

Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

Dongming Zhu, Laura J. Evans, Terry R. McCue, Bryan Harder NASA Glenn Research Center

> Environmental Effect and Coatings Branch Materials and Structures Division NASA John H. Glenn Research Center Cleveland, Ohio 44135

Materials Science and Technology Conference, Salt Lake City, Utah October 24-27, 2016

NASA EBC and CMC System Development

- Highly loaded EBC-CMCs
- 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings
- 2700°F (1482°C) EBC bond coat technology for supporting next generation
 - Recession: <5 mg/cm² per 1000 h
 - Coating and component strength requirements: 15-30 ksi, or 100- 207 MPa

NASA Advanced Environmental Barrier Coating Technology Development

- Development Objective: Develop advanced 2700°F+ capable bond coat and EBC systems with high strength
- Approaches:
- Fundamental studies of environmental barrier coating materials and coating systems, stability, temperature limits and failure mechanisms
- Focus on high performance high stability patented cluster HfO₂ and ZrO₂ -RE₂O₃-SiO₂/RE₂Si_{2-x}O_{7-2x} environmental barrier systems
 - Controlled silica content and transition element and rare earth dopants to improve EBC stability and toughness
 - Significantly reduce diffusion, grain growth, mechanical strength and toughness with multicomponent systems
 - Develop HfO₂-Si based + X (dopants)
 - Develop prime-reliant Rare Earth Si alloys and composites for integrated EBC-bond coat systems
- Develop advanced NASA high toughness, compositions and processing
 - Achieving high toughness and erosion resistance
 - Achieving high stability and recession resistance
 - Improving the resistance to CMAS and Volcano ash deposits

Outline

- Advanced EBC and Rare Earth Silicon based 2700°F+ capable bond coat developments
 - Development approaches
 - Oxidation resistance
 - Cyclic and thermomecahnical durability
- Microstructural and phase composition evolution of an environmental barrier coating (EBC) system
 - Consisting of a multicomponent rare earth silicate EBC, along with YbGdSi 2700°F (1482°C) capable bond coat
 - Tested in high heat flux tensile rupture, fluxture fatigue, and furnace cyclic tests up to 500 hours at 2700°F (1482°C)
 - Examine Microstructure changes after thermomechanical and furnace cyclic testing
 - EDS WDS Composition analysis Comparisons
- Summary and conclusion

Development Strategy for 2700°F EBC Systems (US Patent Zhu and Miller, US 7740960; US Patent Application: Zhu & Hurst, LEW 18949, 2012; PCT/US13/46946, 2013)

- Modify silicon with rare earth, zirconium, hafnium dopants to increase its melting point and developing slower growing protective scales and refractory silicates
 Control oxygen content and EBC-CMC interface oxygen partial pressure for improved protection and stability
- Composite bond coat systems with refractory oxides and silicates to reinforce silicon containing bond coat matrix
- Composite bond coat systems with refractory oxide or silicate matrix, with silicon containing bond coat inter-phases
- Develop rare earth metal -, zirconium -, hafnium silicon systems and the silicide containing systems for bond coats with engineered grain boundary phases

National Aeronautics and Space Administration Advanced High Temperature and 2700°F+ Bond Coat Development

- NASA advanced Top Coat Development approach:
 - Advanced compositions ensuring high strength, high stability, high toughness
 - Bond coat systems for prime reliant EBCs; capable of self-healing

National Aeronautics and Space Administration Furnace Cycle Test Results of Selected RESi and ZrSi +

- Dopant Bond Coats
- Testing in Air at 1500°C, 1 hr cycles
- Some initial multi-component systems showed excellent furnace cyclic durability at 1500°C
- FCT and steam tests also performed for RESiO-Hf systems
- Generally good correlation between FCT and oxidation resistance

The Environmental Barrier Coating System

- Alternating layered HfO₂-Rare Earth silicate EBC for fundamental stability studies
- 2700F capable Yb-YbO based bond coat
- Coated onto SiC/SiC CMC substrates using EB-PVD

Environmental Barrier Coating System

- YbGdSi(O) (+Hf) Bond Coat + multi-component EBC Top Coat on woven SiC/SiC CVI-MI SiC/SiC CMC
- Creep testing conducted with 15 ksi load and laser thermal gradient at 0.15% total creep strain, bond coat at up to 2700°F (1482°C)

National Aeronautics and Space Administration The Flexural Fatigue Tested Environmental Barrier Coating Systems

- Strength and Fatigue cycles in laser heat flux rigs in tension, compression and bending
- Fatigue tests at 3 Hz, 2600-2700°F, stress ratio 0.05, surface tension-tension cycles

National Aeronautics and Space Administration SEM – EDS Analysis of the Tensile Ruptured Tested Environmental Barrier Coating System - Continued

National Aeronautics and Space Administration The Flexural Fatigue Tested Environmental Barrier Coating

System

- Ytterbium containing bond coat help self-healing the composite fatigue cracking

National Aeronautics and Space Administration The Flexural Fatigue Tested Environmental Barrier Coating

System - Continued

- Ytterbium containing bond coat help self-healing the composite fatigue cracking

The Long-Term Furnace Cyclic Tested Environmental Barrier Coating System: Rare Earth doped HfO₂ and Rare Earth Silicates Showed Compatibility and Stability

National Aeronautics and Space Administration

EDS (Si Drift Detector) and WDS Comparisons Showed Good Agreements in the Composition Analysis

- 1500°C, 500 hr, 1 hr cycles, in air

Elt.	Line	Intensity (c/s)	Error 2-sig	Conc	Units
0	Ka	40.77	2.065	14.484	wt.%
Si	Ka	0.00	1.554	0.004	wt.%
Y	La	4.34	1.641	1.054	wt.%
Gd	La	6.01	1.312	6.290	wt.%
Yb	La	10.20	1.349	19.181	wt.%
Hf	La	25.25	1.730	58.987	wt.%
Total				100.000	wt.%

WDS 10 points to obtain the average composition of the L region

IMG52-L	PRO	DBE DATA-a	average 10	pts		
Elt.	Line	Spec-	Conc,	Units	Conc	Units
		Xtal	wt			
0	Ka	4-LDE1	13.24	wt.%	62.4	at%
Si	Ka	2-PETJ	0.036	wt.%	0.098	at%
Y	La	2-PETJ	2.093	wt.%	1.78	at%
Gd	La	5-LIFH	4.9	wt.%	2.35	at%
Yb	La	5-LIFH	15.59	wt.%	6.8	at%
Hf	Ma	2-PETJ	62.796	wt.%	26.57	at%
Total			98.66	wt.%	100	at%

National Aeronautics and Space Administration

EDS (Si Drifting Detector) and WDS Comparisons Showed Good Agreements in the Composition Analysis - Continued - 1500°C, 500 hr, 1 hr cycles, in air

8				
			1	A
Sura		N 1	egion	13
1	1			
-3'0	a		X	
-	NASA SEI	15.0kV	×1,500	10µm WD11mm

WDS 10 points to obtain the average composition of the N region

Elt.	Line	Intensity (c/s)	Error 2-sig	Conc	Units
0	Ка	62.15	2.382	19.238	wt.%
Si	Ka	82.63	2.975	7.027	wt.%
Y	La	14.54	1.749	5.614	wt.%
Gd	La	12.38	1.364	19.333	wt.%
Yb	La	17.14	1.480	48.788	wt.%
Hf	La	0.00	0.831	0.000	wt.%
Total				100.000	wt.%

IMG52-	N	PROBE DATA-average 10pts					
Elt.	Line	Spec- Xtal	Conc	Units	Conc	Units	
0	Ka	4-LDE1	21.67	wt.%	60.25	at%	
Si	Ka	2-PETJ	13.25	wt.%	20.997	at%	
Y	La	2-PETJ	6.2	wt.%	3.11	at%	
Gd	La	5-LIFH	15.37	wt.%	4.35	at%	
Yb	La	5-LIFH	42.019	wt.%	10.81	at%	
Hf	Ма	2-PETJ	0.893	wt.%	0.223	at%	
Total			99.46	wt.%	100	at%	

National Aeronautics and Space Administration

EDS (Si Drifting Detector) and WDS Comparisons Showed Good Agreements in the Composition Analysis - Continued - 1500°C, 500 hr, 1 hr cycles, in air

1......

86				
P		J r(egion	
65				
	NASA SEI	15.0kV	×4,000	1µm WD11mm

WDS 4 points to obtain the average composition of the N region

IMG45-J	PROBE DATA-average 4pts						
Elt.	Line	Spec- Xtal	Conc	Units	Conc	Units	
В	Ka	1-LDE2	30.46	wt.%	43.34	at%	
С	Ka	1-LDE2	0.015	wt.%	0.018	at%	
N	Ka	1-LDE2	24.47	wt.%	27.01	at%	
0	Ka	4-LDE1	13.74	wt.%	13.72	at%	
Si	Ka	2-PETJ	27.77	wt.%	15.59	at%	
Y	La	2-PETJ	0.01	wt.%	0.0019	at%	
Gd	La	5-LIFH	0.009	wt.%	0.0009	at%	
Yb	La	5-LIFH	0.0015	wt.%	0.0001	at%	
Hf	Ма	2-PETJ	3.33	wt.%	0.33	at%	
Total			99.8	wt.%	100	at%	

⊑п.	Line	mensity	EIIOI	CONC	Units
		(c/s)	2-sig		
В	Ka	19.68	1.340	0.300	wt.%
С	Ka	2.70	0.848	0.264	wt.%
Ν	Ka	31.68	1.669	21.438	wt.%
0	Ka	1.33	0.646	44.318	wt.%
Si	Ka	295.83	4.950	25.893	wt.%
Y	La	0.00	0.824	0.000	wt.%
Gd	La	0.14	0.417	0.415	wt.%
Yb	La	0.40	0.383	4.435	wt.%
Hf	La	0.41	0.393	2.938	wt.%
Total				100.000	wt.%

Summary and Conclusions

- Environmental barrier coatings with YbGd-HfSi(O) based bond coat, and HfO₂ multicomponent Rare Earth silicate top coat were tested on SiC/SiC ceramic matrix composites for initial durability studies
- The coatings showed excellent oxidation resistance in O₂ and air testing environments, adhesion and good protection for SiC/SiC CMCs
- The initial silicon content range of the Rare Earth-Silicon coatings was down-selected, multicomponent systems designed and demonstrated for further improved stability
- The rare earth silicon based coatings showed 2700°F or 1500°C operating temperature viability and durability on SiC/SiC ceramic matrix composites, the EBC-CMC system microstructure and phase changes were investigated
- The rare earths, hafnium and silica showed wide range solubility, and composition ranges of EBC materials are being optimized for coating stability and performance
- The extensive studies of the EDS and WDS composition analyses of the EBC system showed good agreements
 - WDS may be more sensitive to light elements;
 - Field emission gun SEM Silicon drift detector EDS has spatial resolution advantages

Acknowledgements

The work was supported by NASA Fundamental Aeronautics Programs, and Aeronautical Science Project.

The authors are grateful to

- Dr. Kang N. Lee for helpful Discussions.
- Ron Phillips and Ralph Pawlik for their assistance in mechanical testing;
- Don Humphrey, John Setlock and Michael Cuy for assisting Thermogravimetric analysis (TGA) and furnace oxidation tests;
- Sue Puleo and Rick Rogers for X-ray analysis