NASA's Fexible Path for the Human Exploration

James F. Soeder

Senior Technologist for Power
NASA Glean Researich Center
September: 1z,2016

Speaker Introduction

September 1963

NASA Career Highlights

- Developed digital controls for jet engines
- Managed a NASA Branch that worked design, development and verification of the power system for the International Space Station
- Managed NASA Branch that developed advanced power technologies
- Currently working on power systems for Deep Space Habitats

Interesting Fact - After 40 years with NASA, the only rocket launch witnessed "Ilive" is the one in the picture

Discussion Topics

- What is the Flexible Approach to Exploration?
- Path to Mars
- International Space Station
- Ongoing vehicle developments
- Future Vehicle Developments
- Mars and its Moons
- Evolvable Mars Campaign expansion of capabilities and distance
- Technical challenges
- Take Aways

The Future of Human Space Exploration NASA's Building Blocks to Mars

U.S. companies provide affordable access to low Earth orbit

Pushing the boundaries in cis-lunar space

Developing planetary independence
by exploring Mars, its moons, and other deep space destinations.

The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion crew capsule

Missions: 6 to 12 months
Return: hours

Missions: 2 to 3 years Return: months
Earth Independent

International Space Station -- ISS

International Space Station

- International crew of 6
- 75 kW of power
- Solar array and batteries
- Orbits
- Every 90 minutes
- 240 miles above earth
- 17000 Miles per hour
- 51.6 Orbit inclination
- Weighs 400 tons
- 32000 Cubic feet of

Pressurized Volume

- Total footprint is the size of a football field

How can I see the ISS?

00000 Verizon \approx	$7: 20 \mathrm{PM}$	$1 * 100 \% \square$
Smart alarms	Forecast	Share

Orbit Location

Time of next visible pass
${ }_{* * *}$ Are the best

Vehicle Developments to Support Exploration

The Orion Spacecraft

The Space Launch System (SLS)

- Designed to carry the Orion spacecraft, cargo, equipment and science experiments to Earth's orbit and destinations beyond.
- The SLS will have an initial lift capacity of 70 metric tons and will be evolvable to 130 metric tons.
- It will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25 from the Space Shuttle Program for the core stage and the $\mathrm{J}-2 \mathrm{X}$ engine for the upper stage.
- SLS will use solid rocket boosters for the initial development flights, followon boosters will be competed based on performance requirements and affordability considerations.

Initial 70 metric ton configuration

Potential Future Vehicle Developments

Potential Deep Space Vehicle

- Crew of 4 to 6
- Provide living space for long duration missions
- Solar Array / Battery System - 24+ KW
- Potential to be operated in Low Lunar Orbit, Near Rectilinear Orbit or Deep Space
- Provides docking accommodation for multiple vehicles - resupply as well as landers
- Platform for the checkout and validation of advanced technologies
- Closed loop life support systems
- Advanced automation systems
- Etc.

Deep space vehicle concepts

What is Solar Electric Propulsion?

This:

Dawn Spacecraft

- A low mass / high efficiency propulsion system typically used for reconnaissance of planets and asteroids
- Results in very long travel times for missions - Not high speed intercept
- Real ion propulsion develops fractional Newton's or fractional lbs of thrust

Not That:

Twin lon Engine (TIE) Fighter from Star Wars

Ion Engine

Solar Electric Propulsion (SEP)

Description

- Provides high propellant efficiency or ISP = 3000 vs 450 for H2 / O2 Prop.
- Fuel -- Xeon gas
- Reduced launch mass over chemical systems

GRC Role

- Block I vehicle power 50kW (BOL) and 42kW (EOL)
- Extendable to 150 kW
- Operates over a range from 0.8 AU to 1.7AU
- Applicable to a wide variety of missions

Mars and Its Moons

Mars Characteristics

- $1 / 2$ the size of earth (0.533 earth radius)
- Solar distance 143 MMiles Vs 93 MMiles (Earth)
- Insolation = 43\% of Earth
- Surface gravity $=0.376 \mathrm{~g}$
- Average temperature = -81degrees F
- Length of day / year = 24 hrs / 687 days
- Axis tilt = 25 degrees
- Roundtrip Communications delay
- 15 to 45 minutes
- Atmosphere is mostly CO_{2}
- Mean Pressure 0.8 inches of Hg
- 22 miles above Earth sea level
- Polar Ice Caps
- North - Permanent H2O -- temporary cap of CO_{2} in Winter
- South - Permanent H2O -- a year round cap of CO_{2}
- Magnetic Field - None -- solar wind continuously strips away pieces of the Martian atmosphere

Mars' Moons

Deimos (Terror / Dread)

- Orbital Period = 30 hrs.
- Orbital radius =14,600 miles
- Size =15 x12x11 km
- Surface gravity $=0.0003 \mathrm{~g}$

Phobos (Panic / Fear)

- Orbital period = 8 hrs.
- Orbit radius = 5,800 Miles
- Size = 27x22x18 Km
- Surface gravity $=0.00058 \mathrm{~g}$
- Mars occupies a large amount of Phobos sky
- Can shield astronauts from cosmic rays \& solar radiation for 2/3 of every orbit
- Provides a base for real-time robotic exploration of Mars

Maximum Vertical Jump -
 650 lb. Suited Crew (crew + suit + jetpack)

Flexible Approach to Exploration

Evolvable Mars Campaign Expansion of Capabilities and Distance

JOURNEU TOMARS

SYSTEM

INTERNATIONAL
SPAGE STATION

GETTING TO MARS

 via split-mission conceptDESTINATION
SYSTEMS \& CREW
RETUN VEHCLE
SEP pre-deloy to
Mars orbit
PHOBOS
DESTINATION
SSIEMS
SEP pre-deploy to
Phobos
;

GETTING TO MARS via split-mission concept

GETTING TO MARS via split-mission concept

Key Technical Challenges

Key Challenges

There and Back

- Ability to launch a powerful rocket
- High reliabity space craft systems
- Size requirement for crew capsule
- High thrust in-space propulsion systems

Happy and Healthy

- Air, food and water
- Waste containment
- Psychological impact
- Low / no gravity
- Medical emergencies

Well Equipped and Productive

$$
\begin{aligned}
& \text { - High power surface systems } \\
& \text { - Situational awareness and decision making } \\
& \text { Behavior Health (Crew Relationships) }
\end{aligned}
$$

- Deep space navigation
- Rendezvous and docking
- Life support systems
- High speed re-entry
- Bone loss
- Radiation
- Ocular degeneration
- Hygiene
- Training and Tools
- Mission Planning
- Space suits

Radiation Dosage

Radiation Exposure on a trip to Mars is a big Issue

- 2.4 to $3.4 \mathrm{mSv} / \mathrm{year}$ is natural radiation dose on earth
- $0.2 \mathrm{mSv} /$ round trip between NY and Tokyo
- 6.9 mSv / time for a CT scan
- 75 mSV for 6 months on the ISS
- 350 mSV for 180 day trip to Mars or 500 day stay on the planet
- Upper limit dose for radiation workers -$250 \mathrm{mSv} /$ year

$$
1 \text { SV = } 100 \text { REMs= } 1 \text { joule / Kg }
$$

Behavioral Health

- Behavioral areas susceptible to increased risk over a one year mission:
(1) sleep loss, circadian desynchrony, workload and fatigue
(2) stress, morale and mood changes*
(3) cognitive functioning
(4) interpersonal conflicts*
(5) motivational challenges*
(6) family separation and personal communications
- Desire realistic environment and population to validate countermeasures.
- Preliminary analysis for ISS (ongoing study):
- Available measures of subjective stress, sleep quality, and vigilance
\checkmark not all monotonic with mission time
\checkmark do not plateau by six months
- Sleep quality and vigilance have similar trends which suggest increasing performance deficits for longer missions.

One-Year ISS Missions Behavioral Concerns

Interpersonal Conflicts

- ISS Journal entries on conflict by mission quarter
- ISS Group Interaction Positivity Ratings by mission quarter (244 entries)

Interpersonal conflict can impact crew performance and mission success (De Dreu \& Weingart, 2003)

Nuclear Thermal Propulsion Systems

- Vehicle has crew size of between 4 to 6 for a multimonth voyage
- Docking ports for 2 MultiPurpose Crew Vehicles
- Propellant heated directly by a nuclear reactor and thermally expanded / accelerated through a nozzle
- Low molecular weight propellant - typically Hydrogen
Propellant mass approx. $1 / 4$ of standard chemical stages

Costs and Politics

What are the Realities of Going to Mars

- Going to Mars is a long term expensive undertaking
- What is the cost? - Don't ask questions that you don't want to know the answer
- Considerable increase in the NASA budget will be needed to realize a human mission to Mars
- The road to Mars will need a political commitment through multiple administrations to reach the goal

Interesting Video on Exploration

- http://vimeo.com/108650530

Take Away's

- Going to Mars will require and array of new technologies to overcome the inherent challenges and obstacles that the journey imposes
- The journey will require a major investment in \$ and "political will" over several decades to achieve the goal
- Ultimately space is the "final frontier" and it is human destiny to go to Mars

Questions?

Aerospace Careers

Careers and Education

- Individuals with skills in science and technology are necessary if the United States is going to remain competitive in the global economy
- Opportunities are better in engineering and computer science that hard sciences like biology / chemistry / physics
- Students need to understand and be proficient in the basics of math and science.
- Algebra, geometry, trigonometry, calculus
- Chemistry and physics even biology
- Presentation Skills (Presentation development and public speaking)
Ability to write and communicate - media driven culture.
- Ability to work as part of a team.

Understand the political, business and financial components as well as the technical component to all solutions

Aerospace Careers

Back-up Slides

Ion Propulsion

RADIATION EFFECTS ON HUMANS

Felt almost immediately when a large dose of radiation is
accumulated in a short amount of time Causes
diseases, which can lead to changes in motor function and behavior

GHRONIC

- Effects can be experienced decades after exposure
- Results from an accumulated dose of radiation over a long period of time
Causes increased risk of cancer, cataracts an vision impairment degenerative cardiar disease

What does it Cost?

- No costing exists for current initiative
- In 1989 President G.H.W. Bush asked for a NASA estimate
- Total overall cost was \$500 billion in 1991 dollars
- NASA Baseline budget was assumed to \$15B in 1991 dollars -- \$24B today \$ (actual budget \$18B)

	hitial Capability		Emplacement and Operations		Totals*
Lunar	\$*	FY	\$*	FY	
	98	$\begin{aligned} & 1991- \\ & 2004 \end{aligned}$	137	$\begin{aligned} & 2005- \\ & 2025 \end{aligned}$	235
Mars	160	$\begin{aligned} & 1991- \\ & 2016 \end{aligned}$	76	$\begin{aligned} & 2017- \\ & 2025 \end{aligned}$	236
Totals	258		213		471

Phobos Trajectories and Times of Flight for Different Force Inputs (Net Force)

Trajectories on Phobos Assuming 45 deg. Initial Velocity Vectors w/ Varying Net Force Inputs \& 650 lbs Crewmember (suited w/ Jetpack)

Trajectories on Phobos Assuming 45 deg. Initial Velocity Vectors w/ Varying Magnitudes

Situational Awareness and Decision Making

- Communication and recovery times are longer than any previous experience
- Communications bandwidth is a factor of 100 less than ISS

Mission	Communications Bandwidth	Communications latency time
Deep Space Hab	<2 Mbps (DSN)	15 to 45 minutes
Apollo / Orion	<2 Mbps (DSN)	$1-2$ seconds
ISS	$300-800$ Mbps (TDRS)	Real-time

- Power Is Most Critical System On Board Vehicle
- Every system on the vehicle needs power
- System will need a high level of availability
- System will need to operate autonomously for long periods of time

