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Motivation
International Space Station (ISS) payloads sites have limited bus 
throughput (~10 Mb/s) restricting communicating large quantities of 
science data.  Physical locations of exterior payload sites impose a 
physical barrier to routing cables.
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Goal

Enable transfer of science data at 1 Gbps from payload sites 
to main ISS cabin using a free space optical link. 

• Minimum size, weight, and power (SWaP)

• Easily integrated into the existing ISS hardware (low complexity)

• Eye safe over entire optical path 

• Allow for dynamic movement of transceivers caused by ISS flexure 
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Current Focus
• Couple light into a transceiver over the predicted ISS lateral 

misalignment range (9 cm) for a 20 meter symmetrical link

– No active pointing components (reduce SWaP and complexity)

– Small form factor pluggable (SFP) transceivers
• A high data rate with a low SWaP

• Ease of integration: plugs directly into network switches

• Low cost : Commonly used in terrestrial fiber networking links 

• Challenge: Small detectors decrease the tolerance to misalignment

• Studied lateral misalignment tolerance (decenter span) effects 

– Beam divergence

– Type of SFP 

– Fiber type

– Transmitted power 8.5 by13.4 by 56.5 mm
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Experimental Setup

Simulates ELC site to ISS main cabin lateral movement (decenter), ~9 cm
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Data Analysis

Max receive limit

Min receive limit

Decenter span = distance over which received power is above 
threshold for error-free link (lateral misalignment tolerance)

min receive limit

Decenter Span
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Beam Divergence

Max receive limit

Min receive limit

• There is an optimum divergence angle at which the decenter span is maximized 
which depends on 

– minimum and maximum receive limits of receiver

– Shape of power distribution (Gaussian, flat-top, etc…)

Optics ϴ, radians
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Type of SFP

• Reduce the amount of optics needed for two way 
communication 

• Requires symmetric system

• Double the amount of transmit and receive optics
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Single fiber bidirectional (BiDi) Duplex 

The combined effect of required symmetry and the lower refraction of 1490 nm light  
reduces the decenter span of the Bidi by ~7% over 20 meters

Optics 1490 nm 1550 nm



Fiber Core Size

θ = 1.43e-3 rad

SM fiber

+21 dB gain

θ = 8e-4 rad

SM fiber

0 dB gain

θ = 8e-4 rad

SM fiber

0 dB gain

θ = 8e-4 rad

MM fiber

0 dB gain

Increased core size changes shape of power distribution and increases decenter span

Optics

Test 
Fiber

Optics
Test 
Fiber

9

Decenter Span



Fiber Core Size

• 62.5 and 105 µm core sizes caused losses internal to SFP

– Core diameters > detector diameter (55 µm)  overfill

– Additional internal losses occur when light is coupled from free space 

• Cause: a change in transmission out of fiber

– Modal  hits/misses on detector?

– Increased divergence angle at fiber exit  increased detector overfill?
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Core Size (µm) Total Losses
(dBm)

Losses from 
Detector Overfill

Losses from 
Free Space

62.5 7-9 1-2 6-7

105 ~10 ~6 ~4
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Fiber Core Size

• Ideal= no coupling losses

• Error bars= power drift

Decenter Span goal could be reached if some internal coupling losses 
were recovered
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Drift in Power 

Receive Cable 
Core Size, µm

Peak to 
Peak Power 
Swing, dBm

Standard 
Deviation,

dBm 

105 4.475 0.733
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Transmitted Power

θ = 1.43e-3 rad

SM fiber

+21 dB gain

θ = 8e-4 rad

SM fiber

0 dB gain

θ = 8e-4 rad

SM fiber

θ = 8e-4 rad

MM fiber

• Decenter span goal reached  at 7.8 dBm with 105 µm core fiber.

• Ways to increase power of link:

– Customize SFP  increase cost of SFP

– Use Duplex SFP with amplifier  increase SWaP

• Eye safe < 9.8 dBm

105 µm fiber
Error bars= power driftSingle mode fiber
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Conclusion 

• Data taken to understand the effect of type of fiber, SFP 
type, and transmitted power on the decenter span of a 20 
meter symmetric FSOL  

• Findings:

– Increasing core size, power, the lowest minimum receive limit 
increased decenter span  

– Losses internal to the SFP was increased by free-space coupling 
compared to fiber-only coupling

– Using 105 µm fibers, Duplex SFPs, and a pair of amplifiers creates a 
decenter span that can tolerate the lateral 9 cm misalignment expected 
on the ISS.  
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Future Work

• Investigate more efficient methods of coupling light 
into the SFP detector 

–Eliminate need for amplifier or custom SFP

–Allow further improvements to SWaP and cost

• Bit error rate performance 
– Degradation may occur from modal dispersion in the 105 µm fiber 

• Study angular misalignment tolerance
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