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ABSTRACT 

 

Aircraft dynamics characteristics can only be identified from flight data when the 

aircraft dynamics are excited sufficiently. A preliminary study was conducted into what 

types and levels of manual piloted control excitation would be required for accurate 

Real-Time Parameter IDentification (RTPID) results by commercial airline pilots. This 

includes assessing the practicality for the pilot to provide this excitation when cued, and 

to further understand if pilot inputs during various phases of flight provide sufficient 

excitation naturally. An operationally representative task was evaluated by 5 

commercial airline pilots using the NASA Ice Contamination Effects Flight Training 

Device (ICEFTD). Results showed that it is practical to use manual pilot inputs only as 

a means of achieving good RTPID in all phases of flight and in flight turbulence 

conditions. All pilots were effective in satisfying excitation requirements when cued.  

Much of the time, cueing was not even necessary, as just performing the required task 

provided enough excitation for accurate RTPID estimation. Pilot opinion surveys 

reported that the additional control inputs required when prompted by the excitation 

cueing were easy to make, quickly mastered, and required minimal training. 
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INTRODUCTION:  
A team comprised of personnel from The University of Tennessee Space Institute (UTSI), 

Tullahoma, TN, Bihrle Applied Research Inc. (BAR), Hampton, VA, NASA Glenn Research 

Center, Cleveland, OH, and NASA Langley Research Center, Hampton, VA, has successfully 

developed a prototype Ice Contamination Envelope Protection system (ICEPro).  This work 

was funded under a grant by NASA’s Research Opportunities in Aeronautics program (ROA-

2006), to mitigate the environmental hazard of aircraft icing. The ICEPro system facilitates 

flight envelope protection by making continuous real time vehicle stability and control 

characteristics assessments, which are synthesized into flyable pilot cueing along with visual 

and aural alerts during in-flight icing conditions. Detection of degraded aircraft stability and 

control and performance due to icing is carried out by a Dynamic Inversion Control 

Evaluation System (D-ICES) that compares expected aircraft behavior from a-priori 

knowledge base with current measures of those behaviors. When differences reach defined 

thresholds, Real-Time Parameter IDentification (RTPID)
1-3

 methods are invoked to estimate 

current stability and control characteristics, which continuously provide envelope protection 

pilot cueing and alerts.  The development effort included simulation-based design, testing, 

and verification with simulated airframe icing. A pilot in-the-loop study was then conducted 

to gather pilot performance data and opinions of factors such as situation awareness, system 

integration, and workload, which allowed researchers to assess the utility of ICEPro. Results 

of the study indicated that the system performed as expected and pilot performance benefited 

from the envelope protection cues. An additional study was conducted to determine the 

ability of RTPID and D-ICES to handle atmospheric turbulence. Results of that study 

indicated that the system performed as expected if the stability and control characteristics 

were corrected for measurement errors associated with atmospheric turbulence
4
. 

 

The remaining technical issue for RTPID is its ability to handle low data information content. 

Aircraft dynamics characteristics can only be identified from flight data when the aircraft 

dynamics are excited sufficiently. In the absence of an automated onboard excitation system 

(OBES) (which was used for ICEPro up to now), it is necessary to do a preliminary study of 

what types and levels of piloted control excitation would be required for accurate RTPID 

results. This includes assessing the practicality for the pilot to provide this excitation when 

cued, and to further understand if commercial airline pilot inputs during various phases of 

flight provide sufficient excitation naturally. In this study, the effect of not having an OBES 

on D-ICES was not evaluated because it is of secondary importance to RTPID. 

 

The research questions investigated in this study are:  

When an aircraft is manually being flown by a commercial airline pilot, what phases of flight 

do not involve enough control activity to provide high confidence real time stability and 

control estimation, and is it feasible to cue the pilot to perform additional control activity in 

addition to that required to perform the flight task at hand?  

 
The purpose of this study is three-fold: 

1.) Understand the effectiveness of normal manual pilot control inputs in maneuvering and 

non-maneuvering phases of flight for providing the required level of aircraft dynamic mode 

excitation needed for high confidence real time aircraft stability and control estimation.   

2.) Identify the phase(s) of flight and environmental conditions under which the pilot must be 

cued to provide additional control activity to achieve high confidence stability and control 

estimates.   
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3.) Develop a sense for the operational viability of requiring additional pilot manual control 

inputs with respect to workload related issues such as task performance, attention, and 

situational awareness of atmospheric turbulence and icing.      

 

The objectives of this study are: 

 

1) Using a small sample of five commercial airline pilots in a fixed-base nonlinear aircraft 

simulation, evaluate time histories of real time stability and control parameters with 

normal manual pilot inputs alone for making high-confidence stability and control 

estimates (less than 20 percent error) as the pilots perform typical non-maneuvering and 

maneuvering flight tasks in icing conditions with varying levels of atmospheric 

turbulence.  

a. Determine the portion or portions of the maneuvers which do not provide 

sufficient data information content relative to the aircraft short period, Dutch roll, 

and roll subsidence modes, and thereby do not support the achievement of high 

confidence parameter estimates for the ICEPro system. 

b. When stability and control estimates are poor, cue the pilot to make additional 

control inputs via flight displays and evaluate the pilot's ability to correctly make 

the required  inputs during the given flight task. 

c. Evaluate RTPID stability and control parameter estimates when manual pilot 

inputs are being made.  This study will focus on the evaluation of RTPID without 

the use of an OBES. 

 

2) Obtain subjective pilot opinion data on the usefulness of the flight displays, attention 

issues regarding the cueing, and workload when having to provide additional control 

activity in addition to that required for task performance. 

 

UTSI, BAR, and Rich Ranaudo (Consultant) worked together in a Joint and Cooperative 

Agreement NNX13AH29A.  The technical monitor for this work was Dr. Eugene Morelli 

from the NASA Langley Research Center.  The agreement forms the basis for the assignment 

of tasks and the commitment of resources that each organization provides to the research 

effort.  During the study, all parties met on a regular basis to resolve technical issues.   

DESIGN OF EXPERIMENT: 
Due to the small sample of commercial airline pilots used in this experiment, the data were 

analyzed descriptively. Quantitative data such as the number of times aileron, elevator, and 

rudder cues were displayed to each pilot versus the phase of flight and level of atmospheric 

turbulence were recorded, along with the effectiveness of their manual inputs for satisfying 

the criteria to remove the cues. Pilot opinion surveys were also conducted to assess the 

effectiveness of their pre-test training, the impact of cueing on their situational awareness and 

prioritization of flight control use, and their assessment of cueing on workload and attention 

when performing a specific flight task.  Procedurally, each pilot was required to fly a 

precision instrument approach procedure (Figure 1), where non-maneuvering tasks such as a 

straight and level segment, and maneuvering tasks, such as making turns, descents, flying a 

precision instrument approach, and finally executing a missed approach procedure were 

required.  The RTPID algorithm was the primary mechanism for turning the manual control 

alerts on and off, and this bit was recorded during each phase.  Pilot opinion data was 

extracted from the responses to the survey questions, and summarized in bar charts.   
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Figure 1: Modified approach and landing task 

 

Atmospheric turbulence was tested as calm, light, and moderate. Severe turbulence was not 

tested because the de Havilland Twin Otter aircraft is unable to maintain approach speeds in 

severe turbulence without encountering wing stalls. Atmospheric turbulence implementation 

and levels were defined per MIL-F-8785C and were based on the Dryden Turbulence 

Spectrum. According to MIL-F-8785C, the probability of exceeding light atmospheric 

turbulence levels is between 10
-1

 and 10
-2

, for moderate turbulence, the probability is 

approximately 10
-3

, and for severe turbulence it is approximately 10
-5

, as shown in Figure 2
5
 

derived from MIL-F-8785C.  Therefore, severe turbulence levels are not very likely to be 

encountered.  The RMS turbulence wind speed values are also shown in Figure 2 as a 

function of altitude.  The turbulence velocity components were generated randomly within 

the guidelines of the Dryden spectrum and added to the aircraft velocity components to 

generate the total velocity components. A random number was used to generate the velocity 

components from the turbulence spectrum resulting in unique sequences of random numbers 

from test to test.  The three velocity components from the turbulence calculations were added 

to their appropriate body frame velocity components (u, v, w) that were generated from the 

aircraft dynamics so that the velocity components used for the vehicle motion calculations 

included the components from the atmospheric turbulence model.   
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Figure 2: Atmospheric Turbulence Definition 

 

For local modeling over a short time period, the force and moment coefficients can be 

modeled using linear expansions in the aircraft states and controls:  
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The Δ notation indicates a small perturbation from a reference condition. In each expansion, a 

single term is shown to represent all relevant and similar control terms, to simplify the 
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expressions. For example, in Eq. (2b), the term lC    represents all the control terms for lC , 

e.g.
a rl l a l rC C C         . In Eq. (2b), 

OlC  represents the non-dimensional rolling 

moment at a reference condition, and similarly for the other expansions.  

 

For this study, the moment control terms , ,
e a rm l nC C and C   where the most important and 

only equation 2 was used for modeling. The primary flight display (PFD) was modified with 

three alert messages to the pilot “ELEV”, “AIL”, and “RUD” as shown in Figure 3. The 

messages are triggered by the results of RTPID. When the error bars exceed 20% of 

, ,
e a rm l nC C and C    respectively the message(s) come on. In order to alert the pilot, the 

messages are amber in color and generate a single audio tone. The message will remain until 

the pilot sufficiently moves the controls in that axis to lower the error bars below the 20% 

threshold for 10 seconds.  

 

 

 
Figure 3: Primary Flight Display 

 
 
 
In this study, the RTPID mechanization included a hard reset of the recursive Fourier 

transforms every 50 seconds.  Every time the reset occurs, the algorithm “forgets everything.” 
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In other words, the 50 second resets implement periodic total amnesia. A better 

implementation would be to use the data forgetting feature of RTPID. Data forgetting allows 

the algorithm to remember everything, but de-emphasizes older information. This 

modification was not implemented due to cost constraints. The effects of these 50 seconds 

resets are studied. 

TEST METHOD:  
A detailed breakdown of the precision instrument approach procedure is presented in Figure 

1. Starting at a point 16 miles south and 7 miles west of the airport at 3000 feet, the pilot 

takes control of the aircraft and begins the approach in segment 1. Segment 1 is 

representative of straight and level cruise flight. After performing a right descending turn in 

segment 2, the aircraft is configured for the approach (flaps are lowered to 10 degrees) and 

directed to slow to 100 knots in segment 3.  The pilot then turns left (segment 4) and flies 

from the final approach fix to the decision altitude in segment 5.  Finally, when reaching 100 

feet above ground level a go-around is called and the pilot climbs to 2000 feet ending 

segment 6.  All approaches were conducted in the Ice 2 configuration in simulated instrument 

meteorological conditions and a cloud deck of 400 feet. The Ice 2 configuration represents 

wing and tail ice accretions caused by a de-icing boot failure of 22.5 minutes. 

 

Two commercial airline pilots were scheduled to initially validate the general test technique, 

and an additional three commercial airline pilots were scheduled to conduct the full test.  

Pilots were labeled alphabetically from A to E in chronological order corresponding to when 

they flew their approaches.  Pilot A had over 16,000 hours flying time with over 9,000 hours 

in the Boeing 737 airframe and was a current airline captain.  Pilot B had 25,000 hours with 

over 18,000 in the Boeing 737 and had recently retired as a senior airline captain.  Pilot C had 

over 17,000 hours flying time with experience in the A-4 and S-3 and was a current airline 

captain.  Pilot D had over 6,500 hours of flying time primarily in the F-15 and QF-4 and was 

a current airline first officer.  Pilot E had 14,000 hours of flight time in a variety of business 

jets and was a current Cessna Citation X captain for a fractional private jet ownership 

company.  All five pilots flew all approaches within the Federal Aviation Administration 

(FAA) established Airline Transport Pilot (ATP) performance criteria for precision 

instrument approach procedures. 

 

In order to facilitate data collection, both a test director and system operator operated the Ice 

Contamination Effects Flight Training Device (ICEFTD)
6
 for each run.  The ICEFTD will 

simply be referred to as “the simulator” for the remainder of this report.  Figure 4 shows the 

ICEFTD in use.   
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Figure 4: NASA's Ice Contamination Effects Flight Training Device (ICEFTD) 

 
During testing, the evaluation pilot wore a headset and was completely enclosed in the 

simulator by a system of curtains as shown in Figure 5 and Figure 6.  This isolated the pilot 

from any outside disturbances or distractions, and enhanced the fidelity of the simulation 

environment. The test director stood behind the simulator cab and acted as an air traffic 

controller and provided the callouts listed in italics in Figure 1.  The test director also 

operated a GoPro® video camera which was placed in the right rear of the simulator and 

allowed researchers to review pilot actions and audio after each run was conducted.   

 

 
Figure 5: Air Traffic Control Station 

 

The system operator started and stopped the simulation and was responsible for data 

collection following each run from a remote engineering station. Consequently, this person 

could not see the ICEFTD instrument panel.
  
Therefore, a copy of the  PFD displayed to the 

pilot was provided, as shown in Figure 6.  During the evaluation runs, neither the test director 
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nor the system operator spoke to the pilot while a run was conducted in order to maintain a 

sterile cockpit environment. 

 
 

 
Figure 6: Engineering Station 

 
 

DATA COLLECTION: 
 
In order to adapt to trends visible during initial testing, two major changes were made 

between the runs flown by Pilot A and those flown by Pilot B – a summary of test runs are 

shown in Figures 7 and 8.  The general outline for both pilots was one general practice 

session, two practice runs, followed by evaluation runs.  For the first part of the test, pilot A 

flew three runs with ATP performance criteria, followed by three runs with “ATP/2” 

performance criteria. (For example, if a pilot was asked to maintain an airspeed tolerance of 

+/-10 knots for ATP performance criteria, “ATP/2” standards would require an airspeed 

tolerance of +/-5 knots.)  The second part of the test was a repeat of the first in terms of 

standards, but for the first set of three runs light atmospheric turbulence was added and the 

final set of three runs moderate turbulence was added. 
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Figure 7: Summary of approaches for Pilot A 

 

 
Figure 8: Summary of approaches for Pilot B 

 

Due to observable pilot fatigue and written feedback, the decision was made to limit the 

overall number of evaluative runs conducted by each pilot.  As a result, Pilot B flew the same 

general approaches as Pilot A but conducted two runs per segment instead of three. The 

remaining pilots (C, D, and E) all followed the Pilot B procedure with two data runs per 

segment.  Specific run data for Pilots C, D, and E are summarized in Figures 9-11, 

respectively. Due to time constraints, Pilot C flew a reduced number of runs in atmospheric 

conditions. The second major change made between Pilot A and Pilot B was to decrease the 

de-latch time for an aileron, elevator, or rudder excitation message from 10 seconds to 1 

second. De-latch time is the amount of time a criteria must be satisfied for the message to 

extinguish. In this study, less than 20 percent parameter error for 10 seconds was required to 

extinguish the message. Pilot A demonstrated that a 10 second de-latch was a nuisance. Pilot 

A had to wait 10 seconds after applying an input to determine if the additional input was 

sufficient to clear the excitation cue. For all subsequent pilots the de-latch criteria was 

changed to 1 second. Latch time is the amount of time the criteria must be satisfied for the 

message to annunciate. In this study, more than 20 percent parameter error for 10 seconds 

was required to annunciate the message. All pilots flew with the 10 second latch criteria. 
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Figure 9: Summary of approaches for Pilot C 

 

 

 
Figure 10: Summary of approaches for Pilot D 

 

 

 
Figure 11: Summary of approaches for Pilot E 

 

DATA COLLECTION AND ANALYSIS: 
 
Pilot flight performance data parameters, which were available through a flight data file that 

was resident in D-Six
7
®, were sampled at 50 Hz.  MATLAB® routines were used to collect 

and reduce these data for further analysis.  Quantitative data such as the number of times 

aileron, elevator, and rudder cues were displayed to each pilot versus the phase of flight and 

level of atmospheric turbulence were recorded, along with the effectiveness of their manual 

inputs for satisfying the criteria to remove the cues, indicating that the pilot had provided 

sufficient excitation for accurate stability and control parameter estimation in real time. These 

data were tabulated, grouped, averaged, and graphed for comparison. For each of the three 

control axes, a frequency domain analysis was conducted using Systems Technology 

Incorporated (STI) FREquency Domain Analysis (FREDA) MATLAB toolbox. FREDA was 

used to generate plots displaying the amplitude of different input frequencies versus time.  
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Thus, information was obtained regarding what input frequencies were used, their amplitude, 

and when they were used. This data was used to study the effectiveness of commercial airline 

pilot inputs for system identification using RTPID.  In addition to these performance data, 

other parameters were recorded during each run to provide a more complete picture of the 

pilot’s control strategy, which was useful in training and de-briefing the evaluation pilots.  

This included GoPro audio and video files for each run as well as training sessions. 

 

The pilot performance data quantified how well the pilot flew the approach task, and the 

number and duration of excitation cues. In addition to pilot performance data a post-test 

survey analysis was used to obtain subjective pilot opinion data on the usefulness of the flight 

displays, attention issues regarding the cueing, and workload when having to provide control 

activity in addition to that required for task performance. 

RESULTS AND DISCUSSION: 
Simulation studies accomplished for this work showed that all pilots met the FAA ATP 

performance standards for a precision approach with different control input strategies, and 

were effective in making the excitation cues disappear without any test pilot control input 

training. It was found that all pilots flew with similar airspeed, altitude, heading, localizer, 

and glideslope performance and correlations between pilots, segment, and criteria could not 

be established. Rudder warnings occurred with the most frequency with few aileron and 

elevator excitation cues in all segments of flight. While less excitation cues occurred in latter 

approaches with simulated atmospheric turbulence, rudder cues still occurred at a higher rate 

regardless of atmospheric turbulence. This motivated an investigation into the hard coded 50 

seconds RTPID resets.   

 

Scalogram, power frequency, and cutoff frequency metrics were introduced and used to 

investigate which phases of flight and atmospheric turbulence conditions provided the most 

control activity and promoted system identification using RTPID. Segment 5 (precision 

instrument approach) provided the most control activity and hence provided the best 

environment for system identification. This result was expected because in this segment the 

pilot is tightly coupled with the aircraft as the pilot follows precise vertical and lateral 

guidance to the runway. Although other segments provided instances conducive to system 

identification, none were as consistent as segment 5. Pilot control activity in segments 1 and 

2 were shown to not be conducive to system identification. Differences in piloting technique 

were studied in order to understand the effectiveness of pilot inputs for system identification. 

It was found that all pilots used a different control strategy in obtaining the same performance 

standards. This suggests that 5 pilot strategies were involved in the experiment.  

 

Pilot opinion surveys were conducted immediately after all testing was completed in order to 

obtain subjective opinion data on the usefulness of the flight displays, attention issues 

regarding the cueing, and workload when having to provide control activity in addition to that 

required for task performance. Pilots reported that the excitation cueing (visual and oral) was 

effective in getting their attention and was well implemented.  Pilots additionally reported 

that the additional control inputs required when prompted by the excitation cueing were easy 

to make, quickly mastered, and required minimal training. Lastly, pilots reported that 

although they did not mind making the inputs, they felt it interfered with the task and 

degraded their performance. However, analysis showed that all pilots flew within the required 

ATP performance standards. 



16 

 

EXCITATION CUE ANALYSIS: 
 

Figure 12 is a tally of aileron excitation cues for all five pilots during segment 1 (cruise) and 

segment 5 (precision approach). The cruise segment resulted in the most aileron excitation 

cues while segments 4-6 resulted in zero aileron excitation cues. Results for segments 4 and 6 

are not shown. This is expected since segment 5 starts at the final approach fix and ends at 

the decision altitude, and is considered a high gain task as pilots must work hard to maintain 

airspeed, localizer, and glideslope required by ATP performance standards. Segments 4 and 6 

required significant aileron activity. Additionally, segment 2 (descending right turn) and 

segment 3 (flap transition) resulted in a 2-3 aileron excitation cues for Pilot A. The remaining 

pilots B-E did not record any aileron excitation cues in segments 2 and 3. Results for 

segments 2 and 3 are not shown. As a result, higher control activity lessened the number of 

excitation cues. In contrast, the cruise segment does not require the same level of aileron 

activity and resulted in more excitation cues.  

 

 

 
Figure 12: Aileron Excitation cues; Segment 1 versus Segment 5 
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Figure 13 is a tally of elevator excitation cues for all five pilots during the segment 1 and 

segment 5. The cruise segment resulted in the most elevator excitation cues while segments 5 

and 6 resulted in the fewest excitation cues. Results for segment 6 are not shown. This is 

expected since the cruise segment does not require significant elevator control activity and 

segments 5 and 6 require extensive use of elevator control inputs.  Additionally, segments 2-4 

resulted in less elevator excitation cues than segment 1 and more excitation cues than 

segments 5 and 6. This is expected since segments 2-4 require elevator activity for a 

descending right turn (segment 2), flap transition (segment 3), and a left turn to the final 

approach course (segment 4). Results for segments 4-6 are not shown.  

 

 
Figure 13: Elevator Excitation cues; Segment 1 versus Segment 5 

 
Figure 14 is a tally of rudder excitation cues for all five pilots during the segment 1 and 

segment 5. With the exception of Pilot B, pilots had more rudder excitation cues in segment 5 

than in any other segment. This seems counter-intuitive because segment 5 requires the 

greatest amount of consistent control activity. Video footage suggested that the remaining 
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four pilots maximized their attention on the elevator and aileron in order to fly the precision 

approach (vertical and lateral guidance) cues and minimized their attention on rudder inputs. 

This division of attention was not expected but seems appropriate to the task. 
 

 

 
Figure 14: Rudder Excitation cues; Segment 1 versus Segment 5 
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The unusually high number of rudder excitation cues for all pilots prompted an investigation 

into the hard coded 50 seconds RTPID resets.  The results of segment 5 during the first 

ATP/2 run for each pilot are shown in Figure 15. 

 

Rudder Excitation Cues for Segment 5 DATA 

Pilot  A B C D E 

Number of resets (50 sec RTPID) 5 5 5 6 6 

Number of rudder excitation messages 5 2 4 3 3 

Number of rudder excitation messages due to reset (50 
sec RTPID) 5 1 4 3 3 

Number of rudder excitation messages due to poor 
excitation 0 1 0 0 0 

Number of resets (50 sec RTPID) that did not result in a 
message (good excitation) 0 3 1 3 3 

Percent of rudder excitation messages that resulted 
from reset (50 sec RTPID) 100% 50% 100% 100% 100% 

Figure 15: 50 SECOND RTPID RESET 

 

The results in Figure 15 show that for 4 out of 5 pilots 100% of the messages were caused by 

the hard coded 50 seconds RTPID resets. In almost all cases there were more resets than there 

were rudder excitation messages. This is expected because during some of the resets the 

pilots were moving the rudder pedals in order to complete the task and provided enough 

natural excitation that the 20% error criteria was satisfied even after a reset. However, there 

were times when there wasn’t enough excitation and it resulted in a rudder excitation 

message. The results for the remaining segments are not shown. The results for the remaining 

runs are similar and are not shown. 

 

The elevator and aileron excitation messages were not affected by the 50 seconds RTPID 

reset because the elevator and aileron were continuously used throughout the instrument 

approach task. 

 

The effect of hard coded 50 seconds RTPID resets make it difficult to draw any conclusions 

on the rudder excitation messages. However, when excitation cues were examined side by 

side for all pilots, an interesting trend emerged between Pilot A and Pilot B.  Both Pilot A and 

Pilot B recorded similarly low numbers of aileron and elevator excitation cues, but a 

dramatically different number of rudder excitation cues.  Pilot B consistently had more rudder 

excitation cues than Pilot A, indicative of a lack of rudder activity. Pilot A recorded a greater 

number of rudder excitation cues in segment 5 – sometimes as many as 8 per approach – 

compared to Pilot B. The rudder excitation cue trends for Pilot A are directly attributable to 

pilot technique and 50 seconds RTPID resets. After examining video and audio footage 

collected during Pilot A approaches, it became clear that coordinating turns was not a 

priority. As a result rudder excitation cue occurred more frequently and only upon receiving 

an excitation cue would Pilot A provide rudder input. It was repeatedly observed that most 

pilots had a tendency to fly with their feet on the floor and not on the rudder pedals. 
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A better implementation is to use RTPID’s data forgetting feature. Data forgetting allows the 

algorithm to remember everything, but de-emphasizes older information. This work is 

recommended for a future study. 
  

This experiment was designed so that an increase in atmospheric turbulence would cause 

greater control activity and less excitation cues. In general, pilots had less excitation cues in 

all axes in light atmospheric turbulence versus a calm atmosphere. However, with the 

exception of Pilot B, pilots had more excitation cues in moderate atmospheric turbulence.  

This seems counter-intuitive because greater atmospheric turbulence should require a greater 

amount of control activity. Video footage suggests that although pilots may be able and 

willing to correct course deviations in moderate atmospheric turbulence, the increase in 

atmospheric turbulence could induce the pilot to forego attempts at course correction rather 

than make excessively large and frequent inputs. 

 
Since all approaches were conducted within the minimally acceptable FAA ATP performance 

standards for a precision approach, it was possible to examine pilot performance side-by-side 

and examine the data for trends. As an example, Figures 16-18 show aileron, elevator, and 

rudder data during segment 5 of each pilot’s first approach flown to the ‘ATP/2’ standards.  

Red arrows are used to emphasize rudder pedal time histories. The simulator used in this 

research had control loading in the pitch axis, with simple springs connected to the rudder 

pedals and ailerons. The effect of not having control loading on the aileron and rudder on the 

results is unknown. This is recommend for a future study. 

 

 
Figure 16: Aileron, elevator, and rudder deflections; run 4/3, Segment 5, Pilots A and B 
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Figure 17: Aileron, elevator, and rudder deflections; run 5/4, Segment 5, pilots C and D 

 

Pilots A and C had large regions in all approaches where minimal rudder activity was 

recorded.  In direct contrast, Pilots B, D, and E consistently applied coordinating rudder 

inputs.  This is an important observation, as differing control strategies between pilots help 

explain the difference in the number of excitation cues between pilots. Similar trends in the 

data were repeatedly observed for each pilot indicating that the number of excitation cues was 

driven by pilot technique and not a flaw or external bias present in the experiment. 

 

 
Figure 18: Aileron, elevator, and rudder deflections; run 3, Segment 5, pilot E 
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Figures 19-21 provide insight into the amount of time that the various excitation cues were 

illuminated during segment 5 of the approach.  First, a distinct difference is present when 

comparing Pilot A and Pilot B because the RTPID logic for de-latching of excitation cues 

was modified from 10 seconds to 1 second between Pilot A and Pilot B.  The de-latching 1 

second logic was not changed for Pilots B-E. Although Pilot A’s excitation warnings 

illuminated for a longer of period of time than Pilot B’s, this was not due to pilot activity or 

inactivity, but instead due to a change in the RTPID display logic. 

 

 
Figure 19: Percent error calculations; run 4/3, Segment 5, pilots A and B 

 
In addition, the red line at the bottom of each subplot denotes the 20% RTPID error target, so 

values which rise above the 20% line for 10 seconds will trigger the excitation cue logic. In 

general, achieving a 20 percent error or less in large parameters is easier than in small 

parameters. This study studied on-axis control derivatives which are considered to be larger 

parameters typically unaffected by this sensitivity. Otherwise, the use of an absolute error 

metric is a better solution. When comparing Pilot A and Pilot B, the five corresponding red 

circles for rudder percent error calculations denote the major difference in measured pilot 

control strategies.  While the 50 second RTPID resets occurred for all pilots, the percent error 

values were consistently higher for Pilot A due to the lack of rudder activity. 

 

The five major data spikes in all aileron, elevator, and rudder time histories are due to the 50 

seconds hard-coded RTPID resets (data forgetting scheme) and are undesirable. This study 

found that data forgetting schemes originally designed for an OBES in ICEPro can provide 

false, ambiguous, or nuisance alerting cues to the pilot.  Data forgetting is a critical aspect of 

RTPID to prevent real time stability and control estimates from being biased by old data
4
.   
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Figure 20: Percent error calculations; run 5/4, Segment 5, pilots C and D 

 

For Pilots B-E, aileron and elevator excitation cues occurred infrequently because continuous 

control inputs occurred in both axes. As a result, the percent error time histories for CLδa and 

CMδe show excellent identification results for the entire segment. However, for Pilots A, C, D, 

and E, the percent error for CNδr was consistently greater than 20 percent. The lack of rudder 

activity resulted in poor system identification results. However, when the rudder excitation 

cue was active, all pilots extinguish the cue quickly. This trend is shown in the percent error 

CNδr time histories for all pilots.  

 

 
Figure 21: Percent error calculations; run 3, Segment 5, pilot E 

 

Very few aileron and elevator excitation cues occurred in all six segments of flight.  Rudder 

warnings occurred with the most frequency, and Pilot A had the most rudder warnings of any 

pilot by an order of magnitude. While less excitation cues did occur in latter approaches with 

simulated atmospheric turbulence, rudder cues still occurred at a higher rate regardless of 

atmospheric turbulence.  This trend is attributable to pilot technique as evidenced by video 

and by the 50 seconds RTPID resets, and is likely reinforced by pilot experience in wide 
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body passenger aircraft with yaw dampers. It was repeatedly observed that pilots had a 

tendency to fly with their feet on the floor and not on the rudder pedals. In general, all pilots 

met the performance criteria with different control input strategies, and were effective in 

making the excitation cues disappear without any test pilot control input training. 

PILOT CONTROL ANALYSIS: 
 

For each of the three control axes, scalogram plots
9, 10

 were computed using a Morlet Wavelet 

in STI’s FREDA MATLAB toolbox. FREDA was used to generate scalograms displaying the 

amplitude of different input frequencies versus time.  Thus, information was obtained 

regarding what input frequencies were used, their amplitude, and when they were used.  For 

example, Figure 22 shows an aileron input scalogram for segment 5 of Pilot B’s first ATP/2 

standard approach in a calm atmosphere.  The scalogram shows a large jump in elevator input 

(magnitude scale) at a low frequency (frequency scale) towards the end of the segment (time 

scale) due to the increased sensitivity of the precision approach guidance. Most of the input 

energy is below 3 rad/sec or 0.48 Hertz (Twin Otter short period natural frequency is 0.5 

Hertz) and is marked with a dashed green line on Figure 22. However, there are several areas 

when the input energy is on both sides of 3 rad/sec. This is expected because pilots inherently 

provide inputs near the natural frequency in order to maneuver the aircraft. Similar patterns 

were observed for all pilots, and in calm and moderate atmospheric turbulence conditions, 

although the results are not shown. 

 

Scalogram data was used to calculate the cutoff and power frequencies
8
. Cutoff and power 

frequencies were used to estimate the pilot’s operating frequency and the intensity of the 

inputs at that frequency. These were useful diagnosis tools in order to determine which 

phases of flight inherently produced significant control activity. Although control activity in 

itself is not sufficient for RTPID (RTPID requires control inputs with sufficient magnitude at 

the right frequencies) it aided the study for each segment of the approach.   

 

Cutoff frequency at a particular instant in time is calculated by examining a time slice of the 

scalogram.  The Cutoff frequency is defined such that the integral of the input energy for the 

time slice from zero to the cutoff frequency is half the value of the integral from zero to 

infinity.   
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However, in this process, information regarding the amplitude of an input is lost, and it is 

easy to see that a task requiring very small inputs could produce cutoff frequencies similar to 

those of a task requiring large inputs.  The power frequency reintroduces this information by 

multiplying the cutoff frequency by the maximum input energy amplitude found on the time 

slice. 

 

     maxG cutofft t G t   
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Figure 23 shows the time varying cutoff and power frequencies obtained from the scalogram 

in Figure 22.  The cutoff values in Figure 23 from 525 to 575 seconds are not used for 

analysis because the power frequency is below the cutoff frequency. Cutoff values for the 

remainder of the run are used for analysis because the power frequency is above the cutoff 

frequency. As a rule of thumb, the cutoff frequency is only used when the power frequency is 

greater than the cutoff frequency. From Figure 23, average and maximum values were 

obtained for cutoff and power frequencies.  These values are then used for the subsequent 

analysis.   

 

 

Figure 22: Pilot B Lonstick (elevator) input scalogram, Segment 5, first ATP/2 approach 
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Figure 23: Lonstick (elevator) Cutoff and Power Frequencies for Pilot B, Segment 5, first ATP/2 

standards approach 

 

The power frequency was used to further investigate which phases of flight and atmospheric 

turbulence conditions provided the most control activity and promote system identification 

using RTPID. Segments 1 (cruise task) and segment 5 (precision instrument approach) were 

chosen to represent the two extremes of pilot control activity. Figure 24 shows the power 

frequencies for all control axes (aileron, rudder, and elevator) averaged across all pilots for all 

six segments of the first light atmospheric turbulence run.   

 

 
Figure 24:  Power Frequency versus approach segment averaged across pilots and input type 
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Power frequencies for segment 5 are substantially greater than those for segment 1.  This 

indicates that overall, pilots had to make larger and/or more frequent inputs in segment 5, 

which is indicative of higher workload. It is also indicative of the reduced number of elevator 

and aileron excitation cues in segment 5 and the increased number in segment 1. This 

suggests than segment 5 promotes the most pilot activity and in turn the best system 

identification conditions. Segment 2 (a basic turn) is frequently seen in flight but does not 

promote system identification because of the lack of control activity. Segment 3 (flap 

transition) promotes system identification because of the required configuration change and 

resulting control effort. Unfortunately flap transitions are singular events in a flight profile. 

Segments 4 and 6 have higher average values as the result of one unusually large input to 

make a turn and join the precision approach guidance (segment 4) or raise the nose during the 

go around procedure (segment 6). These singular events promote system identification 

conditions but are not as consistent as segment 5. Similar patterns were observed with calm 

and moderate atmospheric turbulence conditions, although the results are not shown.  

 

Figure 24 showed power frequencies averaged across all pilots and control axes.  In order to 

investigate the variation of input intensity in greater detail, power frequencies between pilots, 

control inputs, performance standards, and atmospheric conditions were studied.   

 

Figures 25-27 show average power frequencies for each pilot across control inputs, 

performance standards, and atmospheric conditions. The average power frequency was first 

calculated relative to time in each run and then averaged across the number of runs for each 

approach type. Power frequencies for Pilot C are not included in these figures since Pilot C 

completed a disproportionally low number of approaches in atmospheric turbulence 

conditions due to time constraints and, as a result, had power frequencies that were not 

comparable to those of the other pilots when averaged across approaches. Power frequencies 

have been taken from segment 5, which had greater and hence more representative control 

activity. In general, Pilot A consistently had the lowest average power frequencies across 

control inputs, performance standards, and atmospheric conditions, while Pilot B consistently 

had the highest.  This indicates that Pilot A tended to use relatively small and infrequent 

control inputs, while Pilot B used very large and frequent inputs in comparison.  This was 

previously confirmed by examining the number of excitation cues per pilot.    

 

Figure 25 shows that the variation of aileron input was small.  Although Pilot A does have the 

lowest aileron input power frequency, and Pilot B has the highest, their power frequencies 

differ by only a factor of 1.3.   
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Figure 25: Aileron Power Frequency versus Approach Type 

 

In Figures 25-27, power frequency tends to increase as the tolerances tighten or atmospheric 

turbulence increases.  All pilots increased their inputs intensities when atmospheric 

turbulence was introduced.  However, in some cases, average power frequencies seem to 

stagnate.  For example, the strictness of the standards (ATP versus ATP/2) and the relative 

intensity of atmospheric turbulence (light versus moderate) have a small effect on aileron and 

elevator Power Frequencies. This suggests that the design of experiments could be modified 

to only include ATP standards and light atmospheric turbulence. This is important because 

commercial airline pilots are accustomed to flying ATP standards and because operationally 

light atmospheric turbulence has the highest probability of occurrence.  
 
For elevator inputs (Figure 26), input intensities differ by a factor of roughly 2, indicating 

differences in piloting technique.  Nevertheless, power frequencies are relatively high.    

 

 
Figure 26: Elevator Power Frequency versus Approach Type 

 
Pilot B and Pilot E depict two different trends. Pilot B’s average aileron and elevator power 

frequencies decreased noticeably when approach performance standards were tightened or the 
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severity of flight turbulence was increased. This phenomena was counter-intuitive because it 

was expected that additional inputs would be required to correct path deviations as 

performance standards tightened or as atmospheric turbulence became more severe; however, 

these results are attributable to piloting technique.   
 
First, while heightened approach standards are likely to require more frequent corrections, 

those corrections will, at the same time, have to be smaller.  Pilot B had a tendency to use 

relatively large control inputs, and had to greatly reduce the magnitude of these inputs upon 

encountering tighter restrictions on the flight path; however, a significant change was not 

necessary for the other pilots.  As a result, power frequencies for the other pilots tended to 

remain constant or even increase slightly as the approach standards were tightened.   
 
Additionally, the observed decrease between light and moderate turbulence is also 

attributable to piloting technique.  While a pilot may be able and willing to correct course 

deviations in light turbulence, an increase in turbulence could induce the pilot to forego 

attempts at course correction rather than make excessively large/frequent inputs.  Once again, 

the fact that Pilot B was already making very large inputs even in light atmospheric 

turbulence supports this analysis.  Pilot B would have had to make extremely large inputs to 

maintain the same correction scheme used before.  Thus, it is likely that Pilot B was unable to 

safely make larger inputs and sacrificed attempts to correct for atmospheric turbulence in 

order to maintain better control of the aircraft.    

 

Pilot E had increasing power frequencies with increasing performance standards and 

atmospheric turbulence conditions. This trend was consistent for all control axes. 
 

Figure 27 shows that the average rudder power frequencies differ by a factor of nearly 12 

with aileron and elevator average power frequencies.  However, Pilot B produced rudder 

power frequencies an order of magnitude above those of all the other pilots. All pilots had 

increasing power frequencies with increasing performance standards and atmospheric 

turbulence conditions.  
 

 
Figure 27: Rudder Power Frequency versus Approach Type 

The cutoff frequency was used to further investigate power frequency behavior. Figure 28 

shows the rudder cutoff frequencies for each pilot averaged across all approaches for segment 

5.   
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Figure 28:  Average Cutoff Frequencies for Rudder Inputs 

 

Pilots A and D had high rudder cutoff frequencies, indicating fast rudder inputs. The 

unusually high values are likely the result of faster rudder inputs than the other pilots when 

clearing excitation messages. The final point of interest in Figure 28 is that Pilot B has a very 

low rudder cutoff frequency.  However, Pilot B had very large rudder power frequencies.  

Thus, it can be concluded that Pilot B made large but slow rudder motions.   

 

The power frequency was used to investigate which phases of flight and atmospheric 

turbulence conditions provided the most control activity and promote system identification 

using RTPID. Segment 5 (precision instrument approach) provided the most control activity 

along with the least number of excitation cues, and therefore was most conducive to system 

identification. This result was expected because in this segment the pilot is tightly coupled 

with the aircraft as the pilot follows precise vertical and lateral guidance to the runway. 

Although other segments provided instances conducive to system identification, none were as 

consistent as segment 5. If pilots were provided similar lateral and vertical guidance, system 

identification could be carried out in any phase of flight with natural pilot control activity and 

minimal excitation cueing. However, as previously analyzed, all pilots were effective in 

making the excitation cues disappear without any test pilot control input training. 

 

Differences in pilot technique were studied in order to understand the effectiveness of pilot 

inputs for system identification. Scalogram, power, and cutoff frequencies plots were used to 

determine that all pilots used a different control strategy in obtaining the same piloting 

performance standards. This suggests that 5 pilot strategies were involved in the experiment. 

Pilots A and B represent the two extremes tested while pilots C-E were somewhere within 

those extremes.  

 

The most effective way of changing the pilots control activity was to change the atmospheric 

conditions. Changing the atmospheric conditions (calm versus light/moderate) was more 

effective in increasing the pilots control activity than tightening the pilot’s performance 

standards (ATP vs ATP/2). This is important because commercial airline pilots are 

accustomed to flying ATP standards and because operationally light atmospheric turbulence 

has the highest probability of occurrence. 
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PILOT OPINION SURVEY RESULTS: 
 

Pilot opinion surveys were conducted immediately after all testing was completed.  The 

survey consisted of four parts.  Except for questions relating to pilot experience and flight 

ratings, questions were written in a Likert question-statement format, which asked the pilot 

for level of agreement, or frequency of occurrence.  Pilot responses to these questions 

provided information which helped understand factors that either motivated their control 

strategy, or explained how their background and training influenced their attention skills and 

perception of workload.   

 

Part I – Demographics and Flight Operations –In addition to the demographic data collected 

in this section, questions were asked to determine the phases of flight that the pilots preferred 

to fly manually, or if and when company standard operations procedures required them to use 

an autopilot.  The purpose for these operational questions was to gain some sense for which 

phases of flight manual pilot control was most likely based upon pilot preferences and 

company standards.  The list of questions follows and Figure 29 provides a summary of the 

pilots’ responses.  A discussion and analysis of the results follows.   
 
1. I estimate that I manually fly the aircraft most during the ________ phase of flight?   

Climb  Cruise  Descent   Approach 

 

2. My airline SOP encourages or requires use of the autopilot for most operations. 

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

3. I prefer to use the autopilot to fly the airplane in turbulence. 

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

4. I use the autopilot most often when flying instrument approach procedures.   

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

5. I generally fly most visual approaches manually. 

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

 

 
Figure 29: Responses to Flight Operations Survey Questions 
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Part I Discussion 

 

Question one asked for the phase of flight the pilot felt they manually flew the aircraft most.  

This was the only fill – in question in the survey, where the authors were expecting just one 

of the choices to be selected.  Three of the pilots however, selected two responses, which is 

the reason for the eight total responses as shown in Figure 29 instead of five.  Regardless, the 

responses were equally split between the climb phase and the approach phase, which is not 

surprising since these two phases are the ones with the greatest requirement for maneuvering.  

From a proficiency standpoint, pilots need to maintain their “stick and rudder” skills and 

these phases provide the necessary opportunity for meeting that requirement.      

 

In question two, pilots were asked if company standard operating procedures encourage or 

require use of autopilot for most operations.  Two pilots agreed and three strongly agreed 

with the question. However, all the pilots did indicate that it was really their choice to decide 

when they would use manual or autopilot operation based on the operational factors existing 

at the time.  For example, most airlines train pilots to connect the autopilot when dealing with 

an inflight emergency or abnormal condition.  This allows them to work better as a team to 

resolve the issue at hand.  However, it is the pilot’s prerogative to decide whether or not to 

follow this policy.   

 

Question three asked pilots if they preferred to use auto pilot in turbulent conditions.  Three 

pilots agreed and one pilot strongly agreed with the statement regarding use the autopilot in 

turbulence.  One pilot disagreed.  Operationally, most airlines encourage autopilot use in 

turbulence because it generally gives the passengers a better ride while greatly reducing the 

pilot’s workload when performing a flight task.   

 

Question four asked what phase of flight they would use the autopilot most.  Three of the 

pilots agreed that they use the autopilot most often when flying instrument approach 

procedures, one was neutral and one disagreed.  The agreeing pilots qualified their answers 

during debriefing by clarifying that they do not exclusively use the autopilot for approach 

procedures, only that it is a phase of flight where they are more likely to use it.   

 

Question five asked if pilots manually controlled the aircraft on visual approaches and all 

pilots agreed or strongly agreed that they fly visual approaches manually.  In general, when 

weather permits, air traffic facilities offer visual approaches as they greatly expedite 

departures and arrivals.     

 

Part II.  Pre-Test Training – The next set of questions were related to the pilot’s opinion of 

how difficult it was for them to master the control technique that would provide the necessary 

excitation for satisfying the manual control alert cue.  This question relates to the practicality 

of training operational pilots to perform this control task and how well they can master the 

skills needed to produce good stability and control parameter estimates.  The list of questions 

and a discussion of the results follow.  The responses to the questions are shown in Figure 30. 

 

1.  The control input concept for updating the aircraft state was easy for me to understand.      

Strongly Disagree Disagree Undecided Agree  Strongly Agree 
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2.  Even after much practice, I felt that I initially made either too little or too much control 

input when a control input cue alert came on. 

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

3.  I quickly mastered elevator, aileron, and rudder inputs when cued. 

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

4.  I felt that the training I underwent adequately prepared me for the testing I performed. 

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

5.  I had difficulty understanding how to adjust my control inputs for different airspeeds and 

wing flap configurations. 

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

 

 
Figure 30: Response frequencies for Part II 

 

 

Part II Discussion 

 

Question one asked if was easy for the pilots to understand the control input concept for 

updating the aircraft state. Three agreed and two strongly agreed with the statement.  The test 

conductors found that it took very little time, perhaps no more than five to ten minutes of 

explanation for the pilots to understand the basic concept behind RTPID, and why the manual 

input task was required.  

 

The second question asked if the pilots felt that it took considerable practice to master a 

control technique necessary to satisfy the alerting requirements.   Four of the pilots disagreed 

and one pilot strongly disagreed with this statement.  During initial vetting of the test plan, 

the test conductors found that by simply asking the pilots to move the nose back and forth 

along the flight path in the appropriate control axis that was just enough to excite a small 

response but one that passengers would barely notice was all that was required. 
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Question three asked if pilots felt they quickly mastered the required control inputs when 

cued.  Four pilots agreed, and one strongly agreed.  The control input task took only a few 

minutes to master, but some of the pilots did comment on the fact that the feedback they 

received as to the effectiveness of their inputs was delayed and there was no tactile feedback 

from the fixed based simulator to help them assess the results of their control inputs.  One 

pilot in particular indicated that he thought he could have done a better job of making the 

inputs if he had this feedback.  In future research, it would be beneficial to conduct this study 

in an actual aircraft with all of the corresponding sensory feedback. 

 

The fourth question was directed at the adequacy of pre-test training.  All pilots received the 

same training consisting of briefings and practice before beginning the data collection runs, 

and all of them agreed or strongly agreed that the training was adequate. 

 

In question five, the pilots were asked if it was difficult for them to tailor their control inputs 

to different conditions and configurations of flight.  At high speed cruise for example, 

required input amplitude to provide the necessary excitation is relatively small, but at lower 

speeds the amplitude must be larger to account for the reduced control effectiveness.  One 

pilot strongly disagreed with the statement, three disagreed, and one was neutral.  This was 

not a surprising result as human pilots can generally adapt their control strategy to anticipated 

flight characteristics after some practice.  The pilots in this test had practiced the approach 

procedure a few times before data collection and quickly learned how to anticipate and adapt 

their control input strategies to changes in flight condition and speed. 

     

Part III.  Situation Awareness and Flight Control Priority – In this section, pilots were asked 

questions that would provide some insight as to how they would respond to alerting cues if 

the aircraft was handling abnormally or if they thought that making additional inputs had a 

negative effect on any flight task they happened to be performing at the time.  Additionally, 

the questions sought information on the effectiveness of the alerting cues in capturing the 

pilots’ attention if alerted while performing a flight task, i.e., were the alerts seen to be 

distracting or not.  The list of questions for this section and a discussion of the results follow.  

A summary of the pilots’ responses to the questions are provided in Figure 31. 

 

1. If I sensed aircraft handling problems I would hesitate to aggravate the situation with 

additional control inputs if alerted to do so. 

Strongly Disagree Disagree Undecided  Agree  Strongly Agree 

 

2. If the airplane was handling normally, and I was alerted to make additional control inputs, 

I would probably ignore the alerts or cancel them if I could.  

Never  Rarely Sometimes  Very often  Always 

3. I became immediately aware of the manual control input alert when it was posted on the 

flight display.  

Strongly Disagree Disagree Undecided  Agree  Strongly Agree 

 

4. I thought the control input alerting cues distracted me from the task I was performing at the 

time.  

Strongly Disagree Disagree Undecided  Agree  Strongly Agree 

 

5. Having to respond to control input cues affected my task performance. 

Strongly Disagree Disagree Undecided  Agree  Strongly Agree 
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6. I tended to make small control inputs initially when cued, and then make larger ones if the 

alert lights did not go out when they should have. 

Never  Rarely  Sometimes   Very often Always 

 

 
Figure 31: Response frequencies for Part III 

 

Part III Discussion 

 

The first question asked for agreement with the statement that the pilot would be reluctant to 

aggravate an apparent aircraft handling situation by making additional control inputs when 

cued.  Three pilots disagreed one was neutral and one agreed.  The issue here is that if a pilot 

is experiencing a handling abnormality, would the pilot be reluctant to make any additional 

control inputs that would aggravate the situation further.  In this simulation, there were no 

perceptible handling issues so the pilots’ responses were to a hypothetical situation, and 

perhaps influenced by their prior experience.  In future research, it would be beneficial to ask 

this question again in a situation where the pilot is struggling with a real handling problem.  

 

The second question asked for agreement with the statement that pilots would ignore or 

cancel control input alerts if the aircraft was handling normally. Three pilots disagreed with 

the statement, one strongly disagreed, and one pilot was neutral.  Although this was a 

desirable result, the test profile was a relatively short event, on the order of 10 minutes.  

Future research should assess pilot opinion on a much longer flight that typifies an entire trip 

segment of two hours or more, where having to respond to repeated control alerting may be 

viewed differently. 

 

The third question was asked to determine if the pilots felt they had immediate awareness of 

control input alerting when it was posted on the PFD.  The purpose for the question was to 

verify that any delayed responses to a control input alert were not due to an integration issue.  

This specifically refers to how the excitation cues were integrated visually and orally on the 

PFD. As can be seen from the responses, two pilots agreed with the statement, two strongly 

agreed, and one was neutral.  Since the PFD is the primary reference used by pilots for 

controlling the aircraft, the results of this question indicate that eventual integration of this 

system in an operational context should consider the PFD as the location to display control 

alerting cues.    
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The fourth question was asked to address a concern that alerting cues could distract the pilot 

when performing an operational control task such as an approach or departure procedure.  

Two pilots disagreed and two pilots strongly disagreed that alerting cues were distracting 

while one pilot was neutral.  Test conductors observed each of the pilots during each test run 

and especially when flying the precision approach.  It appeared that all of them remained 

focused on the flight task at hand, while maintaining the ATP performance standards that 

were required. 

 

The fifth question asked the pilots if having to make manual control inputs when cued 

interfered with the performance of a flight task. The test profile consisted of several 

maneuvering sequences before beginning precision approach procedure.  Two pilots (A, E) 

agreed that making control inputs interfered with the performance of a flight task, and three 

pilots, (B, C, and D) disagreed.  The term “interference” in this question was used in a 

general sense because there can be many reasons for control alerts interfering with a flight 

task.  Interference can be simply the annoyance of having to respond to several alerts 

throughout a flight; or, having to make additional control movements not associated with the 

flight task at hand; or, having to continually divide attention between flight guidance displays 

and alerting displays.  Regarding number of alerts, Figure 32 shows the averaged cues for 

each of the pilots during the precision approach segment.  Pilot A had the most alerts, 6.3 per 

run, which would support the notion that the sheer number of control alerts affected his task 

performance.   Pilots B, C, and D had about half as many alerts, which seem to support the 

notion that fewer cues would have a lesser impact on perceived task performance.  But pilot 

E, who had approximately 1/3 as many alerts as Pilot A, agreed that task performance was 

impacted by control alerting.  Figures 25-27, which provide the averaged Power Frequency of 

each pilot’s control inputs, are a good indication of pilot control activity.  Pilot A, the 

agreeing pilot, had the lowest control activity and thus the most alerts, as previously 

explained.  Pilots B, C, and D, who disagreed that the cues affected their task performance, 

had high levels of control activity, and fewer alerts, as previously explained.  But Pilot E, 

who with Pilot A felt that the alerting cues interfered with the performance of a task, also had 

high levels of control activity, but alerting was less because control activity was high.  During 

the de-briefing, Pilot E felt that the additional control inputs did not support the task being 

performed.  Nonetheless, all pilots performed the approach task well within ATP standards, 

regardless of their opinion of whether or not the control alerts interfered with their 

performance.  Pilot opinion of “interference” is an important consideration as it relates to 

operational viability for eventual flight system certification, especially in high workload, real 

world situations.  
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Figure 32: Averaged Alerting Cues for Precision Approach 

 

Question six was asked to assess the control strategy pilots employed when responding to 

control alerts.  During pre-test training, the test director emphasized that the inputs should 

only be large enough to satisfy the alerting cue and this is what they practiced until proficient 

before data collection began.  The question was therefore worded to determine if pilots 

tended to make very small inputs first to see if they were adequate before making larger 

inputs. Two pilots agreed, two pilots strongly agreed, and one pilot disagreed with the 

statement.  The only disagreeing pilot was Pilot A, who flew the first test profile with a ten 

second cue de-latch time before he could determine if his inputs were effective.  (This de-

latch time was later corrected to one second for pilots B, C, D, and E).  Pilot A was aware of 

the ten second delay, and consciously waited for the de-latch time to expire to assess if more 

control inputs were needed.  In retrospect, it was not often that pilots had to repeat their 

inputs to satisfy the alerting cue, but it was apparent that pilots wanted immediate 

annunciation of the effectiveness of their control inputs so they could in fact determine if 

additional inputs were required.  It stands to reason that a pilot would make larger inputs if 

the first attempts were not successful, but delays in the annunciation of current alerting 

information could cause either unnecessary control inputs or excessive inputs to satisfy the 

alert.     

 

Part IV.  Attention and Workload – In this last section of the survey, questions were asked to 

assess the effects on the pilots’ attention and workload when having to respond to manual 

control alerts while performing operational flight tasks.  In an operational situation, pilots are 

characteristically goal oriented; they try to maintain good situation awareness and prioritize 

their actions so they can multi-task efficiently.  For example, when performing an approach 

procedure, there are a series of tasks that a pilot must perform sequentially or in parallel, 

which include reviewing the procedure, accomplishing checklists, directing the flight crews’ 

actions, maneuvering to execute the procedure, and communicating with air traffic control.  It 

is a very busy time and accomplishing all these tasks efficiently presents large demands on 

their attention resources.  If hazardous weather or an emergency situation is present at the 

time, the demands are even higher.  The added requirement to respond appropriately to 

additional control input alerts beyond those required to perform the current flight task 

competes for these resources.  It was therefore the objective of this survey part to develop 

only a basic understanding of how the added control input requirement impacted attention 
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and workload.  A listing of the ten questions and discussion of results follow.  The responses 

to the questions are provided in Figures 33 and 34.   

 

1. Aural alerts improved my reaction time to control input alerts.  

Strongly Disagree   Disagree Undecided Agree  Strongly Agree  

 

2. It was difficult to perform the proper manual control inputs in response to an alert. 

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

3. I believe that a control response to a control input alert should be at the pilot’s discretion. 

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

4. It was annoying to have control input alerts going off when I was trying to fly an 

instrument approach to specific tolerances. 

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

5. I felt my accuracy when flying the precision approach was degraded by having to make 

additional control inputs during the task.  

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

6. Additional control input alerts should be inhibited when reaching approach minimums.  

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

7. I felt that having to maintain an awareness for control input alerts made it more difficult for 

me to monitor other aircraft systems during the instrument approach. 

Never  Infrequently Sometimes  Very Often Always 

 

8. The control input alerts were more difficult to integrate into my scan when maneuvering 

during descending turns or turns to headings flight.   

Never  Rarely  Sometimes  Very often Always 

 

9.  I thought the control input alerting cues were very salient and hard to miss.  

Strongly Disagree Disagree Undecided Agree  Strongly Agree 

 

10. In turbulent conditions there were no control input alerts. 

Strongly Disagree Disagree Undecided Agree  Strongly Agree 
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Figure 33: Response frequencies for Part IV; questions 1-6 

 

 
Figure 34: Response frequencies for Part IV; questions 7-12 

 

Part IV Discussion 

 

Question one asked for agreement on the benefit of using an aural alert to augment the visual 

alerting displays.  This is a very common practice in modern flight systems, as human 

reaction to a recognized aural stimulus is quick and automatic.  Three pilots agreed and two 

pilots strongly agreed that aural alerting improved their reaction time.  In this research 

program, a chime was used to provide the aural cue and it appeared to be very effective.  The 

control input alert was an amber message AIL, ELEV, RUD that was prominently displayed 

on the upper portion of the PFD.  But correct design protocol requires that amber messages 

with corresponding aural alerts indicate a CAUTION condition, something that requires 

eventual pilot action due to a safety related issue.  This may not be correct integration when 

there is no handling problem or safety issue with the aircraft.  Therefore, integration of a 

manual control input alerting system involving both visual messaging and aural alerts is an 

integration issue that should be addressed in future research.    
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Question two asked for agreement with the statement that it was difficult to make the 

required control inputs.  The issue of “difficulty” relates to workload, and the question was 

asked to assess only the task of making the inputs.  Four pilots disagreed and one pilot 

strongly disagreed that making the required control inputs were difficult. 

 

Question three asked for agreement with the statement that response to a control input alert 

should be at the discretion of the pilot.  One pilot disagreed, one agreed, and three pilots were 

neutral.  It would appear that since the data is tightly normalized around the neutral position, 

pilots are ambivalent on this issue and that they would be amenable to an integration that was 

either a mandatory or discretionary manual control input response.  However, this test profile 

only focused on the control performance of the pilot when making manual inputs, and no 

messages of stability and control problems were shown to the pilot.  Quite possibly, in a very 

high workload situation such as dealing with an inflight emergency or abnormal condition, a 

pilot’s response to this question might be different, especially if there were no evidence of an 

aircraft handling problem and/or no stability and control alerting messages.   

 

Question four was asked to assess whether or not the pilots felt that control input alerts were 

annoying when trying to fly an approach procedure to within specified tolerances.  

Performance tolerances were either ATP standards or ATP/2.  In order to meet these 

performance standards, pilots had to focus their attention on minimizing course and glide 

slope errors, and it was of interest to assess if the added task of attending to control input alert 

cues were an annoying interference with this primary flight task.  Two pilots disagreed that 

the alerts were annoying, one strongly disagreed, and two were neutral.  The responses 

indicate that manual input control alerts did not seem to disturb the pilots when attempting to 

fly their very best instrument approach.  The observation of the test conductors was that pilots 

immediately attended to any control alerts as soon as they were posted and that they were 

easily able to integrate them into their instrument scan. 

 

Question five was asked to understand if the pilots felt that the additional control input 

requirement degraded their accuracy when flying a precision approach procedure.  This 

question is a corollary to question five, Part III of the survey.  A precision approach is 

perhaps the most tightly coupled pilot-in-the-loop task that is performed in flying operations, 

and this is where task-related pilot control is the most intense.  It is therefore logical to expect 

that in a case where pilots may already be task saturated when flying an approach, having to 

make additional inputs could potentially affect task performance.  Two pilots disagreed that 

their accuracy was affected, and three pilots agreed.  The conditions under which the pilots 

flew the approach did not include any winds, but did include light and moderate turbulence 

conditions.  Given the fact that there were no winds to contend with, it would appear from the 

pilots’ responses that having to make additional control inputs while flying an approach 

procedure can affect approach task performance.  Due to the disparity in the results, it would 

be appropriate to investigate this issue in future research programs.   

 

Question six asked pilots if they agreed that manual control input alerts should be inhibited 

when reaching approach minimums (200 ft above ground).  Modern flight systems generally 

inhibit certain non-critical alerts in phases of flight where they may distract the pilot and 

possibly result in an unsafe condition, such as during takeoff and landing.  It was felt that 

since the configuration and flight condition of an aircraft is pretty well understood by the 

pilot when reaching approach minimums, that further alerting as they transition to landing 

would be unnecessary.  Three pilots disagreed that alerts should be inhibited, one was neutral, 

and one agreed.  In this simulation, pilots had to execute a missed approach at minimums, so 
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they did not experience the “nuisance issue” that alerting during final landing flare and 

touchdown could present.   

 

Question seven asked pilots how they thought the frequency of having to maintain awareness 

for control alerts would affect the difficulty of monitoring other aircraft systems during a 

precision approach procedure.  This was another hypothetical question, since other than 

navigation; there were no other aircraft systems to monitor.  One pilot responded sometimes, 

three pilots responded infrequently, and one pilot responded never.  Pilot responses were 

likely colored by the number of times the alerts came on during the approach, and aileron and 

elevator alerts during this phase were few.  Rudder alerts were more frequent, but that was 

because rudder control activity is typically sparse anyway.  One may conclude that the pilots 

felt that maintaining awareness of manual control input alerts would have had minimal 

impact on the task of monitoring other aircraft systems.  However, this is another area where 

future research should assess man-machine integration under more realistic flight conditions.  

 

Question eight asked pilots how often they felt that integrating control alerts into their scan 

was difficult when maneuvering the aircraft.  Three pilots said this occurred rarely, one pilot 

said sometimes, and one pilot said very often.  This question addresses the issue relating to 

task prioritization and attention demands.  When maneuvering, such as making turns to 

headings while in a climb or descent, the pilot’s attention is focused on controlling pitch, roll, 

yaw, airspeed and planning for the altitude where transition back to level flight will be made.  

It is reasonable that a pilot will mostly scan those instruments that support the current flight 

task.  If the requirement to respond to air traffic control, or manage other crew functions are 

also involved at the time, any non-task related monitoring will be more difficult to 

incorporate into the pilot’s scan.  Other than accomplishing the required flight maneuvers in 

the test profile, this simulation did not present any of these other demands.   

 

Question nine asked for pilot agreement with the statement that the control input cues 

provided in the simulation were salient and hard to miss.  Three pilots agreed and two pilots 

strongly agreed with the statement.  Salience refers to characteristics such as loudness, 

frequency, brightness, etc., all of which immediately capture attention and improve reaction 

time.  The cueing integration for this research program was effective and specifically 

designed to immediately capture the pilot’s attention.  However, an operational integration of 

alerting cues requires careful consideration, such as possibly providing a means for pilots to 

silence them if they are interfering with the performance of a more important task such as 

attending to an aircraft emergency condition, and there is no immediate need to update 

aircraft stability and control information. 

 

Question ten asked pilots for agreement with the statement that there were no control alerts 

when flying in turbulence.  The question was asked to help correlate the quantitative data 

with pilot opinion of the number of times they experienced a control alert in turbulent flight 

conditions with respect to attention and workload issues.  Two pilots disagreed that there 

were no control alerts, two pilots strongly disagreed, and one pilot was undecided.  Looking 

at the data from their runs in turbulence, there were continual rudder alerts in all maneuvering 

phases of the test profile, and that of course was because there was little rudder movement 

even in turbulence.  On the other hand, there were very few elevator and aileron alerts for the 

pre-approach maneuvering sequences, and virtually none when flying the approach 

procedure.  The pilots’ responses indicate that they had no trouble incorporating the 

observation of control alerts into their instrument scans during all phases of flight, which is 

important from an attentional and workload standpoint.  But taking these results further, one 
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must consider that the rudder is primarily used by pilots to null a sideslip condition, or make 

a crosswind landing.  Yet, because of its low use by pilots it produces so many alerts that 

rudder control inputs alerts could be seen as a nuisance by pilots.  That can have an effect on 

operational viability and ultimately flight system certification.  

 

Pilot opinion surveys were conducted immediately after all testing was completed in order to 

obtain subjective opinion data with respect to their perception of the usefulness of the flight 

displays, attention issues regarding the cueing, and workload when having to provide 

additional control activity in addition to that required for task performance.  

 

Pilots reported that they typically fly the aircraft manually during the climb out and approach 

phases of flight. Both phases coincide with the segments where the greatest pilot control 

activity was measured along with the least number of excitation cues, and therefore are most 

conducive to system identification. Although most pilots favored the use of an autopilot in 

atmospheric turbulence, pilots reported that their airline standard operating procedures 

(SOPs) encouraged but did not require the use of an autopilot. This flexibility would allow 

pilots to manually fly in atmospheric turbulence and make use of the increased control inputs 

for system identification and require minimal excitation cueing. 

 

Pilots additionally reported that the excitation cueing (visual and oral) was effective in 

getting their attention and well implemented.  Pilots reported that the additional control inputs 

required when prompted by the excitation cueing were easy to make, were quickly mastered, 

and required minimal training. Pilots reported that although they did not mind making the 

inputs they felt it interfered with the task and degraded their performance. However, previous 

analyses have shown that all pilots flew within the required ATP performance standards. 

CONCLUSIONS: 
 

This study has shown that it is practical to use manual pilot inputs only as a means of 

achieving good RTPID in all phases of flight and in flight turbulence conditions. Simulation 

studies accomplished for this work showed that all pilots met the FAA performance criteria 

for a precision approach with different control input strategies, and were effective in 

satisfying excitation requirements when cued, without any formal test pilot control input 

training. Much of the time, cueing was not even necessary, as just performing the required 

task provided enough excitation for accurate RTPID estimation. 

 

Very few aileron and elevator excitation cues occurred in all six segments of flight.  Rudder 

warnings occurred with the most frequency primarily because of the 50 seconds RTPID 

resets. While fewer excitation cues occurred in latter approaches with simulated atmospheric 

turbulence, rudder cues still occurred at a higher rate regardless of atmospheric turbulence.  

This trend was found to be directly attributable to pilot technique as evidenced by video and 

to the 50 seconds RTPID resets. Pilot technique is likely reinforced by the subject pilots' 

experience in wide-body passenger aircraft with yaw dampers. It was repeatedly observed 

that pilots had a tendency to fly with their feet on the floor and not on the rudder pedals. 

Nevertheless, all pilots meet the performance criteria with different control input strategies, 

and were effective in making the excitation cues disappear without any test pilot control input 

training. 

 
Scalogram, power frequency, and cutoff frequency metrics were introduced and used to 

investigate which phases of flight and atmospheric turbulence conditions provided the most 
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control activity and promoted system identification using RTPID. Segment 5 (precision 

instrument approach) provided the most control activity along with the least number of 

excitation cues, and therefore was most conducive  to system identification. This result was 

expected because in this segment the pilot is tightly coupled with the aircraft as the pilot 

follows precise vertical and lateral guidance to the runway. Although other segments 

provided instances conducive to system identification, none were as consistent as segment 5. 

It was found that segments 1 (cruise) and 2 (descending right turn) were not conducive to 

system identification. However, if pilots could be provided similar lateral and vertical 

guidance, system identification could be carried out in any phase of flight with natural pilot 

control activity and minimal excitation cueing.  

 

Differences in pilot technique were studied in order to understand the effectiveness of pilot 

inputs for system identification. It was found that all pilots used a different control strategy in 

obtaining the same performance standards. This suggests that 5 pilot strategies were involved 

in the experiment. Pilots A and B represent the two extremes tested while pilots C-E 

represent intermediate cases.  

 

It was found that the most effective way of changing the pilots control activity was to change 

the atmospheric conditions. Changing the atmospheric conditions (calm versus 

light/moderate) was more effective in increasing the pilots control activity than tightening the 

pilot’s performance standards (ATP versus ATP/2). In general, the higher workload tended to 

increase the pilot’s input intensity up to a point.  Eventually, pilots were overloaded and 

stopped making additional inputs or even backed off slightly.  This is important because line 

pilots are accustomed to flying ATP standards and operationally light atmospheric turbulence 

has the highest probability of occurrence.  

 

Pilot opinion surveys were conducted immediately after all testing was completed in order to 

obtain subjective opinion data with respect to their perception of the usefulness of the flight 

displays, attention issues regarding the cueing, and workload when having to provide control 

activity in addition to that required for task performance.  

 

Pilot’s reported that they typically fly the aircraft manually during the climb out and approach 

phases of flight. The climb out phase was not part of this study but the approach phase 

coincides with the segment where the greatest pilot control activity was measured. Although 

most pilots favored the use of an autopilot in atmospheric turbulence, pilots reported that 

their airline SOPs encouraged but did not require the use of an autopilot. This flexibility 

would allow pilots to manually fly in atmospheric turbulence and make use of the increased 

control inputs for system identification and require minimal excitation cueing. 

 

Pilot’s additionally reported that the excitation cueing (visual and oral) was effective in 

getting their attention and was well implemented.  Pilots reported that the additional control 

inputs required when prompted by the excitation cueing were easy to make, quickly 

mastered, and required minimal training. Pilots reported that although they did not mind 

making the inputs they felt it interfered with the task and degraded their performance. 

However, analysis showed that all pilots flew within the required ATP performance 

standards. 
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