other CFS commands.

– Allows use of existing CFS command generation tools to issue
STRS API calls, including the web-based GUI.

– Remote cFS apps are “just another STRS handle”

● Optional component; this feature could be easily
removed if this functionality is not desired.

Objective: FCI allows apps within the STRS domain to interact with
cFS applications or vice versa

 18

● The Advanced Space Radio Platform (ASRP) is the
incubator for the cFS + STRS combination.

– Based on the Vadatech AMC516 hardware

– cFS runs on the PowerPC host processor

● Multiple STRS devices implemented:

– Local Bus (including FPGA loading and register access)

– M-LVDS cross bar switch

– Quad PLL

 19

The following STRS waveforms are implemented on ASRP:

● Live sample capture

– Configurable sized capture from live radio data

– Implemented as simple STRS_Read / APP_Read call

● Spectral power density estimation

– Implements P. Welch algorithm
● Configurable number of segments, segment overlap, segment

window function
● Uses FFTW library on PowerPC for FFTs

– Reads raw data via STRS_Read() from live sample capture.

● Web-based GUI for interactive use

 20

 21

● Synchronous vs. Asynchronous calls

– Most STRS calls are synchronous
● For instance, the data buffer on STRS_Read() is expected to

be filled with valid data when the call returns

– Most CFS operations are asynchronous
● Sends a message on the software bus
● “Fire and forget” – no replies

● Software Bus vs. STRS Pub/Sub

– Although the CFS software bus is a publish/subscribe
model, it requires all endpoints to be defined at compile time
for subscription purposes.

– STRS allows creation and deletion of endpoints at run time

