Future Standardization of Space Telecommunications == _. |

Radio System with Core Flight System

o“‘\‘.‘

3f

o h N
¢ 3 Ay
. " P [
ok \ e
. # T ."- o o L ».

OMMUNICATLIONS AND NAVIGALIOIN
i

A=V

Joseph P. Hickey (ZIN Technologies, Inc.); Janette C. Briones, Rigoberto Roche,
Louis M. Handler, and Steven Hall (NASA Glenn Research Center)

www.nasa.gov




Introduction

This project aimed to provide interoperability between two
existing NASA software architectures:

The Core Flight System F
(CFS)

and
Space Telecommunications

Radio System
(STRS)




STRS: What Is It?

Space Telecommunications Radio System

* An architecture for Software Defined Radios (SDR)

- A conventional radio has modulation/demodulation and
processing logic built into its hardware design

- An SDR shifts most of the logic into software & FPGAs
 SDR’s are highly reconfigurable

- Accommodates advances in technology
- Modulation techniques can be adapted on-the-fly
- Enables cognitive radio concepts

SDRs are commonplace in commercial and military industries.
3



SPACE COMMUNICATIONS

/ " 3;;?)
SCaN
@09 ®

AND NAVIGATION

SDR applications execute
on the GPM via the STRS
Operating Environment

Ground Test - (O E)

Intarface 1 Genel

VWavetorm
Application

HostTT&C s
Interface 1

Operaling Configuration

: & System
Work Area Memory L0 Euonment Contral

Persistent Mamory |

| T 3
Test & Systam Uég?nhj.a Test & Antenna
Stalus Cantral = Fraquency Status Iﬁzr:;g;
[ |
Clock A Clack
Distribution | Interface
, |
High Speed — ﬁé:?;gl Receiva RF —— *
| Digital Signal
| [Spacecraft Data Data p?mgs;-g::g Antenna
ﬂﬂrlii T| Buffer’ Formatting[™ | Interface
Interface Starage i z AR
DA?]';ERI};G Transmit RF  —=—
Signal Processing Module (SPM) RF Module (RFM)




STRS defines an API for initialization, configuration, and data
exchange between SDR components:

« Allows encapsulation of functionality.

 Allows multiple vendors to work on different parts of the radio at
once

 Allows updates to one part not to affect the other parts of the radio

 Allows portability of SDR logic: Software design and
Implementation processes may be leveraged to lower risk and
Increase reliability

Publicly published and released in NASA-STD-4009
http://strs.grc.nasa.gov



cFS: What Is It?

cFS is a general-purpose flight software framework based on a
collection of modular “apps” that primarily communicate using a
message passing architecture called the “Software Bus”

Other Space
Systems

;

Gateway

CCSDS Space
Packet
Protocol

Sofware Bus (SB)

Telemetry and Commands

i

Ground
Station

» The Software Bus may be extended to exchange commands and telemetry
with other systems/processors, which may or may not be based on cFS.

« CCSDS standard 133.0-B-1 space packet protocol (with secondary
command/telemetry header) is used for all messages, internal and external.



CFS + STRS...

Both technologies have considerable investment:

 CFS is used across NASA for flight software:

- Many missions, past & future: Morpheus, LADEE, GPM,
RBSP, MMS, LRO, Orion, EVA, GHAPS, etc.

- Many cFS compatible apps have been developed
« STRS Waveform Repository:

- Contains multiple reusable waveforms
- OE for JPL, Harris SDRs

It is desirable to leverage both sets of existing
applications and have them inter-operate



New, re-usable
OE components STRS Domain

STRS STRS STRS STRS
WF WF WF WF

SIRS
Devices
~ (Platform
Support

“FCI” app can receive commands, telemetry Platform Support Package (PSP)
from CFS apps, or send telemetry all via CFE
Software Bus




STRS API Library

New “clean room” implementation of STRS API

* Provides C implementation for the STRS-defined API calls
- Minimal “smarts” — only a dispatcher to other entities that must be defined
outside the library. Nothing CFS-specific.

* Provides STRS defined headers:

- STRS . h STRS Domain
- STRS_APIs.h |
- STRS_ApplicationControl.h W we we W

- STRS_Componentldentifier.h

- STRS_ControllableComponent.h

- STRS_LifeCycle.h _
- STRS_PropertySet.h > o~

- STRS_Sink.h Computer Device

Interface (Platform

- STRS_Source.h (FCI) Support)
- STRS_TestableObject.h
- STRS Device.h



Objective: The OE library manages a global lookup table for all
STRS handle IDs.

Internal table contains:
« STRS API validity mask: Which STRS API calls are allowed.
« This restricts from calling e.g. STRS_MessageQueueDelete() on a non-

gueue object, or STRS_FileClose( ) on a queue, etc.
« Pointer of type STRS_API_t* to API structure or “Branch Table” containing

specific implementations of APP API calls for the object.
« Object-specific instance pointer of type STRS_Instance_t*

Handlel

Handle?2

10



STRS Dispatcher

Objective: Provide core “dispatcher” functions for STRS APIs.

* All core functions are implemented in pure C (like other CFS libraries)
« Uses “branch table” approach to servicing STRS API calls
- All handles are equal, no special treatment of any ID.
- Any special behavior is in the implementation, not in the dispatcher.

11



STRS Files and Queues

Objective: Provide suitable implementations for “File” and “Queue”
functions

File and Queue operations loosely map to existing APP API calls:
 “APP_Instance” can create a wrapper object
« “APP_Initialize” can obtain the underlying resources (filehandle, etc)
 “APP_ReleaseObject’ can release the resource
 “APP_Read” and “APP_Write” serve the normal purpose

Any unique properties of special handles can be embedded entirely within the
underlying implementation functions:

« STRS_FileOpen() creates an STRS handle using the File API
« STRS_MessageQueueOpen() creates an STRS handle using the Queue API

* The “Validity Mask” implemented in the OE ensures that a user cannot directly
call other STRS APIs on these types of handles, such as
STRS_Initialize(), even though it may implement the APP call.

12



8

s STRS API Implementation

Objective: Transparently support dispatching to waveforms
Implemented in C++ as well as C

C++ bindings are provided using the same branch table

A C++ class provides compatible (extern “C”) implementations of the C API, which
in turn calls the C++ member function

Dispatcher doesn’t know the difference, nothing special is done

Fully portable; nothing compiler specific, minimal #1fdef conditional compilation, and
all C++ calling conventions are correctly adhered to.

C++ is easily removed for targets that do not have C++ runtime libraries

13



Dual personality: STRS and cFS application

On the cFS side;
e Has its own thread

« It can subscribe to anything on the CFE
software bus. STRS STRS STRS STRS

* |t can broadcast to the CFE software bus

On the STRS side:
* Instantiates required handle IDs:
- STRS_ERROR_QUEUE
- STRS_FATAL_QUEUE
- STRS_WARNING_QUEUE
- STRS _TELEMETRY_QUEUE
« Can make STRS calls v

 Permits STRS applications to send or
receive CFS software bus messages
through STRS API

STRS Domain

STRS API Implementation

STRS
Devices
(Platform
Support)

CFS Domain



FCI:. Log Queues

Objective: “Flight Computer Interface” (FCI) instantiates all
required log objects within the OE:

« STRS_ERROR_QUEUE

« STRS_FATAL_QUEUE

« STRS_WARNING_QUEUE

« STRS_TELEMETRY_QUEUE

These handles all utilize an “EventLogger” APl implemented within FCI.

« Only STRS_Log() is allowed on these handles (direct STRS_Write is restricted)
« Implementation of APP_Write() forwards the event message and contextual data to the CFE
Event Services (EVS) subsystem

« Each STRS handle maps to a different CFE Event ID so each type of message can be identified
in the resulting telemetry stream

FCI

WF1 _ EventLogger

Format output
for EVS

15



FCI: Time Handles

Objective: “Flight Computer Interface” (FCI) instantiates an STRS
handle to access the CFE “Mission Elapsed Time” (MET)

« “MET” is a monotonic clock provided by the CFE TIME subsystem.

— This clock may be correlated with other clocks, such as UTC/earth time,
using a “spacecraft time correlation factor” (STCF).

e This provides basis for STRS_GetTime( ) and STRS_SetTime()

- STRS defines API calls only; it does not stipulate any particular clocks that
must exist or how they operate

* OE specifies the actual clocks and the handle name(s) it provides
- MET access is provided via a normal STRS HandlelD

« STRS_GetTime() implemented as APP_Read()
« STRS_SetTime() implemented as APP_Write()

e Direct STRS Read() / STRS_ Write() on this handle are restricted
16



Objective: FCI allows apps within the STRS domain to interact with
cFS applications or vice versa

It iIs a common paradigm for ckFS applications to accept
application-defined commands sent from remote sources.

 FCl allows STRS API calls to be made using an interface
that “looks and feels” like other CFS commands.

- Allows use of existing CFS command generation tools to issue
STRS API calls, including the web-based GUI.

- Remote cFS apps are “just another STRS handle”

« Optional component; this feature could be easily
removed If this functionality Is not desired.

17



 The Advanced Space Radio Platform (ASRP) is the
Incubator for the cFS + STRS combination.

- Based on the Vadatech AMC516 hardware
- CFS runs on the PowerPC host processor

* Multiple STRS devices implemented.:

- Local Bus (including FPGA loading and register access)
- M-LVDS cross bar switch
- Quad PLL

18



ASRP Waveforms

The following STRS waveforms are implemented on ASRP:
* Live sample capture

- Configurable sized capture from live radio data
- Implemented as simple STRS_Read / APP_Read call

» Spectral power density estimation

- Implements P. Welch algorithm

e Configurable number of segments, segment overlap, segment
window function

 Uses FFTW library on PowerPC for FFTs
- Reads raw data via STRS_Read() from live sample capture.

« Web-based GUI for interactive use
19



Questions

20



» Synchronous vs. Asynchronous calls

- Most STRS calls are synchronous

* Forinstance, the data buffer on STRS Read() is expected to
be filled with valid data when the call returns

- Most CFS operations are asynchronous

« Sends a message on the software bus
* “Fire and forget” — no replies

e Software Bus vs. STRS Pub/Sub

- Although the CFS software bus is a publish/subscribe

model, it requires all endpoints to be defined at compile time
for subscription purposes.

- STRS allows creation and deletion of endpoints at run time
21





