

Why Does it Look Like That? The Story of Space Suit Design

Here

Presented by: Amy Ross at Struktur 2017 Portland, Oregon Co-authored by: Lindsay Aitchison Space Suit Engineers NASA Johnson Space Center

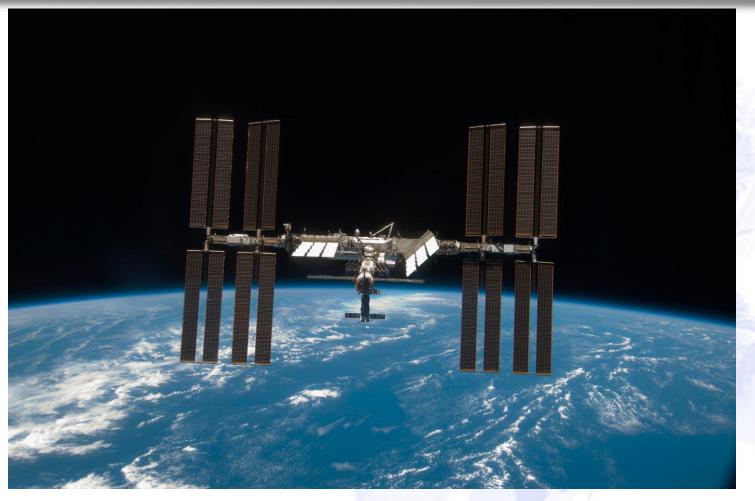
Design 🤍

3

Space Suits Look Like This for a Reason

So you want to build a suit?

- First two things you need to know are:
 - Where are you going?
 - What will you be doing?



The answers = REQUIREMENTS

The Astronaut "Office"

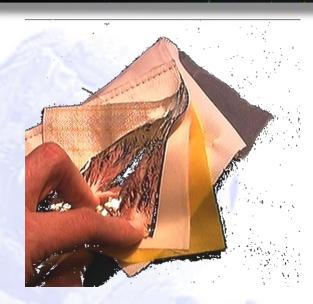
International Space Station: Low Earth Orbit (249 miles away from Earth)

Hazards Outside of ISS

- Vacuum
- Extreme Temperatures
- Radiation
- Micrometeoroids

Protection from Vacuum

"Vacuum" means no air to breathe


- Humans lose consciousness in seconds and die from hypoxia in minutes without oxygen
- Lungs cannot function without pressure differential across diaphragm that drives respiration
- Direct relationship between boiling point of water and atmospheric pressure
 - In a vacuum, water will boil at 98°F...

Space suits provide a stable pressure environment with the balloon like bladder layer containing oxygen supplied from the portable life support system

Protection from Extreme Temperatures

- Objects outside Low Earth Orbit outside of the ISS range from -150F to +250F
- Two ways to transfer heat in space:
 - Conduction (two objects touching)
 - Radiative (heat waves from the sun get absorbed)
- Keep outside temperatures from reaching the astronaut
 - Multi-layer insulation creates gaps between fabrics to limit conduction
 - White color reflects heat

Protection from Extreme Temperatures

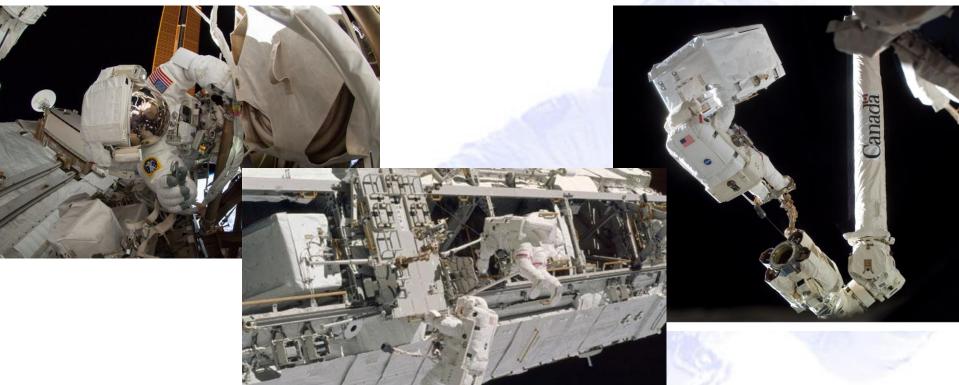
Liquid Cooling and Ventilation Garment (LCVG)

- LCVG conditions interior of space suit
- Cools through conductive heat transfer
 - Conformal to body
 - Over 300 ft of tubing to transfer heat away from the body via conduction
- Water supplied by the life support system
- Removes moisture through vent tubes

Protection from Radiation

- Earth's atmosphere protects us from most radiation
- In space, must limit exposure
 - Keep alpha and beta particles from reaching the astronaut
 - Helmet Visor
 - Reflective properties of MLI and orthofabric
 - Limit lifetime exposures
 - Astronauts wear dosimeters to track total radiation doses

Protection from Micrometeoroids


- How big is a micrometeorite?
- Problem is Kinetic Energy (KE)
 KE = ½ my²
 - Energy from particle transferred to suit upon impact
 - Even a tiny mass moving at 17,000 mph is going to hurt
- Space suits rely on Thermal Micrometeoroid Garment (TMG) to reduce particle velocity and size

Working Outside ISS

What kind of jobs do astronauts do on a spacewalk?

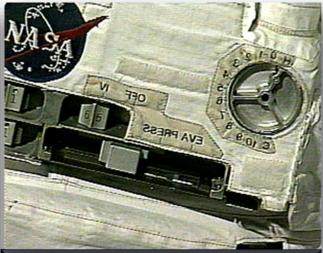
Highly mobile upper body

- Angled shoulder bearings
- Upper arm bearing
- Patterned convolute elbows
- Patterned wrist joints and bearings

Stable lower body

- Lower torso is anchor from which to perform work
- Waist bearing
- Patterned convolute knees




Boot and Sizing Insert

Life Support Systems

Display and Controls Module: temperature, pressure, ventilation and communication controls

Portable Life Support System

Foot Restraint Interface

Boots lock into portable foot restraints for a stable work platform

Tether Interfaces

- D-rings located on waist to attach safety tethers
- Body Restraint Tether (rigidizable tether)

Mini Work Station

- Personal tool belt
- All tools designed to attach with bayonet fittings or tether hooks
- Mounts directly to suit torso

Air-lock mounting

 PLSS attaches directly to inside of ISS airlock for easier donning and doffing

What's next?

What's next?

What's next?

Astronauts will explore further from Earth meaning:

- New environments
- Autonomous operations
- More mobility
- New tools and vehicles

-

New Environments

Environment	Earth Extremes	Space Extremes
Atmospheric pressure	0.20 atm on Everest	Vacuum to 0.006 atm on Mars
Extreme temperatures	-136 (Antarctica) to 134 F (Death Valley)	-150 to 250 F in Low Earth Orbit -243 to 68 F on Mars
Micrometeoroids	Freak accident, not considered in gear design	
Dust	Yup, but it usually doesn't kill you	

Mars is 40 million miles from Earth (closest)

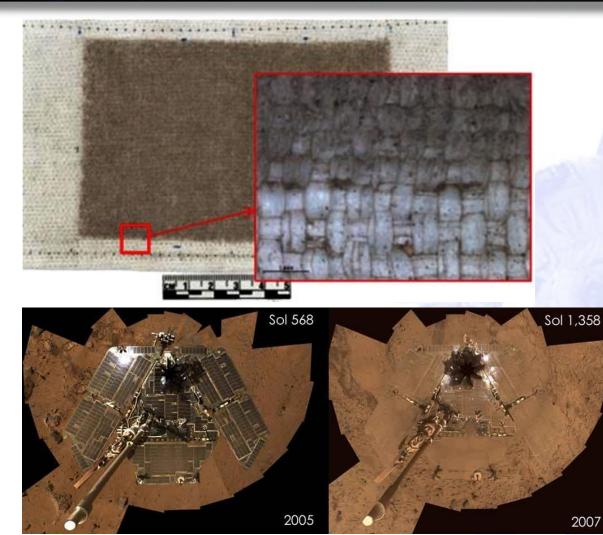
Mars Surface

Mars Surface

- Minimal Atmosphere
- 0.33g Gravity
- Partial Radiation Shielding
- Chemically Reactive Soil
- Extreme communications delay

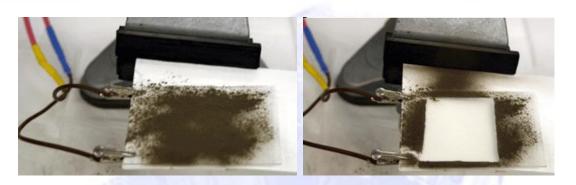
EVA Tasks

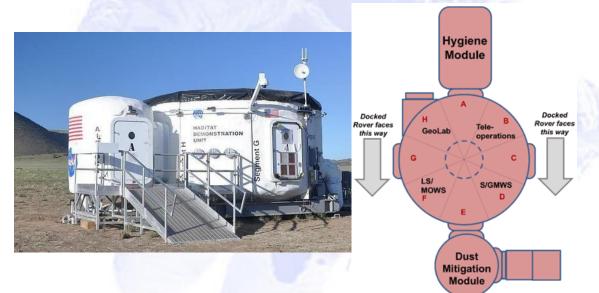
- Deploy, monitor, and retrieve science experiments
- Habitat assembly and maintenance
- Rover repair and routine maintenance
- Interact with robotic assistants
- Drive rovers to/from worksites


Thermal Considerations

- Walking and full body mobility will recruit larger muscle groups resulting in greater human generated heat loads
 - Must provide more effective body cooling
- Presence of an atmosphere means conduction is an ever present means of heat transfer
 - Need new materials lay-ups that are effective insulators without vacuum separation

Dust Hazards




- Relatively high percentage of perchlorates in soil (toxic to humans)
- Small particles can jam mechanisms and potentially create FOD in oxygen systems
- Particles wedged in textile fibers will accelerate space suit wear over time and potentially affect thermal properties of the suit

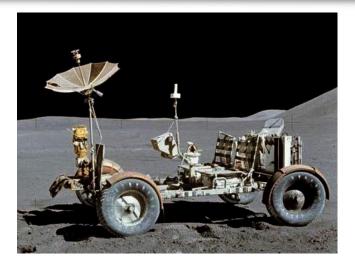
Dust Mitigation

- Phased approach minimizes amount of debris brought into habitable areas
 - Incorporate dust repellant technologies into suit outer layers
 - Provide "mudroom" for coarse cleaning after each use with specialized tools or air shower
 - Suit maintenance area isolated from living quarters

Planetary Exploration - New Tasks

++++++

Planetary Exploration - New Tasks



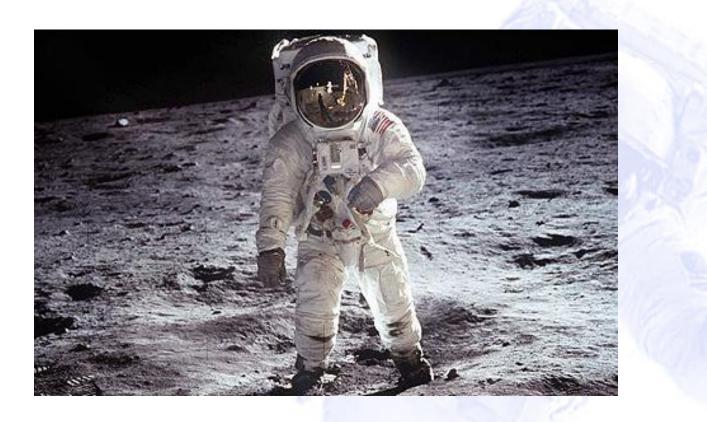
+-++

Planetary Exploration - New Vehicles

++++++

Planetary Exploration - More Mobility

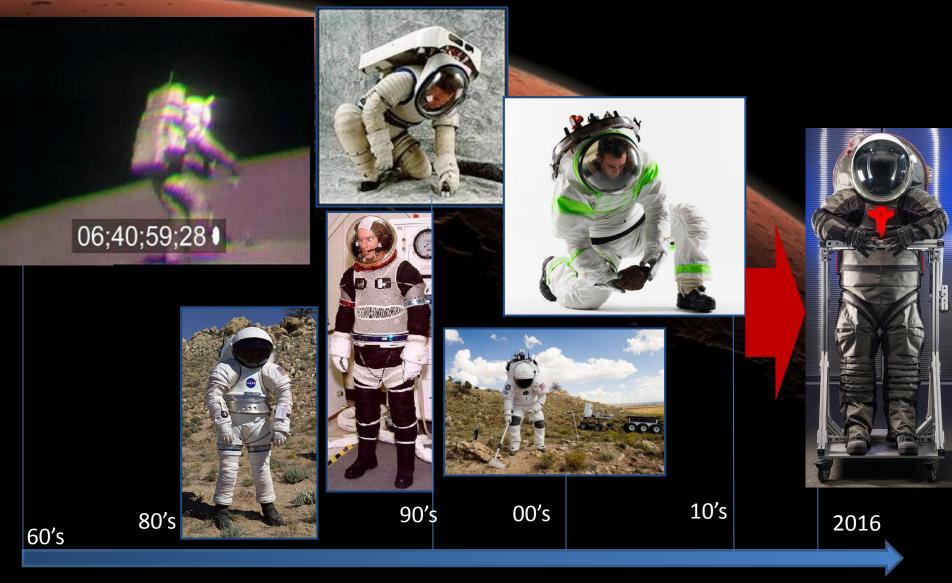
00:13:35:20


Mars Suit Prototypes

Not:

Next up...

Build – Test – Refine - Repeat


#SuitUp With NASA #JourneyToMars Visit:

www.nasa.gov/suitup

For More on Z-2 Visit: http://jscfeatures.jsc.nasa.gov/Z2

Mobility – Lessons Learned

Time

The People who make it happen

Features

Removable SIP Interface Hybrid Composite Hatch (Carbon/S-Glass/AL)

Composite HUT (Carbon/S-Glass) (1" Vernier Sizing)

> Z-1 Style Gored Lower Arm Ti Waist Bearing w/1.75" Integral Sizing Ring

> > Composite Brief (Carbon/S-glass)

2 Bearing Toroidal Convolute Soft Hip

> Z-1 Style Gored Lower Leg

Ankle Bearing

Planetary Walking Boots

13x11 Elliptical Hemispherical Helmet

Integrated Comm. Systems

2 Bearing Rolling Convolute Shoulder

EMU Wrist Suit Side Disconnect

RC Waist Joint

EMU Style Acme Thread FAR

Existing EMU Boot (ISS DTO) (Alternate)

Dust Mitigation

 Short excursions with pressurized rovers can keep the suits outside for duration of trip

