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NASA EBC and CMC System Development 
− Emphasize temperature capability, performance and long-term durability

• Highly loaded EBC-CMCs

• 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings

• 2700°F (1482°C) EBC bond coat technology for supporting next generation
– Recession: <5 mg/cm2 per 1000 h

– Coating and component strength requirements: 15-30 ksi, or 100- 207 MPa
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NASA Advanced Environmental Barrier Coating Technology 

Development

• Fundamental studies of environmental barrier coating materials and coating 

systems, stability, temperature limits and failure mechanisms

• Focus on high performance high stability patented cluster HfO2 and ZrO2 -RE2O3-

SiO2/RE2Si2-xO7-2x environmental barrier systems
• Controlled silica content and transition element and rare earth dopants to improve EBC 

stability and toughness

• Significantly reduce diffusion, grain growth, mechanical strength and toughness with 

multicomponent systems

• Develop HfO2-Si based + X (dopants) 

• Develop prime-reliant Rare Earth Si alloys and composites for integrated EBC-bond 

coat systems

• Develop advanced NASA high toughness, compositions and processing
- Achieving high toughness and erosion resistance

- Achieving high stability and recession resistance

- Improving the resistance to CMAS and Volcano ash deposits

− Development Objective:  Develop advanced 2700°F+ capable bond coat and EBC systems with 

high strength 

− Approaches:
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Outline

• Advanced EBC and Rare Earth – Silicon based 2700°F+ capable bond coat 
developments

- Development approaches

- Oxidation resistance

- Cyclic and thermomecahnical durability

• Microstructural and phase composition evolution of an environmental 
barrier coating (EBC) system

- Consisting of a multicomponent rare earth silicate EBC, along with 
YbGdSi 2700°F (1482°C) capable bond coat

- Tested in high heat flux tensile rupture, fluxture fatigue, and furnace 
cyclic tests up to 500 hours at 2700°F (1482°C)

- Examine Microstructure changes after thermomechanical and furnace 
cyclic testing

- EDS - WDS Composition analysis Comparisons

• Summary and conclusion
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Development Strategy for 2700°F EBC Systems
(US Patent Zhu and Miller, US 7740960; US Patent Application: Zhu & Hurst, LEW 

18949, 2012; PCT/US13/46946, 2013)

— Modify silicon with rare earth, zirconium, hafnium dopants to increase its melting point and 

developing slower growing protective scales and refractory silicates 

- Control oxygen content and EBC-CMC interface oxygen partial pressure for improved 

protection and stability

— Composite bond coat systems with refractory oxides and silicates to reinforce silicon 

containing bond coat matrix

— Composite bond coat systems with refractory oxide or silicate matrix, with silicon 

containing bond coat inter-phases

— Develop rare earth metal -, zirconium -, hafnium – silicon systems and the silicide 

containing systems for bond coats with engineered grain boundary phases
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Advanced High Temperature and 2700°F+ Bond Coat 

Development

̶ NASA advanced Top Coat Development approach: 
• Advanced compositions ensuring high strength, high stability, high 

toughness
• Bond coat systems for prime reliant EBCs; capable of self-healing

High strength, high 

stability reinforced 

composites: HfO2-Si 

and a series of Oxide-

Si systems

HfO2-Si based and 

minor alloyed systems 

for improved strength 

and stability

Advanced 2700°F 

bond coat systems: 

RE-Si based systems

Advanced 2700°F bond 

coat systems: RE-Si based 

Systems, grain boundary 

engineering designs and/or 

composite systems -

HfO2-Si systems Advanced 2700°F+ Rare Earth - Bond Coat systems

Other systems

Other systems
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Furnace Cycle Test Results of Selected RESi and ZrSi + 

Dopant Bond Coats

- Testing in Air at 1500°C, 1 hr cycles

– Some initial multi-component systems showed excellent furnace cyclic durability at 

1500°C

– FCT and steam tests also performed for RESiO-Hf systems

– Generally good correlation between FCT and oxidation resistance

Oxidation kinetics
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The Environmental Barrier Coating System

─ Alternating layered HfO2-Rare Earth silicate EBC for fundamental stability studies 

─ 2700F capable Yb-YbO based bond coat

─ Coated onto SiC/SiC CMC substrates using EB-PVD
HfO2-(Yb,Gd,Y)2O3

(Yb,Gd,Y)2Si2-xO7-2x

RESi(O)+Hf Bond Coat

The bond coat region
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Environmental Barrier Coating System
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The Flexural Fatigue Tested Environmental Barrier Coating 

Systems

Tested, SA Tyrannohex with bond coat only

Tested, SA Tyrannohex with EBC system 188

• Strength and Fatigue cycles in laser heat flux rigs in tension, compression and  bending

• Fatigue tests at 3 Hz, 2600-2700°F, stress ratio 0.05, surface tension-tension cycles

SiO2

Achieved long-term fatigue lives 

(near 500 hr) with EBC at 2700°F

Tested specimen cross-sections

Creep-fatigue durability tests
Examples of fatigue test EBC systems on Tyrannohex

SA SiC composites (Ube Industries, Inc, )

- Flexural fatigue tests with 15 Ksi (138 MPa) stress 

amplitude loading
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SEM – EDS Analysis of the Tensile Rupture Tested Environmental Barrier 

Coatings System
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SEM – EDS Analysis of the Tensile Ruptured Tested 

Environmental Barrier Coating System - Continued

EDS A

EDS B

EDS C – higher 

silicon content

Hf(O)-HfSi2(O) bond coat region, 100hr
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The Flexural Fatigue Tested Environmental Barrier Coating 

System 
- Ytterbium containing bond coat help self-healing the composite fatigue cracking

460hr, 2600-2700°F fatigue tested, bond coat only

EDS A

EDS B

EDS C
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The Flexural Fatigue Tested Environmental Barrier Coating 

System - Continued 
- Ytterbium containing bond coat help self-healing the composite fatigue cracking

EDS E

EDS D

EDS F EDS G

460hr, 2600-2700F fatigue tested
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The Long-Term Furnace Cyclic Tested Environmental Barrier Coating System: Rare 

Earth doped HfO2 and Rare Earth Silicates Showed Compatibility and Stability

- 1500°C, 500 hr, 1 hr cycles, in air
HfO2-(Yb,Gd,Y)2O3-(SiO2)

HfO2-(Yb,Gd,Y)2O3-SiO2
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The Long-Term Furnace Cyclic Tested Environmental Barrier Coating System: Rare 

Earth doped HfO2 and Rare Earth Silicates Showed Compatibility and Stability -

Continued 

Hf
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EDS (Si Drift Detector) and WDS Comparisons Showed Good 

Agreements in the Composition Analysis
- 1500°C, 500 hr, 1 hr cycles, in air

Elt. Line Intensity

(c/s)

Error

2-sig

Conc Units

O Ka 40.77 2.065 14.484 wt.%

Si Ka 0.00 1.554 0.004 wt.%

Y La 4.34 1.641 1.054 wt.%

Gd La 6.01 1.312 6.290 wt.%

Yb La 10.20 1.349 19.181 wt.%

Hf La 25.25 1.730 58.987 wt.%

Total 100.000 wt.%

IMG52-L PROBE DATA-average 10pts

Elt. Line Spec-

Xtal

Conc, 

wt

Units Conc Units

O Ka 4-LDE1 13.24 wt.% 62.4 at%

Si Ka 2-PETJ 0.036 wt.% 0.098 at%

Y La 2-PETJ 2.093 wt.% 1.78 at%

Gd La 5-LIFH 4.9 wt.% 2.35 at%

Yb La 5-LIFH 15.59 wt.% 6.8 at%

Hf Ma 2-PETJ 62.796 wt.% 26.57 at%

Total 98.66 wt.% 100 at%

EDS L region

WDS 10 points to obtain the average composition 

of the L region
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EDS (Si Drifting Detector) and WDS Comparisons Showed 

Good Agreements in the Composition Analysis - Continued

WDS 10 points to obtain the average composition 

of the N region

- 1500°C, 500 hr, 1 hr cycles, in air

N region

Elt. Line Intensity

(c/s)

Error

2-sig

Conc Units

O Ka 62.15 2.382 19.238 wt.%

Si Ka 82.63 2.975 7.027 wt.%

Y La 14.54 1.749 5.614 wt.%

Gd La 12.38 1.364 19.333 wt.%

Yb La 17.14 1.480 48.788 wt.%

Hf La 0.00 0.831 0.000 wt.%

Total 100.000 wt.%

IMG52-N PROBE DATA-average 10pts

Elt. Line Spec-

Xtal

Conc Units Conc Units

O Ka 4-LDE1 21.67 wt.% 60.25 at%

Si Ka 2-PETJ 13.25 wt.% 20.997 at%

Y La 2-PETJ 6.2 wt.% 3.11 at%

Gd La 5-LIFH 15.37 wt.% 4.35 at%

Yb La 5-LIFH 42.019 wt.% 10.81 at%

Hf Ma 2-PETJ 0.893 wt.% 0.223 at%

Total 99.46 wt.% 100 at%
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EDS (Si Drifting Detector) and WDS Comparisons Showed 

Good Agreements in the Composition Analysis - Continued

WDS 4 points to obtain the average composition 

of the N region

- 1500°C, 500 hr, 1 hr cycles, in air

J region

Elt. Line Intensity

(c/s)

Error

2-sig

Conc Units

B Ka 19.68 1.340 0.300 wt.%

C Ka 2.70 0.848 0.264 wt.%

N Ka 31.68 1.669 21.438 wt.%

O Ka 1.33 0.646 44.318 wt.%

Si Ka 295.83 4.950 25.893 wt.%

Y La 0.00 0.824 0.000 wt.%

Gd La 0.14 0.417 0.415 wt.%

Yb La 0.40 0.383 4.435 wt.%

Hf La 0.41 0.393 2.938 wt.%

Total 100.000 wt.%

IMG45-J PROBE DATA-average 4pts

Elt. Line Spec-

Xtal

Conc Units Conc Units

B Ka 1-LDE2 30.46 wt.% 43.34 at%

C Ka 1-LDE2 0.015 wt.% 0.018 at%

N Ka 1-LDE2 24.47 wt.% 27.01 at%

O Ka 4-LDE1 13.74 wt.% 13.72 at%

Si Ka 2-PETJ 27.77 wt.% 15.59 at%

Y La 2-PETJ 0.01 wt.% 0.0019 at%

Gd La 5-LIFH 0.009 wt.% 0.0009 at%

Yb La 5-LIFH 0.0015 wt.% 0.0001 at%

Hf Ma 2-PETJ 3.33 wt.% 0.33 at%

Total 99.8 wt.% 100 at%
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Summary and Conclusions
• Environmental barrier coatings with YbGd-HfSi(O) based bond coat, and HfO2 –

multicomponent Rare Earth silicate top coat were tested on SiC/SiC ceramic matrix 

composites for initial durability studies

• The coatings showed excellent oxidation resistance in O2 and air testing environments , 

adhesion and good protection for SiC/SiC CMCs

• The initial silicon content range of the Rare Earth-Silicon coatings was down-selected, 

multicomponent systems designed and demonstrated for further improved stability

• The rare earth – silicon based coatings showed 2700°F or 1500°C operating 

temperature viability and durability on SiC/SiC ceramic matrix composites, the EBC-

CMC system microstructure and phase changes were investigated

• The rare earths, hafnium and silica showed wide range solubility, and composition 

ranges of EBC materials are being optimized for coating stability and performance

• The extensive studies of the EDS and WDS composition analyses of the EBC system 

showed good agreements

- WDS may be more sensitive to light elements;

- Field emission gun SEM Silicon drift detector EDS has spatial resolution 

advantages
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