
1 
 

Extrapolating the Trends of Test Drop Data with Opening 
Shock Factor Calculations: the Case of the Orion Main and 
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We describe a new calculation of the opening shock factor Ck characterizing the inflation 
performance of NASA’s Orion spacecraft main and drogue parachutes opening under a reefing 
constraint (1st stage reefing), as currently tested in the Capsule Parachute Assembly System (CPAS) 
program. This calculation is based on an application of the Momentum-Impulse Theorem at low 
mass ratio (Rm < 10-1) and on an earlier analysis of the opening performance of drogues decelerating 
point masses and inflating along horizontal trajectories. Herein we extend the reach of the Theorem 
to include the effects of payload drag and gravitational impulse during near-vertical motion – both 
important pre-requisites for CPAS parachute analysis. The result is a family of Ck versus Rm curves 
which can be used for extrapolating beyond the drop-tested envelope. The paper proves this claim in 
the case of the CPAS Mains and Drogues opening while trailing either a Parachute Compartment 
Drop Test Vehicle or a Parachute Test Vehicle (an Orion capsule boiler plate). It is seen that in all 
cases the values of the opening shock factor can be extrapolated over a range in mass ratio that is at 
least twice that of the test drop data. 

Nomenclature 
CD0   =  drag coefficient based on the nominal diameter  
Ck     =  opening shock factor measured at arbitrary Rm 
CZ     =  Ratio of the specific momentum over fill time 
D0     =  nominal diameter 
Dref    =  reference diameter (= (ε1)1/2 D0 during 1st stage inflation) 
dt     =  integration time increment 
FD(t)    =  drag force 
Fmax    =  maximum drag sustained during inflation 
FD

loadbody(t)  =    drag force of the payload (forebody), per cluster member, at time t  
g     = constant of gravitational acceleration 
H     =  inflation time ratio (defined in [5]) 
I     =  parachute drag integral (Eq. 15; also labeled as Ichute) 
Iforebody   =  drag integral of the payload (per cluster member) 
J(Z)    =  new scaling function; defined as equal to Ck/CX 

kV               =   specific momentum (defined in [5]) 
mair    =  estimated mass of the air co-moving with an inflating parachute 
mtotal    =  mass of the payload shared by each cluster member 
Mtotal    =  total mass of the parachutes and payload 
nfill    =  non-dimensional filling time 
PCDTV  = Parachute Compartment Drop Test Vehicle (dart shaped) 
PTV   = Parachute Test Vehicle (Orion capsule boilerplate) 
Rm     =  mass ratio 
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Sinitial CDinital  = drag area of each cluster member, at the beginning of inflation 
Ssteady CDsteady  = “full open” and steady drag area of each cluster member 
(SCD)loadbody  = drag area of the payload/forebody (or drag area share), per cluster member, at t = ti.  
S0    =  canopy surface area based on the nominal diameter  
t     =  time 
ti     =  time at the beginning of inflation 
tf     =  time at the end of inflation 
V(t)    =  parachute-payload speed  
vi      =  speed of the disturbed air at the beginning of inflation 
vf      =  speed of the disturbed air towards the end of inflation (near peak drag) 
Vi      =  parachute-payload speed at the beginning of inflation 
Vf      =  parachute-payload speed towards the end of inflation (near peak drag) 
Wtotal    =  parachute-payload weight 
Z     =  scaling parameter; defined by Eqs. 6b and 10 
ΔPair    =  estimated momentum gained by the air as a result of inflation 
ε                =    reefing ratio [1] 
ρ     =  air density during inflation 
γ     =  flight angle 

I. Introduction 
STIMATION of the peak force sustained by inflating parachutes can be carried out with the use of the opening 
shock factor Ck [1, 2], a dimensionless force ratio which collapses test data within an easily identifiable band 

when plotted against the mass ratio Rm [1, 2] (Fig. 1). Being able to predict the value of Ck at any mass ratios allows 
for a prediction of peak loads in cases where test data is unavailable, or when the operational envelope is being 
extended beyond the parameters of a previous test program. Estimating the opening shock factor has been for the 
most part an empirical affair. On the other hand, calculating Ck from theory is more difficult given the large number 
of design and dynamical parameters that may be in play. Theoretical investigation may be worth the effort, however, 
since it allows design and test engineers to extend, via physically-justified extrapolations, the values of Ck that have 
been obtained empirically [3-5]. Such extrapolation schemes have been proposed in the past, i.e., for landing 
parachutes which operate at large mass ratios (Rm > 1) [3, 4], and horizontally-opening drogue parachutes which 
operate at small mass ratios (Rm < 10-1) [5]. The main goal of this paper is to show how similar extrapolations can be 
obtained in the case of Orion-CPAS parachute systems, specifically for both Drogues and Mains opening while 
reefed (1st reef Stage inflation) [6, 7], in the hopes of extrapolating the reach of test drop data to a significantly wider 
range of mass ratios, as shown in figures 7 - 9 below. For large government R&D programs like CPAS where 
parachute performance simulation and prediction tools already exist [8, 9], such trend expansion calculations 
provide a sanity check or confirming evidence, in the form of an alternate forecast platform based on different sets 
of physical approximations and assumptions.   

Reefed CPAS parachutes inflate at small mass ratios (Fig. 1), but in the process decelerate draggy payloads while 
falling along a near-vertical trajectory. This calls for non-trivial extensions of the formalism discussed in [5], which 
so far has been applied to point payload masses decelerating along the horizontal. As will be shown here, the effects 
of the gravitational impulse are important for both main and drogue parachutes as both are characterized by large-
enough inverse-Froude numbers. Herein, these new extensions are presented first, followed by a prescription for 
calculating meaningful Ck-extrapolations beyond the test drop mass ratios, i.e., while using small subsets of the 
entire CPAS test database. These opening shock factor extrapolations are constructed for several cases, including the 
opening of the CPAS Mains and Drogue canopies decelerating the Parachute Compartment Drop Test Vehicle (or 
PCDTV) or the Orion capsule boiler plate (Parachute Test Vehicle – PTV) shown in figure 2. 
 

II. Mathematical Details 
 
A. Opening shock factor Ck basics for clusters 

Knowing the value of Ck allows for the computation of peak loads (Fmax) from a simple equation, namely [1, 2], 
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with Vi corresponding to the parachute-payload speed at the beginning of inflation (at line-stretch, typically), and 
SsteadyCDsteady to the steady state parachute drag area post- inflation (post 1st stage inflation or unreefed inflation). The 
one interesting property of Ck is its strong dependence on the mass ratio (Rm) shown in figure 1, with the latter 
defined as  

total

Dsteadysteady
m m

CS
R

2/3)(
       ,                                                         (2) 

 
 

Figure 1. Opening shock factor by each Main parachute (orange triangles) and Drogue parachute (blue 
squares) of the CPAS EDU program, deployed in either 3- or 2-clusters, while inflating during 1st stage 
reefing. The CPAS data is superposed to Wolf’s compilation obtained with non-clustered parachutes (all black 
symbols) [2]. The mass ratio for the CPAS cases is calculated with Eq. 3 in order to reflect the load share handled by 
each cluster-member.  

 
In the case of single parachute systems, mtot is simply the total mass of the parachute-payload. In applications to 

clustered canopies, Fmax and mtotal are interpreted as the peak drag sustained, and weight shared by each cluster 
member respectively. For peak drag, this is accomplished by using the steady (“full open”) drag area value 
(SsteadyCDsteady)(i) characterizing a specific cluster member (labeled “i” here). For total mass, and for example in a 3-
cluster, the payload weight share is estimated from the (measured) drag areas of each cluster member as follows (for 
cluster-member #2 as an example): 
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In this formulation, Mtotal corresponds to the total mass of the cluster-payload system. Thus mtotal

(i)  = (1/3) Mtotal 

in 3-clusters generating equal load share. In the CPAS program, the Mains are used either in 3- or 2-cluster 
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configurations and the Drogues in 2-clusters. With the exception of the next section (II.B), the drag forces and 
masses being discussed will always refer to those characterizing each specific member of a cluster. 

 
 

PTV PCDTV

 
 
Figure 2. Orion capsule boiler plate (Parachute Test Vehicle – PTV) and the Parachute Compartment Drop 
Test Vehicle (or PCDTV). 

                                                      
 B. Single parachute decelerating a point mass along the horizontal [5] 

The fundamental principle behind the calculation of the opening shock factor is the well-known Momentum-
Impulse Theorem learned in introductory college physics. It is illustrated here in the case of a single parachute 
decelerating a dragless payload and inflating along the horizontal. The theorem is based on the time integral of the 
system’s Newtonian equation(s) of motion and written as follows between the time of onset of inflation (ti) and the 
time near peak drag (tf): 


f

i

Ditotalftotal dttFVmVm )(                                                      (4a) 

(Here mtotal = Mtotal, trivially).This expression relates the momentum change of the parachute-payload system 
(during inflation) to the impulse generated by parachute drag (FD). A similar equation applies to the air that is set 
into motion by the inflating canopy [5]: 
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Symbolically ΔPair represents the momentum gained, along the direction of the motion, by the air both externally 

and internally to the canopy, and turns out to be a crucial inflation parameter. Here the drag force is seen as the 
contact force between the parachute and the air itself. Note that the air does not sustain a gravitational impulse as it 
is cancelled by its own buoyancy. Note also that merging Eqs. 4a and 4b yields momentum conservation, i.e., by 
expressing the momentum lost by the parachute-load in terms of the momentum gained by the disturbed air. 

Equation 4b, together with Eqs. 1 – 3 lead exactly to the following formula for the opening shock factor Ck: 
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Parameter nfill is the standard fill time (≡ (tf – ti)Vi /Dref) [1] and I is defined as the integral of FD over time, 

divided by the peak drag times the inflation time – the so-called “drag integral” [3- 5]. In other words, I is a measure 
of the shape of the drag-versus-time curve, yielding I ~ ½ when a canopy force-vs-time trace looks like a triangle, or 
~ 1 when it looks like a rectangle (more examples are provided in [5] and also in [3, 4]). The so-called specific 
momentum kV is defined as ΔPair (Eq. 4b) divided by the air momentum scale ρ(SsteadyCDsteady)3/2Vi [5]. 
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What this formula shows is that Ck depends on three dynamical variables, namely kV, nfill and I, in addition to the 
two design-dependent variable SsteadyCDsteady and Dref. Thus calculating Ck must begin with knowing the values of 
these dynamical parameters, which will depend not only on parachute design but also on the specific aerodynamics 
taking place during each inflation sequence. This sounds like an impediment - but perhaps not - if kV and I scatter in 
manners similar to nfill on a drop-to-drop basis (for the same parachute system). Another important assumption will 
consider kV, nfill and I as independent variables, and ones that are also independent of the initial speed Vi. Because of 
this property, the ratio kV/nfill will be used instead of kV, owing to the fact that Ck parameterizes a force which itself is 
a rate of momentum transfer - just like the ratio kV/nfill. For this reason the latter shall be relabeled as CZ (≡ kV/nfill).  

Although conceptually clearer, relating Ck to a rate of momentum transfer (CZ) does not make equation 5a any 
more practical. Some empirical data is needed to make its use possible after all. Reference [5] shows that the 
following formulas could be used instead if wind tunnel or time-dependent Computational Fluid-Structure 
Interactions (FSI) data of the parachute system is available for determining nfill, I and CZ: 
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where 
 

432 1205.04933.06522.1813.11)( ZZZZZJ           ,                  (6a) 

and where [5] 
 

8.0 mZfill RCHnZ                            .                                        (6b)                                        

 
Input parameters nfill

(wt)
,  I(wt) and CZ

(wt) correspond to those “wind tunnel” values of the non-dimensional variable 
introduced above. But other inputs are needed as well, including parameter H, defined as the fill time nfill of the 
canopy divided by the fill time of the same (and hypothetical) canopy built with zero geometric porosity [5]. As 
such this is a canopy geometry characteristic rather than an inflation dynamics characteristic and previous estimates 
have determined H as ~ 1 for near-zero porosity canopies, ~ 1.25 for DGB-type canopies and ~ 1.8 for conical 
ribbon canopies [5]. It shall be shown below that H ~ 0.5 for ringsail types (CPAS Mains 1st stage), most likely due 
to the sails bellowing outwards and scooping-in extra air in comparison to their un-vented and un-slotted 
counterparts (thereby speeding up inflation). Z is a new scaling parameter that collapses all parachute peak load data 
– both low- and high-porosity data - onto a single line as shown in figure 3. Finally, note that assuming a four-term 
polynomial restricts the use of the above to inflation events occurring at small mass ratios, that is, to drogue-like 
parachutes. 
 

 
 

Figure 3. Universal function J(Z). Figure extracted from [5]. 
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With nfill

(wt)
,  I(wt) and CZ

(wt) thus collected and computed, Eqs. 5 – 6 provide a scheme in which the opening shock 
factor can be predicted during drop testing, i.e., over the range of mass ratios where drogue parachutes operate. This 
is a practical approach but only to the extent that wind tunnel data is available for the system at hand. As this isn’t 
the case with CPAS parachutes, a modification of the above is necessary, as further discussed in Section III.  
 
C. Dynamical inflation “profile” variables  

The Momentum-Impulse theorem makes clear that every inflation event is not only dependent on parachute 
design parameters such as SsteadyCDsteady, Dref, and H, but also on the values of the dynamical opening profile 
variables nfill, I and CZ. Like nfill [10] both I and CZ are expected to vary on a drop-to-drop basis - albeit around a 
well-defined mean - for a given parachute-payload system, even when dropped at the same altitude and line-stretch 
velocity. At the root of such variations are the (small) random fluid-structure interactions that affect a canopy’s 
instant shape, the flows of air that open it, and finally the amount of momentum the canopy transfers to the air. Such 
variations and randomizing processes are also expected to occur in wind tunnel investigations, to yield different sets 
of nfill

(wt)
,  I(wt) and CZ

(wt) –values on a (tunnel) run-to-run basis. To the extent that these random fluid-structure 
interactions are similar in both wind tunnel and test drop environments, it should be clear that equations 5 - 6 would 
yield not just one extrapolation (vs. Rm) but several, based on the different sets that can occur. Thus each set 
represent one opening “profile” of a given inflation event, out of a large number of possible profiles. Similarly, one 
curve calculated via Eqs. 5 – 6 from one such set would represent an extrapolation for that one profile only.  

 
D. Decelerating a draggy payload along the near-vertical 

The analysis discussed so far [5] has neglected the influence of payload drag, in addition to assuming the 
parachute-load system following a purely horizontal trajectory. This contrasts with the CPAS and Orion cases which 
involve payloads that generate substantial drag while falling along a near-vertical trajectory.  Such factors are 
important here as payload drag dissipate a fraction of the system’s initial kinetic energy that would have otherwise 
gone into the energy of the fluid flows that open a parachute. On the other hand, and by pulling the payload-
parachute system downward over a significant amount of time, gravity provides an extra source of energy that can 
be transferred into the energy of those same inflation flows. Thus the interplay between the two effects must be 
accounted as follows, per the MI theorem and for each cluster member: 

  fftotal

f

i

f

i

loadbody
D

chute
Ditotalftotal ttgmdttFdttFVmVm    cos)()(                           (7a) 

 
f

i

loadbody
D

f

i

chute
Dair dttFdttFP )()(                                                     (7b) 

 
In the above the function FD

loadbody corresponds to payload/forebody drag per cluster member, calculated 
according to each cluster member’s load share in the steady full-open state (i.e., calculated via Eq. 3, with the 
masses replaced by the drag forces). On the other hand, the factor in between the square brackets corresponds to the 
gravitational impulse. Generally, the presence of the latter increases the value of Ck [3]. Assuming little change of 
flight angle (γ) during inflation, the factor <cos γ > becomes the average cosine of the flight angle. For example, and 
by convention, <cos γ > = 0 for strictly horizontal motion, and = 1 for strictly vertical motion. Note that behind Eq. 7 
is also the assumption of the system’s total drag being broken down into non-directly-interacting parachute and 
payload components. Finally, merging equations 7a and 7b now yields an expression of a parachute-payload’s 
momentum change during inflation written in terms of the momentum lost to the air and the momentum gained from 
the gravitational impulse. 

Starting from Eq. 7b while using Eqs. 1-3, and again after assuming the availability of wind tunnel data, one 
obtains the following: 
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The parameters connected to the parachute (labeled as “chute”) are the same as in Section II.B. But now one has 

the initial payload drag area share (SCD)loadbody (at t = ti) to characterize and calculated from a procedure similar to 
Eq. 3, as well as the payload drag integral defined by  
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Both inputs are available from CPAS data. On the other hand, the effects of the gravitational impulse appear as 

the second term in Eq. 10 involving the inverse Froude factor gDref/Vi
2.  With parachutes typically starting to inflate 

at Vi ~ 200 ft/s, the ratio gDref/Vi
2 becomes important only when the reference diameter is large enough: namely, 

gDref/Vi
2 ~ 0.09 (CPAS Mains) versus ~ 0.02 (CPAS Drogues). We note that considering draggy payloads hereby 

adds two new dynamical variables, namely (SCD)loadbody and Iloadbody, to the trio nfill, I and CZ that characterizes a 
parachute’s opening profile. These will be assumed to disperse on a drop-to-drop basis in manners similar to nfill.  

We note that equation 8 re-defines what is meant by “wind tunnel” values: namely, the values of nfill, I and CZ 
that one would measure at Z = 0. With horizontally-opening parachutes the point Z = 0 corresponds to Rm = 0, the 
case where the airspeed is nearly constant during inflation and thus relevant to wind tunnel study. The term “wind 
tunnel” is somewhat misleading in CPAS applications since the payload weights at hand and vertical trajectories 
used will cause the parachute-load system to decelerate or accelerate at times (accelerating especially at the 
beginning of inflation). From Eq. 10 the mass ratio corresponding to the point Z = 0 is given by 
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which for a CPAS main parachute would correspond to Rm

Z=0 ~ 0.06, i.e., a case involving a deceleration. Generally, 
actual wind tunnel studies being performed at constant airspeed will not correspond to Rm

Z=0 if the system is to 
accelerate during a test drop at that value of the mass ratio. Rather, such a wind tunnel test would correspond to a 
mass ratio where Z ≠ 0 and estimated as follows:  
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with the factor SinitialCDinitial corresponding to parachute initial drag area. Further discussion on using wind tunnel 
data for CPAS parachutes is postponed to Section V.B. In the meantime, properly eliminating the confusion is 
simply done by replacing all “wt” superscripts in Eqs. 5, 8 and 13 (below) with “Z  = 0” superscripts. 

Two important distinctions are to be pointed out when comparing Eqs. 5b and 8: First that CZ in the former is the 
rate of momentum transferred (to the air) by the parachute only, as the payload contributed no drag on its own; 
versus the latter, where CZ is again the rate of momentum acquired by the air, but this time as transferred by both 
parachute and payload. The second distinction is the appearance of a new term in the definition of Z in Eq. 10 due to 
the gravitational impulse (compare with Eq. 6b). In both cases Z is a measure of deceleration by the system, as 
evaluated by the ratio of the added mass drag to the system’s total drag [5]. But CPAS add another element, namely 
the possibility of accelerated trajectories during inflation, which in turns will lead to negative values of Z. With the 
function J(Z) (Eq.9) obtained from a decelerating parachute database [5] and therefore constructed for positive 
values of Z, using equation 9 where Z is negative becomes an assumption. This, however, can be justified if one 
envisages J(Z) being continuous in both values and slope across Z = 0, thereby lending Eq. 9 some validity at small 
negative Z. As shown below, CPAS data indeed exhibit such values over all cases analyzed (-0.08 < Z < 0.30). 
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III. Reconstructing the “wt” (or “Z=0”) Inputs with Test Drop Data 
 
A. Linearization of the J(Z) polynomial 

At first sight, it would appear that such a wind tunnel-based scheme would be of little use for development 
programs of large-size parachutes in which wind tunnel data is unavailable - as with CPAS. However, CPAS is a 
program that has generated a very large and high-quality test drop database, which in turns may be used to 
reconstruct the “wt” (or “Z = 0”) parameter set nfill

(wt)
,  I(wt) and CZ

(wt). This is possible, particularly in the case of the 
drogues and mains opening during 1st-stage reefing, being characterized by small values of the mass ratio (Figure 1). 
This, along with CZ having the upper bound CZ < 0.68/CD

3/2 < 1, allows approximating J(Z) as J(Z) ~ 1 – 1.813Z (see 
Eq. 9), which when inserted in Eqs. 8 -10 yields:  
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Eq. 13 is a 2nd order algebraic equation in CZ

(wt) yielding a solution once a subset of CPAS data has been used to 
supply the inputs Rm, Ck(Rm), nfill

(wt)and I(wt) (as described next). With these “wind tunnel” values thus reconstructed, 
an extrapolation of Ck versus Rm is obtained via the use of Eqs. 8 and 10, as well as with Eq. 9 then including all five 
terms. 
 
B. The reconstruction process 

This process is performed by first collecting a subset of test drop data corresponding to a given cluster member 
(i.e., parachute serial number) and to a given test drop. Such data has to include Vi, SsteadyCDsteady, Dref, nfill, Rm (via 
Eq. 3) and the average flight angle < cosγ >. Moreover, the drop’s FD-versus-time curve yields the peak drag and fill 
time, which along with knowing Vi and SsteadyCDsteady, produces values for Ck. Following [11, 12], the fill time 
obtained from the test drop is assumed as being the same as nfill

(wt). Following [1], the value of Dref is that of the 
parachute’s nominal diameter (D0 = 116ft for the Mains and 23ft for the Drogues), multiplied the by the square root 
of the (known) reefing ratio ε1. 

Parameter H is defined as the fill time nfill of the canopy (here under the 1st stage reefing constraint), over the fill 
time of the same (and hypothetical) canopy built at zero geometric porosity [5]. Previous estimates have determined 
H ~ 1 for near-zero porosity canopies, H ~ 1.25 for DGB-type canopies and H~ 1.8 for conical ribbon canopies [5]. 
According to reference [1] (Table 5-6), ringsail parachutes reefed at diameter reefing ratio τ ~ 11% have fill 
constants of nfill ~ 7-8. An equivalent low-porosity canopy could be (roughly) a T-10 reefed at τ ~ 10% which 
features of nfill ~ 16-18. This comparison would thus point to H ~ 0.5 given that ε1 ~ τ [1] and this is the value used 
in this analysis. 

The drag integral I is obtained from calculating the area under the drag versus time curve via the formula [3 – 5]:  
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An important detail is the fact that during a typical drop the system may accelerate or decelerates somewhat, with 

the result that peak drag may be higher or lower than would occur in a no-deceleration case (Figure 4). It follows 
that the drag integral calculated from Eq. 14 isn’t necessarily equal to Ichute

(wt). Given that the decelerations are small 
in relation to gDref/Vi

2 it is reasonable to assume Ichute
(wt) to be calculated from the time-dependent drop test drag area 

but corrected as follows: FD = (SCD)t q(t) → (SCD)t q(0)= FD
corr , with q(0) being equal to the dynamic pressure at 

line stretch. This results in the following “corrected” or “adjusted” drag integral:  
 

 

f

i fill

tDwt
chute tF

dtSCq
I

max

)()( )0(
~                                                              (15) 
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Figures 4 and 5 show examples of FD and FD
corr evolving through inflation (the figures also list the 

corresponding values of the drag integral calculated via Eqs. 14 and 15). Note that the case shown in Figure 4 isn’t 
decelerating as much as the case of Figure 5. In general, a drag-versus-time curve that is nearly triangular features a 
drag integral nearing ½.  

Finally, the CPAS data stream also provides information on the magnitude and time variations of payload drag 
(FD

forebody) (Eq. 7a). This yields the payload’s drag area as well as the drag integral defined in Eq. 11. Note that in the 
case of CPAS Mains using the PCDTV, shares of payload drag are very small in comparison to parachute drag area 
and sometimes allows for neglecting the term in Iloadbody

(wt) in Eq. 13. 
Solving equation 13 for CZ

(wt) then completes the reconstruction process and provides, via equations 8 -11 a Ck –
versus- Rm curve from which extrapolations can be carried out. Repeating this process over a subset of drops will 
provide different sets of nfill

(wt)
,  I(wt) and CZ

(wt) –values, thereby corresponding to the different inflations opening 
profiles discussed in Section II.C. (Note that solving Eq. 13, a quadratic algebraic equation, yields two roots. The 
negative root was picked for the lower CZ –value which in turns yielded the smaller value for Z (Eq. 10), thereby 
further justifying the use of the linearized version of J(Z)) in Eq. 13. 

 

 

 
Figure 4. Raw drag (black; = (SCD)t q(t)) and corrected drag (red; = (SCD)t q(0)) versus time for CDT-3-6 
(Mains 1st stage). The corresponding drag integrals amount to: for SN1, 0.58 (Eq. 15) and 0.53 (Eq. 14); for SN2, 
0.60 and 0.55; and for SN3, 0.65 and 0.54. In this analysis, inflation begins right after the first snatch peak, and ends 
soon after SCD has reached a value approximating the measured steady-state drag area. The ensuing fill times tend to 
differ from the CPAS official fill time by 0.3 seconds or less. 
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Figure 5. Raw drag (black) and corrected drag (red) versus time for CDT-3-12 (Mains 1st stage). The 
corresponding drag integrals amount to: for SN14, 0.52 (Eq. 15) and 0.48 (Eq. 14); and for SN15, 0.42 and 0.49.  
 

IV. Results 
 
At first sight, the inflation performance of all parachutes designs appears to follow a behavior in which Ck 

plateaus to Ck ~ 1.0-1.6 at Rm < 0.001 (see figure 1 and [1, 2, 5]), but decrease to fractions of these where Rm > 1.0  
(i.e., as Ck ~ 1/nfillRm [4, 10]). However, looking more closely at the data suggests that the exact manner in which 
this happens will depend quite strongly on the specifics of a parachute’s design [5]. For example, low-porosity 
parachutes are to plateau to higher values of Ck, namely to Ck ~ 1.6 with 0.07-geometric porosity canopies, in 
contrast to higher porosity parachutes which saturate at Ck ~ 1.1 – 1.2 at 0.30-geometric porosity [13]. Another 
fundamental difference leading to a contrasting Ck – Rm -dependence is whether one considers unreefed or reefed 
inflation, versus disreefing inflation for which the data plateaus over a distinctively wider range of mass ratios [2]. 
Yet another design factor is the drag characteristics of the payload, which may or may not, affect significantly the 
location of the plateau at low Rm. For this reason the analysis below has been divided into four categories depending 
on the parachute and forebody types, namely: the Mains trailing the PTV or the PCDTV, and the Drogues trailing 
the PTV or the PCDTV. 
 
A. Example extrapolation  

Figure 6 shows an example of an extrapolation that can be achieved from the prescription described herein, while 
using the single data point of an inflating CPAS Main trailing a PCDTV during test drop CDT-3-4 (canopy SN5). 
The black continuous curve is built from the size, mass ratio and opening profile inputs listed in Table 1 (All tables 
appear at the very end of this paper). As measured and calculated from the data of test CDT-3-4, the fall speed (Vi) 
at the beginning of inflation and inflation time (nfill) associated with this curve amount to 290.6 ft/s and 18.9 
respectively. Extrapolation at high values of the mass ratio is cut-off at Rm = 0.1 due to the unreliability of equations 
6 and 9 beyond this point [5]. The black dashed and dot-dashed lines are further examples of extrapolations that can 
be made by changing the value of Vi while keeping the opening profile variable the same. These examples suggest 
that the extrapolations from the test data located at Ck = 0.7 at Rm = 0.0.0758 could rise or drop by less than 10% if 
the early inflation speeds are changed upwards or downwards by about 16%; similar drops and rises are seen when 
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the filling time (nfill) is changed by 30%, as shown by the red extrapolation curves. Why such changes in 
extrapolation occur is described further in Section V.A.   

 

 
 
Figure 6. Opening shock factor extrapolation corresponding to CPAS Main SN5 inflating while trailing the 
PCDTV during test CDT-3-4. The continuous black extrapolation curve was reconstructed from the single data 
point shown (open square), per the use of equations 8-10. The black dashed and dot-dashed curves were calculated 
from the same equations and with the same inputs as CDT-3-4 SN5, but with a speed Vi different from that of the 
test drop. Similarly, the red dashed and dot-dashed extrapolations correspond to the same data but with a filling time 
that is different from the measured value. The range of speeds and fill time used in the figure approximates the range 
seen in the CDT drops (Table 1). 

 
 
B. Mains 1st stage inflation while trailing the PCDTV and PTV 

Table 1 and figure 7 show the results of the analysis for all but one PCDTV drops, with the mass ratio calculated 
for each cluster member via Eqs. 3, and inflation profile variables nfill

(wt)
,  I(wt) and CZ

(wt) obtained from the procedure 
discussed in Section III.B. One notes the drop-to-drop values for CZ

(wt) and Ichute
(wt) clearly clustering around CZ

(wt) ~ 
0.25 and Ichute

(wt) ~ 0.50, proving such concepts as meaningful for inflation analysis. These CZ
(wt)’s are comparable to 

those of the (unreefed) parachutes discussed in reference [5] in the “drogue range” of mass ratios, namely 
(presumably all trailing small forebodies): USAF C-9 CZ

(wt) ~ 0.20 (with Ichute
(wt) ~ 0.16); GQ-1000 CZ

(wt) ~ 0.15 
(Ichute

(wt) ~ 0.22); five meter conical ribbon CZ
(wt) ~ 0.43 (Ichute

(wt) ~ 0.51); and MER DBG parachute CZ
(wt) ~ 0.2 – 0.3 

(Ichute
(wt) ~ 0.20). Note finally that systems undergoing a lot of deceleration feature higher values of Z (such as CDT-

3-6; figure 4) than those which decelerate less (such as CDT-3-12; figure 5). Also with CDT-3-6, CZ is likely to 
carry a larger error due to the linearized J(Z) used here when Z ~ 0.1 – 0.2. Note that all extrapolation shown in the 
figure correspond to the fall speed (Vi) and inflation time (nfill) measured during the test data point shown (squares). 
Note also the differing trends shown at low-Rm, of the test data itself versus extrapolation. This issue is discussed 
further in Section V.A. 

The table lists a couple of cases which have been deemed are unreliable, since the Ck’s obtained from Eqs. 13 
and those calculated with 8-10 then differed by over 5% at the mass ratio value of the test drop. Both should yield 
identical results in order to be consistent with the idea of using Eq. 13 to re-construct the “wt” (“Z=0”) values of the 
opening profile variables on which the extrapolations Eqs. 8 – 11 depend. 
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Table 2 and figure 8 show the same data type but for the Mains trailing the PTV. Comparing both tables and 
figures, the opening shock factors appear similar, a trend that is most likely due to payload drag (per parachute) 
being both small in comparison to the drag area of each parachute during most of the inflation sequence: namely, ~ 
30-50 ft2 payload drag area with the PCDTV and ~ 50 - 100 ft2 payload drag area with the PTV, versus ~ 300 – 600 
ft2

 for each canopy. On the other hand, the PTV data appear with a greater dispersion, possibly due to greater 
variation of capsule drag generated during the latter’s wobbling in descent.  
 
C. Drogues 1st stage inflation while trailing the PCDTV and PTV 

The input and calculated outputs for the drogues trailing the PCDTV and PTV are shown in Tables 3 and 4 
respectively, and the opening shock extrapolations in figure 9 for both payloads. Note again that all extrapolation 
shown correspond to the fall speed (Vi) and inflation time (nfill) measured during the test data point shown 
(triangles). Unlike the Mains, the Drogues’ opening shock factors are significantly more sensitive to payload drag to 
the point of being easily noticeable in the figure, with the values of the PTV-based test being significantly lower. 
The difference also shows up quite clearly in the values of the of the specific air momentum ratio CZ. Such 
sensitivity arises from the drogues’ rated (full open) drag area being smaller than that of the Mains (~ 100 - 130ft2; 
per Tables 3 and 4) but commensurate with the payload’s shared drag area (~ 30-50 ft2 with the PCDTV and ~ 50 - 
120 ft2 for the PTV). This is in agreement with the findings of reference [14]. Finally, the drogue data appear to 
plateau to higher opening shock factor values at small mass ratios than the Ck-extrapolations of the Mains shown in 
figures 7 and 8. 

  
V. Discussion 

 
A. Meaning of the extrapolations  

Figure 7 shows an interesting pattern in which the test data (in the aggregate) appears to trend to higher values at 
Rm ~ 0.01 than suggested by the extrapolations. Many reasons could be behind this, including never having enough 
test data, which could lead to missing possible high-Ck outlier points (compare with Fig. 8). Another explanation is 
that the curves shown were built with the early-inflation fall speed (Vi) and inflation time (nfill) specific to a test drop 
data. By definition the values of nfill and CZ (via kV [5]) should be Vi-independent nominally (in other words, 
“independent to first order”), as a result of their definition carried out with a division by Vi (see Section II); And so 
should the full-open parachute drag area. However, a residual Vi-dependence in the scaling parameter Z remains, i.e., 
through the 1/Vi

2-factor appearing in the gravitational impulse term in equation 9. The result is that calculating Ck 
through Eqs. 8-10 will involve an additional (explicit) dependence on Vi which will change the extrapolations if the 
value of Vi is different from that of the original test data. The effect is shown in figure 6 where a higher Vi increases 
the value of Z (a positive value) which in turns decrease J(Z) and Ck. (Here increasing Vi reduces the relative 
energetic contribution of the gravitational impulse to the energy of inflation). On the other hand, decreasing Vi 
reduces Z and increases J(Z) and Ck. With drogues the effect is similar even though most are characterized by 
(small) negative values of Z, implying a dominance of the gravitational impulse term: A higher Vi increases the 
value of Z as it makes it less negative and smaller in absolute value, which again reduces J(Z). (Where Z < 0 we 
have used J(Z) ~ 1 + 1.813 │Z│ (See Eq. 9)). Decreasing Vi makes Z more negative and greater in absolute value, 
thereby increasing J(Z) and Ck. Such speed effects are noticeable in figure 6.  

Using an inflation time value nfill different from the test-based value (but with the same initial speed and opening 
profile variables) will again affect the extrapolation through changes in Z (Fig. 6). Similarly, adjusting the initial 
forebody drag area share (and ratio CZ) according to Vi would effect changes as well. The main lesson here is that 
the extrapolations shown in figures 7 – 9 will be changed somewhat if the speeds, inflation times and initial payload 
drag area share are changed from the original test data. The good news is that such changes can be evaluated and 
plotted using Eqs. 8 -10 again. 
 
B. Wind tunnel (or FSI) investigations of CPAS-type parachutes  

As briefly mentioned in Section II.D, the interpretation of wind tunnel or FSI data collected for parachutes used 
in vertical descent is different from using the same wind tunnel data of the same parachute but for applications 
involving horizontal inflation. With the latter this data would correspond to deployments carried out at zero mass 
ratio, while with the former Rm would be calculated from Eq. 12b. Reconstructing the “Z = 0” (or “wt”) values from 
Eq. 13 would proceed in similarity with the test drop cases of this paper, but with Z expressed as  
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and used along with Ck, Ichute

wt, Iloadbody
wt, and nfill

wt obtained from the wind tunnel/FSI data. In this exercise Eq. 13 is 
a linear algebraic equation in CZ which can be solved easily to get CZ

(wt).  
 

C. Concluding remarks 
This paper has shown how the use of the Momentum-Impulse theorem allows the derivation of physically-based 

extrapolations of opening shock test data, effectively doubling the range of mass ratios over which predictions can 
be made. Here the theorem was generalized in order to include the mission profiles of CPAS parachute systems 
involving (near) vertical trajectories and heavy, draggy payloads. The approach is detailed enough to reveal the role 
of forebody drag in partly dissipating air flow energy that would have otherwise been used in the inflation process 
itself. Interestingly, one of the authors has investigated such effects from a different approach, through a statistical 
analysis of measured drag in the presence of different wakes [14]. 

Although encouraging, the results are not definitive given some of the assumptions that need to be further 
investigated. An important - and so far unmentioned – assumption has been the explicit omission of aero-elastic 
effects that could amplify the value of Ck [15]. The extrapolations obtained here should include those implicitly at 
least since the measured opening shock factor values used in Eq. 13 already incorporate them. It is just that the load 
amplification factor [15] that result is assumed to be the same at all Z and Rm, something that is far from obvious. 
Another assumption has been the use of polynomial J(Z) of Eqs. 6a and 9, which has originally been constructed 
from test data collected on unreefed low- and high porosity parachutes of diameters in the range of 15 to 30ft [5]. 
While the 5m-D0 ribbon parachute used in reference [5] is commensurate in size and porosity to the CPAS drogues, 
no data exist – both wind tunnel and test drop –on a ringsail design that would approach the design of the CPAS 
Mains. Given their impractical large size for wind tunnel investigations, using a ~ 30% scale model could start the 
process of confirming J(Z) as the correct scaling function for this type of parachute.  

Finally, unmentioned here has been the analysis of the disreefing stages carried out by both CPAS Drogues and 
Mains towards the end of their inflation sequence(s). (Following 1st stage inflation, both parachutes disreef into a 2nd 
reefed constraint; this, in turns, is followed by another disreef into full-open). In principle the Momentum-Impulse 
theorem should provide the basis for constructing an extrapolation scheme that would be similar to the one described 
here [5]. The uncertainty rests again with the form of the J(Z) polynomial, which might turn out different from the 
form used in this paper (1st reefed stage inflation). In a most fundamental way, reefed and unreefed inflation, which 
begin in an un-pressurized state, differ from disreefing inflation which always begins in a fully pressurized state. 
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Figure 7. Extrapolations obtained from Eqs. 8 - 10, as applied to CPAS Mains (1st stage inflation) trailing the 
PCDTV. The extrapolation curves are represented by the continuous, dashed and dot-dashed lines, also traced with 
the color of the corresponding test drop. (Both should overlap at the test drop value of the mass ratio). The circles 
correspond to the CPAS-derived Ck and Rm of the first qualification test (CQT-4-1), also a PCDTV drop. 
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Figure 8. Extrapolations obtained from Eqs. 8 - 10, as applied to CPAS Mains (1st stage) trailing the PTV. The 
extrapolations and test data appear as in figure 7. The time, cross and burst symbols correspond to the CPAS-derived 
Ck and Rm of the first capsule test of December 2014 (EFT-1). EDU test drops CDT-3-7, -9 and -16 (grey circles) 
were not used for generating extrapolations and appear as single CPAS-generated data. 
 

 
Figure 9. Extrapolations obtained from Eqs. 8 - 10, as applied to CPAS Drogues (1st stage) trailing the 
PCDTV (squares) and PTV (triangles). The extrapolations and test data appear as in figure 7. The circles 
correspond to the CPAS-derived Ck and Rm of the first capsule test of December 2014 (EFT-1) and the “times” to the 
data of the first qualification test (CQT-4-1), also a PCDTV drop. 

.  
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Table 1. Analysis of the Mains’ 1st stage inflation while decelerating a PCDTV. CPAS data are printed in black 
and quantities calculated from this data printed in red. The value of H (printed in blue) has been discussed in Section 
III.B. Data marked by a double asterisk are deemed unreliable as the linearized J(Z) (with only two terms) differs 
from the full J(Z) (Eq. 9) by more than 5% at the Rm-value of the test. Inputs marked as “NGD” were neglected 
owing to their insignificance in the calculation. Note that the fill time constant (nfill) marks the time between the 
beginning of inflation (not line-stretch necessarily) and the time of peak drag. As such these values may differ from 
those of other CPAS documents. In all tests, the fall trajectory’s flight angle always yielded <cos γ> ~ 1. 
 
CDT
-3 

S/N H Dref 
ft 

Vintial 
ft/s 

Rm (Eqs. 
2 & 3) 

nfill 
sect.  
II.A 

SCD  
chute 

(steady) 
ft2 

Ck Ichute 
Eq. 15 

SCD (ft2) 
Forebody 

(share) 
(at t = ti) 

Iforebody 
Eq. 11 

CZ Eq. 13 
(linearized); 

negative 
root 

Z 

-1 1 0.5 22.9 272.4 0.0570 23.50 326.9 0.64 0.50 NGD NGD 0.2045 0.0052 
 2 0.5 22.9 272.4 0.0510 18.58 330.5 0.80 0.51 NGD NGD 0.2763 0.0387 
 3 0.5 22.9 272.4 0.0492 19.78 308.1 0.75 0.52 NGD NGD 0.2709 0.0336 

-4 4 0.5 25.1 290.6 0.0740 21.90 412.0 0.57 0.50 NGD NGD 0.1951 0.0534 
 5 0.5 25.1 290.6 0.0758 18.90 431.9 0.70 0.49 NGD NGD 0.2449 0.0851 
 6 0.5 25.1 290.6 0.0762 21.90 436.1 0.52 0.51 NGD NGD 0.1712 0.0382 

-6 1 0.5 25.4 313.9 0.0657 14.93 315.0 0.81 0.53 NGD NGD 0.4117** 0.1400** 

 2 0.5 25.4 313.9 0.0908 43.12 602.0 0.43 0.55 NGD NGD 0.1690** 0.1521** 

 3 0.5 25.4 313.9 0.0749 21.88 409.3 0.55 0.54 NGD NGD 0.2242 0.0928 
-8 2 0.5 22.6 326.4 0.0336 13.61 331.5 0.91 0.48 NGD NGD 0.2800 0.0176 
 3 0.5 22.6 326.4 0.0340 16.38 339.9 0.85 0.45 NGD NGD 0.2391 0.0107 

-12 14 0.5 21.4 304.4 0.0283 15.10 327.9 0.95 0.48 NGD NGD 0.2702 0.0016 
 15 0.5 21.4 304.4 0.0273 14.60 306.0 0.97 0.49 NGD NGD 0.2929 0.0041 

-17 3 0.5 22.9 350.7 0.0470 13.68 256.6 0.84 0.50 NGD NGD 0.3434 0.0694 
 7 0.5 22.9 350.7 0.0508 21.43 300.0 0.67 0.54 NGD NGD 0.2871 0.0921 
 13 0.5 22.9 350.7 0.0669 31.01 520.7 0.44 0.55 NGD NGD 0.1319 0.0440 

 
 
 
Table 2. Analysis of the Mains’ 1st stage inflation while decelerating a PTV. Same symbol convention as in 
Table 1. 
 
CDT
-3 

S/N H Dref 
ft 

Vintial 
ft/s 

Rm (Eqs. 
2 & 3) 

nfill SCD  
chute 

(steady) 
ft2 

Ck Ichute 
Eq. 15 

SCD (ft2) 
Forebody 

(share) 
(at t = ti) 

Iforebody 
Eq. 11 

CZ Eq. 13 
(linearized); 

negative 
root 

Z 

-3 1 0.5 19.5 257.2 0.0653 20.8 275.5 0.73 0.406 36.5 0.619 0.1948 0.0336 
 2 0.5 22.6 257.2 0.0755 11.1 367.4 0.93 0.437 48.7 0.619 0.2804 0.0565 
 3 0.5 31.2 257.2 0.1048 12.2 708.1 0.41 0.530 93.9 0.619 0.1319 -0.0082 

-5 7 0.5 24.0 256.8 0.0724 22.6 418.0 0.55 0.417 44.5 0.854 0.1372 -0.0200 
 8 0.5 23.7 256.8 0.0715 13.3 407.6 0.66 0.549 43.4 0.854 0.2412 0.0377 
 9 0.5 26.0 256.8 0.0784 13.7 489.8 0.55 0.536 52.1 0.854 0.1876 0.0138 

-11 8 0.5 20.8 273.5 0.0418 19.0 250.4 0.69 0.561 41.7 1.113 0.3116 0.0387 

 9 0.5 24.2 271.6 0.0471 17.8 319.3 0.83 0.572 53.3 1.113 0.4399 0.0904 

-14 5 0.5 25.3 260.7 0.0690 10.1 442.8 0.67 0.473 55.0 0.871 0.2083 0.0121 
 6 0.5 25.2 260.6 0.0687 20.1 439.6 0.65 0.552 54.3 0.871 0.2575 0.0578 

-15 14 0.5 32.2 267.8 0.0544 21.2 667.7 0.66 0.535 122.1 0.655 0.2290 -0.0210 
 15 0.5 19.1 267.6 0.0323 27.8 235.1 1.10 0.488 42.9 0.655 ** ** 
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Table 3. Analysis of the drogues’ 1st stage inflation while decelerating a PCDTV. Same symbol convention as in 
Table 1. Note that SN4 skipped to full open during CDT-3-8. 

 
CDT
-3 

S/N H Dref 
ft 

Vintial 
ft/s 

Rm (Eqs. 
2 & 3) 

nfill SCD  
chute 

(steady) 
ft2 

Ck Ichute 
Eq. 15 

SCD (ft2) 
Forebody 

(share) 
(at t = ti) 

Iforebody 
Eq. 11 

CZ Eq. 13 
(linearized); 

negative 
root 

Z 

-1 5 1.8 15.6 275.3 0.0052 4.23 114.8 1.36 0.426 ** ** ** ** 
 4 1.8 15.8 275.2 0.0054 5.57 120.1 1.45 0.378 ** ** ** ** 

-4 4 1.8 15.5 430.2 0.0054 5.27 118.3 1.24 0.647 16.3 1 0.642 0.0078 
 5 1.8 15.9 427.5 0.0054 5.28 118.5 1.35 0.444 16.3 1 0.485 -0.0017 

-6 4 1.8 16.7 481.4 0.0058 5.48 123.0 1.38 0.392 16.0 1 0.454 0.0031 

 5 1.8 15.0 484.6 0.0059 5.49 123.9 1.43 0.485 16.0 1 0.521 0.0100 

-8 4 1.8 23.0 458.2 0.0070 3.98 163.1 1.46 0.335 18.0 1 0.488 -0.0008 
 5 1.8 16.3 454.5 0.0062 5.86 126.1 1.38 0.378 18.0 1 0.423 0.0009 

-12 13 1.8 15.8 569.5 0.0042 7.56 122.0 1.45 0.343 16.5 1 0.394 0.0012 
 14 1.8 15.9 569.9 0.0042 5.73 123.5 1.33 0.554 16.5 1 0.593 0.0094 

-17 13 1.8 15.7 544.5 0.0047 5.20 118.5 1.55 0.403 17.2 1 0.509 0.0064 
 14 1.8 15.9 544.4 0.0048 5.13 123.6 1.53 0.424 17.2 1 0.522 0.0071 

 
 
 
Table 4. Analysis of the drogues’ 1st stage inflation while decelerating a PTV. Same symbol convention as in 
Table 1. 
 
CDT
-3 

S/N H Dref 
ft 

Vintial 
ft/s 

Rm (Eqs. 
2 & 3) 

nfill SCD  
chute 

(steady) 
ft2 

Ck Ichute 
Eq. 15 

SCD (ft2) 
Forebody 

(share) 
(at t = ti) 

Iforebody 
Eq. 11 

CZ Eq. 13 
(linearized); 

negative 
root 

Z 

-3 3 1.8 16.2 266.8 0.0048 4.61 125.8 1.16 0.468 67.5 1 0.599 -0.0368 
 6 1.8 16.3 266.3 0.0046 3.93 114.1 1.28 0.568 67.5 1 0.974 -0.0210 

-5 9 1.8 15.1 270.2 0.0044 5.72 113.8 1.28 0.362 89.3 1 0.690 -0.0370 
 10 1.8 15.7 270.1 0.0045 4.81 122.5 1.33 0.353 89.3 1 0.648 -0.0340 

-11 3 1.8 15.7 337.3 0.0035 5.78 108.1 1.31 0.384 82.1 0.762 0.648 -0.0225 

 6 1.8 15.1 340.6 0.0037 6.30 118.7 1.02 0.690 90.2 0.762 0.791 -0.0141 

-14 5 1.8 15.8 415.3 0.0041 5.16 112.4 1.23 0.448 103.4 0.986 1.322 0.0229 
 6 1.8 15.4 415.9 0.0042 6.49 115.0 1.51 0.360 105.8 0.986 1.169 0.0230 

-15 13 1.8 15.8 266.7 0.0046 5.01 117.8 1.06 0.552 99.4 1 1.064 -0.0200 
 14 1.8 15.0 267.3 0.0046 4.97 115.4 1.24 0.499 99.4 1 1.051 -0.0171 

 
 


