

NASA

STUDY OF LATERAL MISALIGNMENT TOLERANCE OF A SYMMETRIC FREE-SPACE OPTICAL LINK FOR INTRA INTERNATIONAL SPACE STATION COMMUNICATION

Sarah Tedder, Bryan Schoenholz

NASA Glenn Research Center

and

Shannon Suddath

University of Tulsa 10/18/2016

Motivation

International Space Station (ISS) payloads sites have limited bus throughput (~10 Mb/s) restricting communicating large quantities of science data. Physical locations of exterior payload sites impose a physical barrier to routing cables.

Enable transfer of science data at 1 Gbps from payload sites to main ISS cabin using a free space optical link.

- Minimum size, weight, and power (SWaP)
- Easily integrated into the existing ISS hardware (low complexity)
- Eye safe over entire optical path
- Allow for dynamic movement of transceivers caused by ISS flexure

Current Focus

- Couple light into a transceiver over the predicted ISS lateral misalignment range (9 cm) for a 20 meter symmetrical link
 - No active pointing components (reduce SWaP and complexity)
 - Small form factor pluggable (SFP) transceivers
 - A high data rate with a low SWaP
 - Ease of integration: plugs directly into network switches
 - Low cost : Commonly used in terrestrial fiber networking links
 - Challenge: Small detectors decrease the tolerance to misalignment
- Studied lateral misalignment tolerance (decenter span) effects
 - Beam divergence
 - Type of SFP
 - Fiber type
 - Transmitted power

8.5 by13.4 by 56.5 mm

Experimental Setup

Simulates ELC site to ISS main cabin lateral movement (decenter), ~9 cm

Data Analysis

Decenter span = distance over which received power is above threshold for error-free link (*lateral misalignment tolerance*)

• There is an optimum divergence angle at which the decenter span is maximized which depends on

- minimum and maximum receive limits of receiver
- Shape of power distribution (Gaussian, flat-top, etc...)

Type of SFP

Single fiber bidirectional (BiDi)

• Reduce the amount of optics needed for two way communication

Duplex

• Double the amount of transmit and receive optics

The combined effect of required symmetry and the lower refraction of 1490 nm light reduces the decenter span of the Bidi by ~7% over 20 meters

Fiber Core Size

Increased core size changes shape of power distribution and increases decenter span

Fiber Core Size

- 62.5 and 105 μm core sizes caused losses internal to SFP
 - Core diameters > detector diameter (55 μ m) \rightarrow overfill
 - Additional internal losses occur when light is coupled from free space
 - Cause: a change in transmission out of fiber
 - Modal \rightarrow hits/misses on detector?
 - Increased divergence angle at fiber exit \rightarrow increased detector overfill?

Core Size (µm)	Total Losses (dBm)	Losses from Detector Overfill	Losses from Free Space
62.5	7-9	1-2	6-7
105	~10	~6	~4
SFP Laser Rays in free space			SFP
		9 μm Fiber 62.5 μm Fiber ⁵	Detector ⁵ μm Laser

Fiber Core Size

- Ideal= no coupling losses
- Error bars= power drift

Decenter Span goal could be reached if some internal coupling losses were recovered

Drift in Power

4.475

0.733

105

12

Transmitted Power

- Decenter span goal reached at 7.8 dBm with 105 μm core fiber.
- Ways to increase power of link:
 - Customize SFP \rightarrow increase cost of SFP
 - Use Duplex SFP with amplifier \rightarrow increase SWaP
- Eye safe < 9.8 dBm

Conclusion

- Data taken to understand the effect of type of fiber, SFP type, and transmitted power on the decenter span of a 20 meter symmetric FSOL
- Findings:

Increasing core size, power, the lowest minimum receive limit \rightarrow increased decenter span

Losses internal to the SFP was increased by free-space coupling compared to fiber-only coupling

 $-\,$ Using 105 μm fibers, Duplex SFPs, and a pair of amplifiers creates a decenter span that can tolerate the lateral 9 cm misalignment expected on the ISS.

Future Work

- Investigate more efficient methods of coupling light into the SFP detector
 - Eliminate need for amplifier or custom SFP
 - -Allow further improvements to SWaP and cost
- Bit error rate performance
 - Degradation may occur from modal dispersion in the 105 μm fiber
- Study angular misalignment tolerance

- This work was performed under the NASA Space
 Communications and Navigation (SCaN) Program for the High Data
 Rate Architecture Project.
- We want to thank Al Tucholski for building the laser tables, Sherice Sampson for moving our equipment, and Connor Nam for laboratory support.