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ABSTRACT 
The NASA Orion vehicle that will fly to the moon in the 
next years is propelled along its mission by the European 
Service Module (ESM), developed by ESA and its prime 
contractor Airbus Defense and Space. 
This paper describes the development of the Propulsion 
Drive Electronics (PDE) Software that provides the 
interface between the propulsion hardware of the 
European Service Module with the Orion flight 
computers, and highlights the challenges that have been 
faced during the development. Particularly, the specific 
aspects relevant to Human Spaceflight in an international 
cooperation are presented, as the compliance to both 
European and US standards and the software criticality 
classification to the highest category A. 
An innovative aspect of the PDE SW is its Time- 
Triggered Ethernet interface with the Orion Flight 
Computers, which has never been flown so far on any 
European spacecraft. 
Finally the verification aspects are presented, applying the 
most exigent quality requirements defined in the European 
Cooperation for Space Standardization (ECSS) standards 
such as the structural coverage analysis of the object code 
and the recourse to an independent software verification 
and validation activity carried on in parallel by a different 
team. 

 
 

1 THE ORION ESM ARCHITECTURE 

ESA and its prime contractor Airbus Defense and Space 
are developing the European Service Module (ESM) for 
the NASA Orion vehicle for human space exploration 
mission [2]. The ESM provides to Orion the generation of 
power through 4 deployable solar arrays, the power 
distribution to the ESM and Crew Module (CM) users, the 
passive and active thermal control system for ESM and 
CM using thermistors and fluid loops, the storage and 
delivery of water and gas to the CM, and the propulsion 

system. Fig. 1 shows the modules of the Orion Vehicle, in 
particular the service module and the crew module. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Modules of Orion Vehicle 
 

The hardware in the ESM is controlled by a set of 
electronic units, developed by Airbus Defense and Space 
and its subcontractors: 
- Propulsion Drive Electronics (PDE), controlling the 

propulsion hardware 
- Pressure Regulation Unit (PRU) controlling the 

electrical regulation of the pressure in the ESM 
propulsion tanks 

- Power Control and Distribution Unit (PCDU), 
providing the users in the ESM and the CM with two 
different types of power at 28V and 120V, and 
controlling the power provided to the CM battery or 
supplied by the CM batteries depending if the ESM 
solar panels are on sun or in eclipse phase. 



- Solar Array Driving Electronics (SADE), controlling 
the rotation of ESM solar arrays on two axes via the 
four driving mechanisms 

- Thermal Control Unit (TCU), managing the active and 
passive thermal control systems and the storage and 
delivery of consumables such as water and gas to the 
CM 

- Fluid Control Assembly (FCA), including the 
electronics for the control of the pumps for the active 
cooling system. 

The overall mission and vehicle management is executed 
by the Orion flight computers, located in the CM and 
developed by NASA and its subcontractors. The ESM 
electronic units communicate with the Orion flight 
computers via a 1GBit Time-Triggered Ethernet network, 
called Orion Onboard Data Network (ODN). 
Fig. 2 depicts the overall avionics subsystem architecture 
and interfaces. The interface to the SLS launcher is 
depicted on the left side of the drawing, and the CM and 
CMA (labeled as SM-CM I/F Adapter) are on the right 
side. 

 

Fig. 2. ESM Avionics architecture 

1.1 The ESM propulsion subsystem and the PDE 
mission 

One of the main subsystems in the ESM  is  the 
Propulsion [3], that includes three different types of 
engines: the 27.7 kN Main Engine, reused from NASA’s 
Space Shuttle program, gimbaled on two axes by a Thrust 
Vector Control system and providing the boost for the 
main orbital manoeuvers; the eight auxiliary engines, 
providing a thrust of 490 N each, used together with the 
Main Engine for the orbital manoeuvers; and 24 Reaction 
Control System (RCS) thrusters to ensure attitude control 
of the vehicle. 
The ESM propulsion is equipped with an innovative 
electrical pressure regulation system, controlled 
autonomously in the ESM on the basis of setpoints fixed 
by the Flight Software depending on the phases of the 
mission. 
The ESM Propulsion Drive Electronics (PDE) is the main 
interface between the Orion Flight Computers and the 
ESM Propulsion hardware. The PDE receives through the 
ODN interface the commands to operate the engines 
according to the results of the control algorithms in the 
Flight Software, and provides to the Flight Software the 
readings from the sensors allowing monitoring and failure 
detection of the propulsion hardware. In the fulfillment of 
this mission two categories of requirements play a key 
role: reliability and time reactivity. 

1.2 The ATV experience 
The design of the ESM is inherited from the experience of 
the Automated Transfer Vehicle (ATV), that serviced the 
ISS between 2008 and 2015 with 5 different missions. 
The first heritage is represented by the PDE itself: the 
overall concept of the ESM PDE comes as an evolution of 
the ATV PDE, by expanding its functions to control a 
wider range of engines and a gimballing mechanism, 
modernizing the Mil-Bus interface to a Time-Triggered 
Ethernet one, increasing its reactivity from the 100ms 
ATV cycle to the 25ms of Orion, and adapting its 
reliability to meet the requirements for a crewed mission. 
The second major heritage is the development of critical 
software. On ATV, the most critical functions were 
centralized in the Monitoring and Safing Unit (MSU), 
which was in charge of establishing and maintaining a 
safe position of ATV with respect to ISS by executing and 
controlling a retrograde manoeuvre, overriding the ATV 
Flight Application Software (FAS) and the ATV PDE by 
direct commands to the propulsion hardware. The 
presence of the MSU allowed for the reduction of the 
criticality of the ATV FAS and PDE software, and only 
the MSU software had been developed to the highest 
criticality A grade [1]. On ESM an independent safing 
system such as the MSU is not present, and the reliability 
requirements are not only associated with collisions but 
also spread over the entire flight; this forced the 
development of PDE SW to criticality category A. 



As of today, the ATV MSU SW and the ESM PDE SW 
are the only two examples of Category A software 
developed on ESA projects. 

 
 

2 PDE ARCHITECTURE 

2.1 PDE description 
The PDE architecture is designed for high reliability and 
fault-tolerance protecting from inadvertent activation of 
critical actuators. 
The ESM has two identical PDE boxes (Fig. 3) each 
comprising two independent channels providing several 
actuator controllers and sensor interfaces. At the system 
level, a high degree of redundancy is achieved by 
connecting nominal and redundant actuators and sensors to 
different PDE channels. Each PDE channel communicates 
with the Flight computers in the CM via a dedicated Time- 
Triggered Ethernet interface. 
Within each channel, a hardware/software co-design 
architecture combines high fault-tolerance and time 
precision while maintaining flexibility. Time-critical low- 
level actuator controllers and acquisition of sensor 
measurement data are implemented in radiation-hard anti- 
fuse FPGAs (Microsemi RTAX) while high-level control, 
processing and validation of commands from the Flight 
Computers, and telemetry data generation are implemented 
in software running on a fault-tolerant LEON2-FT 
processor. 
All actuator power drivers are designed one-fault tolerant 
by implementing two independent safety barriers in series 
which are controlled by separate FPGAs. In addition, the 
health status of each barrier is monitored by the FPGA not 
controlling the barrier itself. The operation of the low-level 
FPGA functions is controlled and monitored by the 
software, rendering the software the only central single 
point of failure. 

 

Fig. 3. ESM PDE box comprising two channels 
 

2.2 Time-Triggered Ethernet interface 
The exchange of command and telemetry data with the 
Orion Flight computers is realized with Time-Triggered 

Ethernet (TTE) with three independent lanes per PDE 
channel. TTE provides high reliability and robustness, and 
guarantees deterministic data timing according to a well- 
defined schedule [5]. Each PDE channel is equipped with a 
dedicated Standard Network Interface Card (SNIC) 
delivered by NASA subcontractors. The SNIC also 
provides a precise synchronization signal defining the 
system-wide 25ms operation cycles. 

2.3 PDE On-board computer 
Each PDE channel comprises a controller board (MPCC) 
comprising an Atmel AT697F implementation of ESA's 
fault-tolerant LEON2-FT processor based on a SPARC V8 
32-bit RISC architecture running at 100 MHz. The Atmel 
ATC18RHA CMOS process is radiation-hardened and 
utilizes several single event effect mitigation techniques: 
the architecture provides full triple module redundancy, 
transient filtering, error detection and correction (EDAC) 
for registers and external memories, and parity protection 
of the caches. The AT697F also provides a 33 MHz PCI 
interface, a memory controller, and several peripherals 
including UARTs, general purpose I/Os, as well as an 
embedded Debug Support Unit (DSU) with trace buffers. 
Via the processor bus, an external 2 MByte (+EDAC) 
SRAM,  Flash  memories  containing  four  independent  
4 MByte software images, as well as three high-reliability 
anti-fuse FPGAs are attached. Access to and content of the 
SRAM and the Flash memory are protected by LEON- 
internal error correction and detection (32 data + 7 EDAC 
bits). FPGA-internal registers and memory blocks are 
mapped into the processor's I/O space. Accesses to these 
resources are protected by application-level mechanisms 
comprising multiple bus transactions. In addition to using a 
highly reliable radiation-hard processor device, a processor 
watchdog is implemented in a dedicated Supervisor FPGA. 
Permanent comprehensive self-monitoring of the system 
firmly embedded in the 50ms command/measurement 
period (bus accesses, integrity of FPGA registers and state 
machines, health status of driver barriers) and deterministic 
cache refreshing further improves reliability and protection 
from inadvertent activation of critical functions. 

2.4 Interface with Pressure Regulation Unit 
Since the Pressure Regulation Unit of the ESM does not 
provide a direct ODN interface, the PDE channels act as 
bridges for the communication between the CM flight 
computers and several Pressure Regulator Unit channels. 
An Orion-specific implementation of the High-Level Data 
Link Control (HDLC) protocol is used for point-to-point 
serial data links between individual PDE and PRU 
channels. Data integrity across the entire data chain is 
ensured on several levels: the HDLC interfaces provide 
CRC protection at the link level; the PDE-internal data 
buffers implement error detection and correction; the 
actual data frames exchanged between CM flight 
computers and PRU are transported transparently by the 
PDE to provide dedicated end-to-end CRC protection. 



3 PDE SOFTWARE DEVELOPMENT 

3.1 Software standards 
Development of software for space application in Europe 
is carried on according to ECSS standards, in particular: 
• ECSS-E-ST-40C “Space engineering: Software” 
• ECSS-Q-ST-80C “Software product assurance” 
• ECSS-Q-ST-40C “Safety” 
As the Orion Flight Software is developed by NASA and 
its subcontractors, a different standard is applied: 
• NPR 7150.2A “NASA Software Engineering 

Requirements” 
The NASA Procedural Requirements (NPR) impose 
requirements on software development, whether created 
by NASA or developed for NASA programs and in the 
case of the ESM, provides a common set of requirements, 
that has been used to map to European industry standards. 
Due to the integrated nature of the ESM and the CM 
within the Orion spacecraft, the NASA requirements 
imposed on the ESM lead to the need to harmonize the 
software standards applied on the different components, 
so that the vehicle level analyses could rely on activities 
and documentation from PDE SW. 
An option to harmonize the standards could have been to 
make NPR 7150.2A formally applicable to all the ESM 
SW, and develop it according to US standards. However, 
the learning curve of using a different standard that the 
one usually applied in Europe would have had 
unacceptable cost and schedule impacts, so this option had 
to be modified. 
A joint ESA/NASA activity took place in order to map the 
requirements of NPR 7150.2A to the ECSS clauses, in 
order to show how the NPR Software Engineering 
Requirements would be met. Rather than a generic “meet 
or exceed” exercise between the two standards, the 
mapping has been oriented to identify the actual activities 
and artefacts developed for PDE SW, either because it 
was required by ECSS or because it was generated by 
other plans that are applicable at the project level. The 
results have been captured in the bilateral document 
MPCV 72547 “Agreement on applicability of NASA 
software engineering requirements to ESM”, and it has 
been agreed to between ESA and NASA that by applying 
the ECSS standards as defined in the MPCV 72547, ESA 
will show compliance to the requirements in NPR 7150. 
As a support, the – still partial – results of the working 
group on “Mutual recognition of S&MA standard NASA, 
ESA and JAXA” have been used as a reference [4]. 
The results of the mapping of the 132 requirements of 
NPR 7150.2A have been: 
• 42 requirements are of programmatic nature, or 

otherwise organization related. These were determined 
to be not applicable to ESA and no mapping to ECSS 
has been done. 

• 90 requirements are of technical nature, and are 
applicable to ESA. A mapping to ECSS has been 
identified for each of those. 

The single requirement applicable to ESA for which no 
compliance could be shown is the Software Engineering 
requirement 32 (SWE-032), which requires that all human 
rated space software systems are certified to Capability 
Maturity Model Integration (CMMI) Maturity Level 3. 
The ECSS Q80 requests the supplier to monitor and 
control the effectiveness of the development processes 
(§5.7.2), and in particular §5.7.7.2 requests that 
assessments shall be in conformance with ISO/IEC 15504, 
Software Process Improvement and Capability 
Determination (SPICE) [7]: however, no specific model 
(such as CMMI) is imposed. This was incompatible with 
NASA requirement, which explicitly calls for CMMI 
level 3, while Airbus was at the time only certified to 
level 2. As this requirement is applicable at NASA’s 
Agency level, the Orion project had no authority to waive 
it; a dedicated waiver on requirement SWE-032 was then 
requested to NASA’s Chief Engineer and eventually 
obtained. The waiver was based on the use of other 
standards and project plans that showed how the CMMI 
ML3 technical process area requirements would be met, 
and was supported by the proven experience of Airbus on 
previous projects such as Columbus and ATV. 

3.2 Software criticality 
A main step to prepare the PDE SW development has been 
the determination of its criticality. The concept of software 
criticality category is introduced in ECSS-Q-ST-80C 
“Software Product Assurance”, and is based on the 
consequences that the loss or degradation of a software 
function can have at system level, on a scale going from 
the lowest Category D (minor or negligible consequences) 
to Category A (catastrophic consequences, such the loss of 
life). An implication of this approach is that a system level 
safety analysis is necessary to determine the effects of the 
loss of a software function, and this can be only performed 
once a preliminary design of the system is defined. 

 
TABLE I. ECSS SOFTWARE CRITICALITY CATEGORIES 

 

Software 
Category Definition of Software Category 

 

A 

Software that if not executed, or if not 
correctly executed, or whose anomalous 
behaviour can cause or contribute to a system 
failure resulting in: 
→ Catastrophic consequences 

 
 

B 

Software that if not executed, or if not 
correctly executed, or whose anomalous 
behaviour can cause or contribute to a system 
failure resulting in: 
→ Critical (On Ground) / Mission (In 
Flight) consequences 

 

C 

Software that if not executed, or if not 
correctly executed, or whose anomalous 
behaviour can cause or contribute to a system 
failure resulting in: 
→ Major consequences 

D Software that if not executed, or if not 
correctly executed, or whose anomalous 



Software 
Category Definition of Software Category 

 behaviour can cause or contribute to a system 
failure resulting in: 
→ Minor or Negligible consequences 

 

Alternatively, the approach defined by NASA in the NPR 
7150.2A is a classification of the safety-criticality of the 
software based on 8 Classes, from A-Human Rated Space 
Software Systems down to E-Small Light Weight Design 
Concept and Research and Technology Software (Classes 
F through H cover business and information technology 
related software in decreasing order of applicability) . The 
designation of the software in a criticality class is based on 
criteria such as the domain of use of the software, the 
extent to which humans depend upon the system, and the 
criticality of its use. According to NPR 7150.2A criteria, 
all the software needed to perform primary function on a 
human rated system belongs to Class A, independently of 
any analysis on the consequences of failures. 

 
TABLE II. NASA SOFTWARE CRITICALITY CATEGORIES 

 
 

The profound difference in the two approaches makes it 
impossible to map the ECSS “categories” to the NPR 
“classes”. By NASA’s definition of Class rating, NASA 
rates the PDE SW is as Class A. In agreement with 
NASA, the ECSS approach has been applied to determine 
the criticality of PDE Software, with a Software Criticality 
Analysis that has been prepared at Subsystem level and 
assessed at System level, resulting in the determination of 
the Category A for the PDE SW. 
The classification to Category A has a major impact on 
the development cycle of the software. In particular, two 
requirements that are specific to category A software are 
the verification with 100% modified decision condition 
coverage of source and object code (E40 §5.8.3.5), and the 
execution of Independent Software Verification and 
Validation (ISVV) by a 3rd party organization (Q80 
§6.3.5.28). The impacts of these requirements on the PDE 
SW are detailed in the next sections. 

3.3 Coding rules 
ESA coding rules BSSC(2000)1 vs. industry standards 
like e.g. the Motor Industry Software Reliability 
Association (MISRA) coding rules represent different 
aims of the rule set with some consequences: the MISRA 
coding rules concentrate mainly on practical rules which 
seem to have the goal of enforcing the production of 
'good' source code even by un-experienced programmers. 
The resulting rigid rule set may jeopardize the overall 
quality of the designed software, but on the other hand 
allows a high degree of automated verification by 
commercially available tools (e.g. PolySpace). The ESA 
coding rules instead are of more 'philosophical' nature and 
have a clear aim towards a higher overall quality of the 
produced source code with the consequence that the 
resulting rules are -in general- not verifiable by tools. 
With a certain amount of goodwill, some ESA coding 
rules can be mapped onto MISRA coding rules allowing 
automated verification, but for the majority of the ESA 
coding standard such a mapping is not feasible. As a 
consequence, the application of ESA coding rules requires 
skilled/experienced and self-disciplined programmers in 
conjunction with skilled/experienced reviewers necessary 
for the peer-reviews and code walk-throughs foreseen 
during the software development cycle. No tool can do 
this job for You! 

 

3.4 Software architectural design 
The software architectural design resulting from the given 
requirements baseline as well as from the system analysis, 

Software 
Class Definition of Software Category 

 system or to-be built Class A, B, or C system, 
or software used to perform minor desktop 
analysis of science or experimental data. 

F - H Business and IT software. 

 

Software 
Class Definition of Software Category 

 
 

A 

Human Rated Space Software Systems. 
→ Any SW developed and/or operated by or 
for NASA that are needed to perform a 
primary mission objective of human space 
flight and directly interacts with human space 
flight systems. 

 
 

B 

Non-Human Space Rated Software Systems 
or Large Scale Aeronautics Vehicles 
→ Flight and ground software that must 
perform reliably to accomplish primary 
mission objectives, or major function(s) in 
Non-Human Space Rated Systems. 

 
 
 
 

C 

Mission Support Software or Aeronautic 
Vehicles, or Major Engineering/Research 
Facility Software 
→ Flight or ground software that is necessary 
for the science return from a single (non- 
primary) instrument, or that is used to 
analyze or process mission data, or other 
software for which a defect could adversely 
impact attainment of some secondary mission 
objectives or cause operational problems. 

 
 

D 

Basic Science/Engineering Design and 
Research and Technology Software 
→ Ground software that performs secondary 
science data analysis, or supports engineering 
development, or is used in testing other Class 
D software systems. 

 

E 

Small Light Weight Design Concept and 
Research and Technology Software 
→ Software developed to explore a design 
concept or hypothesis, but not used to make 
decisions for an operational Class A, B, or C 

 



lead to the development of a 'bare-bone' software for the 
LEON-based PDE MPCC: 
• no operating system, no synchronous interrupts 
• no 3rd party libraries 
• no board support packages or automatic start-up code 
• reuse of a well-proven boot loader for basic processor 

set-up and PDE software loading during start-up 
• a control main loop as simple as possible, 

synchronized by events derived from the Time- 
Triggered Ethernet, with a strict processing schedule 
and a clearly predictable timing behavior 

The result of the software architectural design is a simple 
main loop with two 25 ms sub-cycles (one 'command', one 
'measurement' sub-cycle) and an overall cycle time of 50 
ms, visualized in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. PDE software main loop 
 

No real surprise was that the usage of the Time-Triggered 
Ethernet as the one and only communication channel with 
the PDE software had no major effects on the software 
design: it behaves in principle like the well-known MIL-
Bus with a well-defined time framing while providing 
higher band width with triple-redundancy not visible to 
the user. 
Except for the re-used bootloader written in assembler all 
other parts of the PDE software are designed for coding in 
the high-level programming language 'C' based on the gnu 
tool chain. 

3.5 Development principles 
Some of the used principles in developing the PDE 
software in order to minimize the risk for failures are 
listed hereafter: 
• Usage of a well-known and often used tool chain, 

adopted already in various other projects 
• Adherence to the goal of simplicity for the detailed 

software design as well as for coding in order to 
achieve simple, fully tested and thus highly reliable 
software 

• Usage of object-oriented principles in the S/W design 
to achieve module separation 

• Disciplined source code development using version- 
controlled template files reflecting the corresponding 

ESA Board for Software Standardization and Control 
(BSSC) rule set 

• Exclusive usage of 'atomic' logical decisions to ease 
the target of modified condition and decision 
coverage (MCDC) thus allowing for 100% unit 
testing with 100% source code and object code 
coverage 

• Source code development cycle with several peer 
reviews and internal (development group) and 
external (ISVV, ESA) audits resulting in 'early 
finding reports' in order to obtain readable, coding 
rule-conformant and understandable source code 

• Usage of tools for static code analysis (e.g. 
PolySpace) to catch well-hidden bugs as well as un- 
necessary source code statements 

• Development and unit testing on a dedicated H/W- 
platform as similar as possible to the PDE target H/W 
in order to detect early any possible problems in the 
object code interaction with the target H/W 

• Close collaboration with product assurance already 
early in the development phase (that is the point 
where software quality and reliability comes into the 
developed code) and adherence to the implemented 
software production tool chain (compilers / linker / 
version control / target deployment / testing and 
reporting) 

The following paragraphs will pin-point only some of the 
various concepts, techniques and tools used to develop the 
Category A software for PDE. 
Using object-oriented principles in the S/W design allows 
early proto-typing while still providing flexibility to react 
to changes induced by the environment (H/W and/or 
system). The encapsulation of 'effector groups' (i.e. 
actuator groups) and 'basic services' (e.g. CRC32- 
calculations or FPGA-access or access to the Time- 
Triggered Ethernet) into dedicated modules allows for the 
creation of a set of 'library modules' with high-level 
functionality available for call by the main loop of the 
PDE software. The benefits of this design approach have 
been proved several times during the development cycle, 
in particular for what concerns the encapsulation of effects 
caused by required changes or additional functionality 
decided late in the project cycle. 
The C-pre-processor is the developers friend - this often 
under-estimated tool helps to catch design and coding 
errors early by using assertions (i.e. specific conditional 
debug test code) and by allowing creation of (mostly) non- 
intrusive unit tests to achieve -in conjunction with the 
coverage tool gcov- 100% source code testing by a 
dedicated unit test suite allowing 100% regression testing 
after each source code modification. Conscious use of the 
pre-processor provides a mighty tool and makes the C- 
language the preferred programming language even for 
critical software tasks at a moderate level of effort. 
The essential requirement of source code coverage 
analysis for Category A software was covered by the gcc- 
compiler built-in tool gcov. This tool not only provides 
source code coverage measuring during development by 



means of unit tests, but also provides vital information 
about S/W and H/W-interaction during integration testing 
too. It allows, for example, even over long periods of time 
to show whether the error-handling branches of the H/W- 
accessing routines are accessed or not. 

3.6 The test platform 
Usage of similar H/W (SPAICE processor board which 
served as basis for the PDE MPCC development) in 
conjunction with a hosted OS (VxWorks) which runs the 
PDE software modules/subroutines as one dedicated task, 
allows software development and unit testing independent 
of target system. It has fast turn-around times and greatly 
shortens development times without interfering with H/W 
development and sub-system testing. 
There has been no S/W testing by means of simulators: the 
production software running on real target hardware 
provides early results with a high level of confidence in the 
source code and the resulting object code without the 
necessity to keep a simulator in sync with the 'as-built' 
configuration of the target hardware. 

3.7 Object code coverage 
"What you code is what you get - always?" Or in other 
words: does the executable object code really reflect only 
the intentions specified by the source code or is there more 
inside the executable object code? That's why ECSS 
requests for Category A software verification of source 
code with 100% Modified Condition and Decision 
Coverage (MCDC), and the coverage of 100% of object 
code. The tracing of object code coverage on the target or 
on a SW emulator of the PDE computer would have 
required a big investment on the platform, so an alternative 
approach has been used to verify the complete traceability 
between source code and object code, thus ensuring the 
object code coverage by the MCDC coverage of source. 
As no commercial tool for this task was available, a script- 
driven LEON-specific analysis method based on the gnu- 
tool set has been developed in order to trace all executable 
object code statements to the corresponding source code 
files and to automatically identify those object code 
statements not directly traceable to a specific source code 
line in a dedicated source code file. This task is 
accomplished by the developed tool chain to an 
unexpected high level of successful matches (>95%), 
reducing the necessary 'manual' analysis for the object 
code coverage analysis to a manageable amount. A first 
analysis on the current object code stumbled across some 
generated object code not exactly 4 byte-aligned thus 
'fooling' the quite simple analysing tool chain. Object code 
not traceable to source code has not been found so far. 

 
 

4 ISVV 
One of the implication of the Category A classification is 
the need to execute Independent Software Verification and 
Validation, ISVV [6]. The category A classification has 
been established for the PDE software after the PDR, 
when the design of the PDE equipment was consolidated 

enough to allow completion of the RAMS analyses. As a 
consequence, the ISVV process was not established early 
enough to cover the activities of Technical Specification 
Analysis, that have then been covered only by the nominal 
team, and integrated by a deep review activity carried on 
by Airbus, ESA, NASA and Lockheed Martin. 
The main drivers for the selection of the organization that 
would have executed the ISVV have been the 
competences and background, the level of independence, 
the accessibility to the test platform, and the accessibility 
of the relevant project documentation without restrictions. 
Considering these drivers, and considering that the risks 
were relatively reduced due to the low complexity of the 
PDE SW, it was decided to assign the ISVV activity to an 
independent team in the same organization. 
The PDE SW ISVV has been concentrated on three tasks: 
Design Analysis, Code Analysis and Validation. 
Due to the nature of PDE SW and the simple design, the 
Design Analysis has been limited to the verification of 
timing & sizing budget, based on the delivered results by 
the software supplier. In the same phase the Code 
Analysis has been executed, both by code inspection and 
via static code analysis using the commercial tool 
Polyspace Bug Finder. The static code analysis identified 
178 potential defects, and raised a number of 
recommendations for improvement to the PDE 
development team. After joint review between Airbus and 
ESA, a few recommendations have been accepted and 
implemented to improve the code or the comments. It is 
considered that the ISVV Code Analysis has been 
effective in allowing the improvement of the code quality; 
however, using the same approach on a much larger code 
would be more challenging, due to the relatively high 
number of false positive raised by the static code analysis 
tool. 
The final ISVV task has been the independent Validation, 
executed on the final environment with the software 
integrated on a PDE EM. The objectives for the 
independent testing have been defined by the ISVV team 
in coordination with ESA. As the PDE SW has a relatively 
reduced number of operational scenarios, it has been 
decided to focus the independent testing on the non 
nominal functions, including stress tests, robustness tests, 
tests at the boundaries, tests with invalid inputs, test 
extending beyond the domain defined by the 
requirements. The test are executed independently by the 
ISVV team on the PDE Engineering Model, and are still 
ongoing at the time of writing. 

 
 

5 THE NEAR FUTURE: QUALIFICATION AND 
FLIGHT 

The current status of PDE Software development is the 
preparation of the PDE Integration Readiness Review. 
This is the milestone marking the completion of SW 
development and the delivery to its next step customer - 
the equivalent of a Software Qualification Review as per 
ECSS E40. The PDE SW will then be integrated in the 



PDE Qualification Model and used for the PDE formal 
Qualification Campaign, to be completed in the summer 
2017 with the PDE Qualification Review. 
In parallel, the PDE SW is deployed on the PDE 
Engineering Models on the avionics test platforms, both in 
Europe to test the integrated functions at ESM level, and 
in the US to test the end-to-end chain with the ESM and 
the CM including the Orion Flight Software. The PDE 
with its PDE SW will be submitted to a thorough testing 
that will include verification of external interfaces, data 
formats, reactivity, functional behaviour in nominal and 
non nominal cases. 
Upon completion of the qualification phase, the first 
launch of Orion will take place, with a mission around the 
moon with no crew on board; the first mission with crew 
is scheduled 2 years later. 

 
 

6 CONCLUSIONS 
This article presents some of the challenges encountered 
in the development of the PDE Software for the European 
Service Module, both in the technical field and in the 
organization and management of the development. 
Some aspects presented contains important lesson learned, 
to be considered in future international cooperation and 
more generally for development of human spaceflight 
software. 
A first aspect is the harmonization of software standards 
between the different cooperating organization. So far, 
different ESA Human Spaceflight projects such as 
Columbus, ATV and Orion ESM have each followed a 
different approach. The work for mutual recognition of 
software standards between ESA, NASA and Jaxa should 
be completed, and a framework should be made available 
to ESA projects. 
Another lesson learned comes from the process to 
determine the SW criticality. First, as part of the standard 
harmonization and mutual recognition a compatibility 
between US standards and ECSS approaches is needed. 
Second, the ECSS approach relies strongly on the system 
level safety analysis, and this delays the categorization in 
cases where there is some parallelism between system, 
hardware and software development cycles. The aspect of 
software criticality should be addressed from the early 
phases of system development, and set-up both technically 
and contractually. Changes introduced in ongoing 
revisions of ECSS can allow to determine earlier the SW 
criticality category, and to design from a system 
perspective additional mitigating means such that the 
overall safety requirements are meet. 
Finally, no reference toolchain, let alone a qualified one, 
is available for development of Category A software 
compliant to ECSS requirement. The solutions that have 
been found for the PDE SW are in some cases specific and 
cannot be applied generically, so the need remains for the 
definition of a set of tools that can be safely used for 
development of critical software. 

The Category A software is a necessity for Human 
Spaceflight, as proven by ATV and Orion ESM, and 
Category A software will be again present on future ESA 
developments for human exploration systems, that will 
most probably be carried out in cooperation with other 
space agencies. The lesson learned from the ATV Project 
and from the ESM PDE SW development can be 
considered as a reference to prepare for this future. 
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