US009626566B2

a2 United States Patent

Versace et al.

US 9,626,566 B2
Apr. 18,2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

METHODS AND APPARATUS FOR
AUTONOMOUS ROBOTIC CONTROL

Applicants:Neurala, Inc., Boston, MA (US);
Trustees of Boston University, Boston,
MA (US)

Massimiliano Versace, Boston, MA
(US); Anatoly Gorshechnikov,
Newton, MA (US); Gennady Livitz,
Belmont, MA (US); Jesse Palma,
Somerville, MA (US)

Inventors:

Assignee: Neurala, Inc., Boston, MA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/662,657

Filed: Mar. 19, 2015

Prior Publication Data

US 2015/0269439 Al Sep. 24, 2015

Related U.S. Application Data

Provisional application No. 61/955,756, filed on Mar.
19, 2014.

Int. CL.

GO6K 9/00 (2006.01)

B25J 9/16 (2006.01)
(Continued)

U.S. CL

CPC ... GO6K 9/00664 (2013.01); B25J 9/1697
(2013.01); GO6K 9/3241 (2013.01);
(Continued)

Field of Classification Search

None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,388,206 A 2/1995 Poulton et al.
6,336,051 Bl 1/2002 Pangels et al.
(Continued)
FOREIGN PATENT DOCUMENTS
EP 1224 622 Bl 7/2002
WO WO 2014/190208 11/2014
(Continued)

OTHER PUBLICATIONS

International Preliminary Report on Patentability in related PCT
Application No. PCT/US2014/039162 filed May 22, 2014, mailed
Nov. 24, 2015, 7 pages.

(Continued)

Primary Examiner — Atiba O Fitzpatrick
(74) Attorney, Agent, or Firm — Cooley LLP

57 ABSTRACT

Sensory processing of visual, auditory, and other sensor
information (e.g., visual imagery, LIDAR, RADAR) is con-
ventionally based on “stovepiped,” or isolated processing,
with little interactions between modules. Biological sys-
tems, on the other hand, fuse multi-sensory information to
identify nearby objects of interest more quickly, more effi-
ciently, and with higher signal-to-noise ratios. Similarly,
examples of the OpenSense technology disclosed herein use
neurally inspired processing to identify and locate objects in
a robot’s environment. This enables the robot to navigate its
environment more quickly and with lower computational
and power requirements.

16 Claims, 7 Drawing Sheets

/14{? e 170
Where Pathway What Pathway
;"M 126
13¢ 150
Pt Vsl ST
e Obieots
RGEB sensor wlerstity,
mput stvearm > Where System What Svsiem §
{videoos, pretures) o i
1_;-" and

{sznsor movement}

= cognposition

Aginator E

US 9,626,566 B2
Page 2

(51) Int. CL

GO6T 7/00 (2017.01)
GOGK 9/32 (2006.01)
GO6K 9/46 (2006.01)
GO6T 7/20 (2017.01)
GOGN 3/00 (2006.01)
GOGN 3/04 (2006.01)
(52) US.CL
CPC ... GOGK 9/4628 (2013.01); GO6T 7/004

(2013.01); GO6T 7/0044 (2013.01); GO6T
7/0081 (2013.01); GO6T 7/2093 (2013.01):
GO5B 2219/39082 (2013.01); GO6N 3/008
(2013.01); GO6N 3/049 (2013.01); GO6T
2207/20141 (2013.01); GO6T 2207/20144
(2013.01); GO6T 2207/30244 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

6,647,508 B2 11/2003 Zalewski et al.
7,861,060 B1 12/2010 Nickolls et al.
7,873,650 Bl 1/2011 Chapman et al.
8,648,867 B2 2/2014 Gorchetchnikov et al.
9,189,828 B2 11/2015 Gorchetchnikov et al.

2002/0046271 Al
2003/0078754 Al
2004/0015334 Al
2005/0166042 Al
2007/0052713 Al
2007/0198222 Al
2007/0279429 Al
2008/0033897 Al
2008/0117220 Al
2008/0258880 Al
2009/0089030 Al
2010/0048242 Al
2011/0173015 Al
2012/0316786 Al
2014/0192073 Al
2016/0082597 Al*

4/2002 Huang
4/2003 Hamza
1/2004 Ditlow et al.
7/2005 Evans
3/2007 Chung et al.
8/2007 Schuster et al.
12/2007 Ganzer
2/2008 Lloyd
5/2008 Gorchetchnikov et al.
10/2008 Smith et al.
4/2009 Sturrock et al.
2/2010 Rhoads et al.
7/2011 Chapman et al.
12/2012 Liu et al.
7/2014 Gorchetchnikov et al.
3/2016 Gorshechnikov GO6N 5/02
700/253

2016/0198000 Al 7/2016 Gorchechnikov et al.

FOREIGN PATENT DOCUMENTS

WO WO 2014/204615 12/2014
WO WO 2015/143173 9/2015
WO WO 2016/014137 1/2016

OTHER PUBLICATIONS

International Preliminary Report on Patentability in related PCT
Application No. PCT/US2014/039239 filed May 22, 2014, mailed
Nov. 24, 2015, 8 pages.

Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J., & Ogden,
J. M. (1984). Pyramid methods in image processing. RCA engineer,
29(6), 33-41.

Aggarwal, Charu C, Hinneburg, Alexander, and Keim, Daniel A. On
the surprising behavior of distance metrics in high dimensional
space. Springer, 2001.

Ames, H. Mingolla, E., Sohail, A., Chandler, B., Gorchetchnikov,
A., Léveillé, J., Livitz, G. and Versace, M. (2012) The Animat. IEEE
Pulse, Feb. 2012, 3(1), 47-50.

Ames, H, Versace, M., Gorchetchnikov, A., Chandler, B., Livitz, G.,
Léveille, J., Mingolla, E., Carter, D., Abdalla, H., and Snider, G.
(2012) Persuading computers to act more like brains. In Advances
in Neuromorphic Memristor Science and Applications, Kozma,
R.Pino,R., and Pazienza, G. (eds), Springer Verlag.

Baraldi, A. and Alpaydin, E. (1998). Simplified ART: A new class
of ART algorithms. International Computer Science Institute,
Berkeley, CA, TR-98-004, 1998.

Baraldi, A. and Alpaydin, E. (2002). Constructive feedforward ART
clustering networks—Part I. IEEE Transactions on Neural Net-
works 13(3), 645-661.

Baraldi, A. and Parmiggiani, F. (1997). Fuzzy combination of
Kohonen’s and ART neural network models to detect statistical
regularities in a random sequence of multi-valued input patterns. In
International Conference on Neural Networks, IEEE.

Baraldi, Andrea and Alpaydin, Ethem. Constructive feedforward
ART clustering networks—part II. IEEE Transactions on Neural
Networks, 13(3):662-677, May 2002. ISSN 1045-9227. doi:
10.1109/tnn.2002.1000131. URL http://dx.doi.org/10.1109/tnn.
2002.1000131.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation
learning: A review and new perspectives.

Besl, P. J., & Jain, R. C. (1985). Three-dimensional object recog-
nition. ACM Computing Surveys (CSUR), 17(1), 75-145.
Bradski, G., & Grossberg, S. (1995). Fast-learning VIEWNET
architectures for recognizing three-dimensional objects from mul-
tiple two-dimensional views. Neural Networks, 8 (7-8), 1053-1080.
Canny, J., A (1986) Computational Approach To Edge Detection,
IEEE Trans. Pattern Analysis and Machine Intelligence, 8(6):679-
698.

Carpenter, G.A. and Grossberg, S. (1987). A massively parallel
architecture for a self-organizing neural pattern recognition
machine. Computer Vision, Graphics, and Image Processing 37,54-
115.

Carpenter, G.A., and Grossberg, S. (1995). Adaptive resonance
theory (ART). In M. Arbib (Ed.), The handbook of brain theory and
neural networks. (pp. 79-82). Cambridge, M.A.: MIT press.
Carpenter, G.A., Grossberg, S. and Rosen, D.B. (1991). Fuzzy ART:
Fast stable learning and categorization of analog patterns by an
adaptive resonance system. Neural Networks 4, 759-771.
Carpenter, Gail A and Grossberg, Stephen. The art of adaptive
pattern recognition by a self-organizing neural network. Computer,
21(3):77-88, 1988.

Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B.,
Warner, F., and Zucker, S.W. Geometric diffusions as a tool for
harmonic analysis and structure definition of data: Diffusion maps.
Proceedings of the National Academy of Sciences of the United
States of America, 102(21):7426, 2005.

Coifman, R.R. and Maggioni, M. Diffusion wavelets. Applied and
Computational Harmonic Analysis, 21(1):53-94, 2006.

Dosher, B.A., and Lu, Z.L. (2010). Mechanisms of perceptual
attention in precuing of location. Vision Res., 40(10-12). 1269-
1292.

Fazl, A., Grossberg, S., and Mingolla, E. (2009). View-invariant
object category learning, recognition, and search: How spatial and
object attention are coordinated using surface-based attentional
shrouds. Cognitive Psychology 58, 1-48.

Foldiak, P. (1990). Forming sparse representations by local anti-
Hebbian learning, Biological Cybernetics, vol. 64, pp. 165-170.
Friston K., Adams R., Perrinet L., & Breakspear M. (2012). Per-
ceptions as hypotheses: saccades as experiments. Frontiers in Psy-
chology, 3 (151), 1-20.

Galbraith, B.V, Guenther, F.H., and Versace, M. (2015) A neural
network-based exploratory learning and motor planning system for
co-robots. Frontiers in Neuroscience, in press.

George, D. and Hawkins, J. (2009). Towards a mathematical theory
of cortical micro-circuits. PLoS Computational Biology 5(10), 1-26.
Grossberg, S. (1973). Contour enhancement, short-term memory,
and constancies in reverberating neural networks. Studies in
Applied Mathematics 52, 213-257.

Grossberg, S., and Huang, T.R. (2009). ARTSCENE: A neural
system for natural scene classification. Journal of Vision, 9 (4),
6.1-19. doi:10.1167/9.4.6.

Grossberg, S., and Versace, M. (2008) Spikes, synchrony, and
attentive learning by laminar thalamocortical circuits. Brain
Research, 1218C, 278-312 [Authors listed alphabetically].
Hasselt, Hado Van. Double g-learning. In Advances in Neural
Information Processing Systems, pp. 2613-2621,2010.

Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning
algorithm for deep belief nets. Neural Computation, 18, 1527-1554.

US 9,626,566 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Itti, L., and Koch, C. (2001). Computational modelling of visual
attention. Nature Reviews Neuroscience, 2 (3), 194-203.

Itti, L., Koch, C., and Niebur, E. (1998). A Model of Saliency-Based
Visual Attention for Rapid Scene Analysis, 1-6.

Jarrett, K., Kavukcuoglu, K., Ranzato, M. A., & LeCun, Y. (Sep.
2009). What is the best multi-stage architecture for object recog-
nition?. In Computer Vision, 2009 IEEE 12th International Confer-
ence on (pp. 2146-2153). IEEE.

Kompella, Varun Raj, Luciw, Matthew, and Schmidhuber, Jiirgen.
Incremental slow feature analysis: Adaptive low-complexity slow
feature updating from high-dimensional input streams. Neural Com-
putation, 24(11):2994-3024, 2012.

Kowler, E. (2011). Eye movements: The past 25years. Vision
Research, 51(13), 1457-1483. doi: 10.1016/j.visres.2010.12.014.
Larochelle H., & Hinton G. (2012). Learning to combine foveal
glimpses with a third-order Boltzmann machine. NIPS 2010, 1243-
1251.

LeCun, Y., Kavukcuoglu, K., & Farabet, C. (May 2010). Convolu-
tional networks and applications in vision. In Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium on
(pp. 253-256). IEEE.

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects
by non-negative matrix factorization. Nature, 401(6755):788-791.
Lee, D. D., and Seung, H. S. (1997). “Unsupervised learning by
convex and conic coding.” Advances in Neural Information Pro-
cessing Systems, 9.

Legenstein, R., Wilbert, N, and Wiskott, L. Reinforcement learning
on slow features of high-dimensional input streams. PLoS Compu-
tational Biology, 6(8), 2010. ISSN 1553-734X.

Léveille, J., Ames, H., Chandler, B., Gorchetchnikov, A., Mingolla,
E., Patrick, S., and Versace, M. (2010) Learning in a distributed
software architecture for large-scale neural modeling. BIONET-
ICS10, Boston, MA, USA.

Livitz G., Versace M., Gorchetchnikov A., Vasilkoski 7., Ames H.,
Chandler B., Leveille J. and Mingolla E. (2011) Adaptive, brain-like
systems give robots complex behaviors, The Neuromorphic Engi-
neer: 10.2417/1201101.003500 Feb. 2011.

Livitz, G., Versace, M., Gorchetchnikov, A., Vasilkoski, Z., Ames,
H., Chandler, B., Léveille, J., Mingolla, E., Snider, G., Amerson, R.,
Carter, D., Abdalla, H., and Qureshi, S. (2011) Visually-Guided
Adaptive Robot (ViGuAR). Proceedings of the International Joint
Conference on Neural Networks (IJCNN) 2011, San Jose, CA,
USA.

Lowe, D.G.(2004). Distinctive Image Features from Scale-Invariant
Keypoints. Journal International Journal of Computer Vision
archive vol. 60, 2, 91-110.

Lu, Z.L., Liu, J., and Dosher, B.A. (2010) Modeling mechanisms of
perceptual learning with augmented Hebbian re- weighting. Vision
Research, 50(4). 375-390.

Mahadevan, S. Proto-value functions: Developmental reinforce-
ment learning. In Proceedings of the 22nd international conference
on Machine learning, pp. 553-560. ACM, 2005.

Mishkin M, Ungerleider LG. (1982). “Contribution of striate inputs
to the visuospatial functions of parieto-preoccipital cortex in mon-
keys,” Behav Brain Res, 6 (1): 57-77.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu,
Andrei A, Veness, Joel, Bellemare, Marc G, Graves, Alex,
Riedmiller, Martin, Fidjeland, Andreas K, Ostrovski, Georg, et al.
Human-level control through deep reinforcement learning. Nature,
518(7540):529-533, 2015.

Moore, Andrew W and Atkeson, Christopher G. Prioritized sweep-
ing: Reinforcement learning with less data and less time. Machine
Learning, 13(1):103-130, 1993.

Najemnik, J., and Geisler, W. (2009). Simple summation rule for
optimal fixation selection in visual search. Vision Research. 49,
1286-1294.

Oja, E. (1982). Simplified neuron model as a principal component
analyzer. Journal of Mathematical Biology 15(3), 267-273.

Raudies, F., Eldridge, S., Joshi, A., and Versace, M. (2014). Learn-
ing to navigate in a virtual world using optic flow and stereo
disparity signals. Artificial Life and Robotics, DOI 10.1007/s10015-
014-0153-1.

Raijmakers, M.E.J., and Molenaar, P. (1997). Exact ART: A com-
plete implementation of an ART network Neural networks 10 (4),
649-669.

Ranzato, M. A., Huang, F. J., Boureau, Y. L., & Lecun, Y. (Jun.
2007). Unsupervised learning of invariant feature hierarchies with
applications to object recognition. In Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on (pp. 1-8). IEEE.
Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of
object recognition in cortex. Nature Neuroscience, 2 (11), 1019-
1025.

Riesenhuber, M., & Poggio, T. (2000). Models of object recogni-
tion. Nature neuroscience, 3, 1199-1204.

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB:
An efficient alternative to SIFT or SURF. In IEEE International
Conference on Computer Vision (ICCV) 2011, 2564-2571.
Rumelhart D., Hinton G., and Williams, R. (1986). Learning inter-
nal representations by error propagation. In Parallel distributed
processing: explorations in the microstructure of cognition, vol. 1,
MIT Press.

Salakhutdinov, R., & Hinton, G. E. (2009). Deep boltzmann
machines. In International Conference on Artificial Intelligence and
Statistics (pp. 448-455).

Schaul, Tom, Quan, John, Antonoglou, Ioannis, and Silver, David.
Prioritized experience replay. arXiv preprint arXiv: 1511.05952,
2015.

Schmidhuber, J. (2010). Formal theory of creativity, fun, and
intrinsic motivation (1990-2010). Autonomous Mental Develop-
ment, IEEE Transactions on, 2(3), 230-247.

Schmidhuber, Jirgen. Curious model-building control systems. In
Neural Networks, 1991. 1991 IEEE International Joint Conference
on, pp. 1458-1463. IEEE, 1991.

Seibert, M., & Waxman, A.M. (1992). Adaptive 3-D Object Rec-
ognition from Multiple Views. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 14 (2), 107-124.

Sherbakov, L., Livitz, G., Sohail, A., Gorchetchnikov, A., Mingolla,
E., Ames, H., and Versace, M. CogEye: An online active vision
system that disambiguates and recognizes objects. NeuComp 2013.
Sherbakov, L., Livitz, G., Sohail, A., Gorchetchnikov, A., Mingolla,
E., Ames, H., and Versace, M (2013b) A computational model of the
role of eye-movements in object disambiguation. Cosyne, Feb.
28-Mar. 3, 2013. Salt Lake City, UT, USA.

Sherbakov, L. and Versace, M. (2014) Computational principles for
an autonomous active vision system. Ph.D., Boston University,
http://search.proquest.com/docview/1558856407.

Smolensky, P. (1986). Information processing in dynamical sys-
tems: Foundations of harmony theory. In D. E.

Snider, G., Amerson, R., Carter, D., Abdalla, H., Qureshi, S.,
Laveille, J., Versace, M., Ames, H., Patrick, S., Chandler, B.,
Gorchetchnikov, A., and Mingolla, E. (2010) Adaptive Computation
with Memristive Memory. IEEE Computer, vol. 44(2).

Spratling, M. W. (2008). Predictive coding as a model of biased
competition in visual attention. Vision Research, 48(12):1391-1408.
Spratling, M. W., De Meyer, K., and Kompass, R. (2009). Unsu-
pervised learning of overlapping image components using divisive
input modulation. Computational intelligence and neuroscience.
Spratling, M. W. (2012). Unsupervised learning of generative and
discriminative weights encoding elementary image components in a
predictive coding model of cortical function. Neural Computation,
24(1):60-103.

Sprekeler, H. On the relation of slow feature analysis and laplacian
eigenmaps. Neural Computation, pp. 1-16, 2011.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement learning: An
introduction(vol. 1, No. 1). Cambridge: MIT press.

Tong, F., Ze-Nian Li, (1995). Reciprocal-wedge transform for
space-variant sensing, Pattern Analysis and Machine Intelligence,
IEEE Transactions on , vol. 17, No. 5, pp. 500-51. doi: 10.1109/
34.391393.

US 9,626,566 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Torralba, A., Oliva, A., Castelhano, M.S., Henderson, J.M. (2006).
Contextual guidance of eye movements and attention in real-world
scenes: the role of global features in object search. Psychological
Review, 113(4).766-786.

Van Hasselt, Hado, Guez, Arthur, and Silver, David. Deep rein-
forcement learning with double g-learning. arXiv preprint arXiv:
1509.06461, 2015.

Versace, M. From spikes to interareal synchrony: how attentive
matching and resonance control learning and information process-
ing by laminar thalamocortical circuits. NSF Science of Learning
Centers PI Meeting, Washington, DC, USA. (2006).

Versace, M., Ames, H., Léveille, J., Fortenberry, B., and
Gorchetchnikov, A. (2008) KInNeSS: A modular framework for
computational neuroscience. Neuroinformatics, 2008 Winter;
6(4):291-309. Epub Aug. 10, 2008.

Versace, M., (2010) Open-source software for computational neu-
roscience: Bridging the gap between models and behavior. In
Horizons in Computer Science Research, vol. 3.

Versace, M., and Chandler, B. (2010) MoNETA: A Mind Made from
Memristors. IEEE Spectrum, Dec. 2010.

Wiskott, Laurenz and Sejnowski, Terrence. Slow feature analysis:
Unsupervised learning of invariances. Neural Computation,
14(4):715-770, 2002.

Webster, Bachevalier, Ungerleider (1994). Connections of IT areas
TEO and TE with parietal and frontal cortex in macaque monkeys.
Cerebal Cortex, 4(5), 470-483.

Attificial Intelligence As a Service. Invited talk, Defrag,
Broomfield, CO, Nov. 4-6, 2013.

Brain-inspired computing. Invited keynote address, Bionetics 2010,
Boston, MA, USA.

TEDx Fulbright, Invited talk, Washington DC, Apr. 5, 2014.

U.S. Appl. No. 15/262,637, filed Sep. 12, 2016, Gorchetchnikov et
al.

U.S. Appl. No. 15/343,673, filed Nov. 4, 2016 Gorchetchnikov et al.

* cited by examiner

US 9,626,566 B2

Sheet 1 of 7

Apr. 18,2017

U.S. Patent

DL |

T TIPTISACH J08US }
Mr ICRHNY

FAEI]

7

91

Bi1

upipsndmos

puw .
AYTHOpI 2UaYe 3 - -
i _.‘.M.awm;ﬁw ”ﬁ {sampoul ‘soopia}
« mmb . < WAL IRYM wtdd UBAGDYN bt weens ndut
AIHEEP! ﬁ 105U GOYY
s300iq0y . i
gs1 0<l _

Avaried 10UM
T 01—

¢ '9id

US 9,626,566 B2

aespsod Apmeny Wb sy é 451

TR - PAEARDY :
- 5 AR e
ok g 5 IR AR

TG FOE FRdy

yageyE 3abiycy

i

Sheet 2 of 7

Apr. 18,2017

SRBERS

3 et e v

B8zt

sopeiaie
4 yalae perodumer

prnasEmeng

b usnaig sopaps s 3071

ity

FNRMHE
tisisteted

BORTREGE
Repad-Bory

QMMZ..V o

ROVFHISIOWOUIE

BIFEUEILS

ooy

S

T ROV

fipto]

fmaged

SN

U.S. Patent

US 9,626,566 B2

Sheet 3 of 7

Apr. 18,2017

U.S. Patent

g
sonenfiounsg

Reed
s
weed

FORB] ¢

/
RSl v

ARMDES YA

nogriefas

s

HORARIRE
Sy

L itnativen)

sl pandaryy,

A0
JORTARY
IDRIGYY

,../{ a1

AvAyeg s

US 9,626,566 B2

Sheet 4 of 7

Apr. 18,2017

U.S. Patent

v "Old

£ isemgod N
ROAPIA) RIS
ot R e sy gny

4

ISy AYRTERILY, o

WRIGMII [UVeq H

TS et

£ IR

:

£/7 AR

U.S. Patent Apr. 18,2017 Sheet 5 of 7 US 9,626,566 B2

US 9,626,566 B2

Sheet 6 of 7

Apr. 18,2017

U.S. Patent

9 'Old

979
10804/vY4InvD
INTHO/IAOW

v19
FDVINT GNOD3S NI
133180 S14 JNOYHS
IVILVAES 41 INTAY3130

PERN

[45]
ADVINI ONODJ3S
NO 3sSve aNoYHS
TVILVAS FIVISNVYL

P

019
ANOYUHS TViLVdS
ONISN IDVINI LSYId
Ni 123780 AJILN3al

803
FOVINLLSHId O
ANOYHS TVILVdS 14

909
SIDVIAIL LNINDIS

09
FNVYd 3DNIHI43Y
2IHAN3IDOTIV
O1 IDVINI 1S4l
15v31 1V ILVISNVHL

S

209
INFAINCHIANT
$.1080d
40 SIOVINI JHINDOY

U.S. Patent Apr. 18,2017 Sheet 7 of 7 US 9,626,566 B2

. 702

702

704
FIG. 7C

FIG. 7B

704

704

US 9,626,566 B2

1
METHODS AND APPARATUS FOR
AUTONOMOUS ROBOTIC CONTROL

CROSS-REFERENCE TO RELATED PATENT
APPLICATION

This application claims priority, under 35 U.S.C. §119(e),
from U.S. Application No. 61/955,756, filed Mar. 19, 2014,
and entitled “Methods and Apparatus for Autonomous
Robotic Control,” which application is hereby incorporated
herein by reference in its entirety.

GOVERNMENT SUPPORT

This invention was made with government support under
Contract No. FA8750-12-C-0123 awarded by Air Force
Research Laboratory (AFRL), under Contract No.
NNX12CG32P awarded by NASA Phase I STTR, and under
Contract No. NNX13CL63C awarded by NASA Phase 11
STTR. The government has certain rights in the invention.

BACKGROUND

For a mobile robot to operate autonomously, it should be
able to locate obstacles and steer around them as it moves
within its environment. For example, a mobile robot may
acquire images of its environment, process them to identify
and locate obstacles, then plot a path around the obstacles
identified in the images. In some cases, a mobile robot may
include multiple cameras, e.g., to acquire stereoscopic image
data that can be used to estimate the range to certain items
within its field of view. A mobile robot may also use other
sensors, such as radar or lidar, to acquire additional data
about its environment. Radar is particularly useful for peer-
ing through smoke or haze, and lidar returns can sometimes
be used determine the composition of objects within the
environment. A mobile robot may fuse lidar, radar, and/or
other data with visible image data in order to more accu-
rately identify and locate obstacles in its environment. To
date, however, sensory processing of visual, auditory, and
other sensor information (e.g., LIDAR, RADAR) is conven-
tionally based on “stovepiped,” or isolated processing, with
little interaction between modules.

SUMMARY

Embodiments of the present invention include a system
for identifying and locating objects in a robot’s environ-
ment. Such a system may include an image sensor and
processor operably coupled to the image sensor. In opera-
tion, the image sensor acquires a plurality of images of at
least a portion of the environment surrounding the robot.
The processor translates each image in the plurality of
images from the image sensor’s frame of reference to an
allocentric frame of reference. The processor identifies a
position, in the allocentric frame of reference, of an object
appearing in at least one image in the plurality of images.
And the processor determines if the object appears in at least
one other image in the plurality of images based on the
position, in the allocentric frame of reference, of the object.

It should be appreciated that all combinations of the
foregoing concepts and additional concepts discussed in
greater detail below (provided such concepts are not mutu-
ally inconsistent) are contemplated as being part of the
inventive subject matter disclosed herein. In particular, all
combinations of claimed subject matter appearing at the end
of this disclosure are contemplated as being part of the

25

30

35

40

45

2

inventive subject matter disclosed herein. It should also be
appreciated that terminology explicitly employed herein that
also may appear in any disclosure incorporated by reference
should be accorded a meaning most consistent with the
particular concepts disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The skilled artisan will understand that the drawings
primarily are for illustrative purposes and are not intended to
limit the scope of the inventive subject matter described
herein. The drawings are not necessarily to scale; in some
instances, various aspects of the inventive subject matter
disclosed herein may be shown exaggerated or enlarged in
the drawings to facilitate an understanding of different
features. In the drawings, like reference characters generally
refer to like features (e.g., functionally similar and/or struc-
turally similar elements).

FIG. 1 is a block diagram of an example OpenEye system.

FIG. 2 is a block diagram of the Where Pathway module
shown in FIG. 2.

FIG. 3 is a block diagram of the What Pathway module
shown in FIG. 2.

FIG. 4 is a block diagram of an alternative classifier
architecture suitable for implementing the view layer and the
object layer in the What Pathway module shown in FIG. 3.

FIG. 5 illustrates control of a robot using the OpenEye
system via a remote controller, such as a tablet or smart-
phone.

FIG. 6 illustrates a process for identifying and locating
objects in a robot’s environment by fitting a spatial shroud
to successive images of the robot’s environment.

FIGS. 7A-7C show fitting a spatial shroud to an object in
different images of the robot’s environment.

DETAILED DESCRIPTION

The methods described herein provide an exemplary
unified technology for identifying, learning, localizing, and
tracking objects based on camera (e.g., RGB) input. Some
examples of this technology are called “OpenEye” and can
be implemented as an artificial, active sensory system and a
unified framework for processing sensor data, including but
not limited to image data. OpenEye may be utilized in both
artificial (e.g., simulated environments, such as an environ-
ment generated synthetically via a video-game engine) and
natural environments (e.g., an environment experienced by
an unmanned aerial, ground, or submersible vehicle).

In operation, OpenEye learns incrementally about its
visual input, and identifies objects in the sensor field of view
and categorizes those objects by identity and position.
OpenEye can operate with or without supervision, and does
not require a manual labeling of object of interest to learn
object identity. OpenEye can also accept user input to
verbally label objects.

OpenEye simulates mammalian brains’ dorsal (where—
controlling where to look) and ventral (what—controlling
the content of the image) pathways by using simulated eye
movements (in virtual or real cameras) to learn identity of
objects in complex images (see, e.g., Mishkin and Unger-
leider 1982 and Webster et al., 1994).

In some implementations OpenEye uses a space-variant,
log-polar representation of the input visual field to sample
the image “view” generated by each eye movement. The
log-polar representation provides some invariance to trans-
lation/rotation, and substantial savings in processing time
with better scalability to large datasets by employing non-

US 9,626,566 B2

3

uniform input sampling and rapid scan of image segments,
as opposed to processing the whole image at uniform
resolution (Traver and Bernardino, 2010). The model uses
the what-to-where feedback to sample the image intelli-
gently. OpenEye does so by using the knowledge of the
identity of the current object and its context to focus on
spatial locations that yield greatest disambiguation of com-
peting object identity (e.g., areas of an image that are more
unique to an object). OpenEye may be validated on natural
and synthetic images, as well as on the standard MNIST
handwritten digit dataset.

As opposed to other approaches (e.g., neural networks),
the OpenEye system may not rely on extensive training
(batch training) to be able to classify correctly objects in the
data stream, and can learn new knowledge online (i.e.,
during performance) without corrupting or forgetting previ-
ously learned knowledge. Additionally, the system is able to
autonomously search for information in an image via an
active visual search process, which mimics the mechanism
used by mammals to rapidly and efficiently scan their visual
world for important information. OpenEye memory system
is designed to allow on-line optimization of synaptic memo-
ries. Additionally, OpenEye can mimic human eye move-
ments by reproducing human fixation patterns with or with-
out a training session where OpenEye learns the fixation
location of a human user via eye-tracker.

Neurally Inspired Robot Perception, Object Identification,
and Object Location

A conventional robot does not perceive its environment
like a human. For example, a robot may “see” its environ-
ment by acquiring imagery of some or all or its environment
at a uniform resolution. It then processes the imagery by
dividing the imagery into a grid of pixels and examining
each pixel in the grid. This process can take too much time
and too much energy to be useful for identifying objects
moving relative to the robot, especially if the robot is
moving at relatively high velocity (e.g., a drone flying at low
altitude). In addition, the robot may spend an inordinate
amount of time processing empty or irrelevant pixels.

A human does not process the detail of entire images on
a pixel-by-pixel basis. Instead, the human eye acquires
imagery of non-uniform resolution: the central part of the
retina, or fovea, which is densely packed with light-sensitive
cones, acquires the central part of each image at relatively
fine resolution. And the peripheral portion of the retina,
which is covered at lower density with light-sensitive rods
and cones, acquires the peripheral portion of each image at
coarser resolution. The resulting “foveated imagery” has
resolution that varies spatially across each image, with the
finest resolution at a fixation point and coarser resolution
elsewhere. This notion of obtaining imagery at a resolution
that varies spatially across each image is referred to herein
as “foveation.”

To account for the spatial variation in image resolution, a
human moves his or her eyes rapidly among different points
in his or her field of view. For instance, a human may fixate
on points at or near an interesting portion of a scene, such
as a face, for relatively long periods, and fixate on points at
or near less interesting portions of the scene, such as a tree,
for shorter periods, if at all. These quick, simultaneous
movements to different fixation points, or saccades, allow a
human to identify and locate items of interest without
spending time or energy examining interesting portions of
the scene.

Similarly, the OpenEye technology disclosed herein
allows a robot to identify and locate objects in its environ-
ment using “foveated” data collection and “saccade” style

35

40

45

4

imaging as explained below with respect to FIGS. 1-4. For
instance, one or more processors may control collection and
processing of visual imagery according to a neural model
inspired by the human brain. A camera or other sensor
acquires imagery of the robot’s environment and passes this
imagery to a graphics processing unit (GPU) or other
suitable processor, which locates and identifies one or more
objects in the imagery (e.g., using the What and Where
pathways described in greater detail below) based on the
imagery itself and information about the sensor’s orienta-
tion, position, and/or field of view. In some cases, the GPU
may translate the imagery among different frames of refer-
ence, including camera-centered, robot-based egocentric,
and allocentric frames of reference, to make processing
more efficient and/or more precise.

The processor also determines the next fixation point of
the sensor system based on the location and/or identity of the
object(s). In some cases, it transmits movement vector
representing the saccade between the current fixation point
and the next fixation point to an actuator that then actuates
the sensor appropriately. For instance, the processor may
cause a pan-tilt actuator to move a camera mounted on the
robot so as to acquire imagery of an object from different
angles and/or positions. The robot itself may move to change
the sensor’s field of view. In other cases, the processor may
cause synthetic “saccades,” e.g., by processing different
portions of the same image or different portions of different
images at different resolutions depending on the objects and
their locations. The robot may also use object information
and sensor position and orientation data to inhibit the sensor
from fixating repeatedly on the same object or the same
portion of the scene.

Because the technology disclosed herein mimics human
neural processing, it can process imagery and other sensory
data more efficiently and identify objects in the robot’s
environment more quickly. This is especially useful for
robots in hazardous applications, such as planetary explo-
ration, where processing and battery efficiency are critical,
and for robots that collect large volumes of data, such
surveillance drones, where efficient sense-making is key to
interpreting large amounts of real-time data. It also has
general application to all types of vision systems, including
simulations, such as those used in video games, flight
simulators, etc.

Visual Stream Exploration and Visual Object Learning

The OpenEye model proposes a method for combining
visual stream exploration and visual object learning. Each is
considered below.

Visual Stream Exploration Models

The computational model proposed by Itti and Koch
(2001) simulates an aspect of human vision that predicts the
probability that a certain image area will attract an observ-
er’s attention and eye movements. The model only includes
bottom-up, or sensory features, while OpenEye also
accounts for cognitive (top-down) biases on eye movements.
Additionally, the model does not include learning, object, or
scene recognition, which are instead incorporated in Open-
Eye, where they bias image stream exploration as discussed
below.

OpenEye also differs from Riesenhuber and Poggio’s
(1999) neural model, which employs a spatially homog-
enous representation of the image vs. OpenEye’s spatially
variant representation and use of sensor movement. Both the
Itti & Koch (2001) and Riesenhuber & Poggio (1999)
models postulate that visual objects need to be identified in
one glance. OpenEye, instead, accounts for the potential
need to explore the input sensory image to gather additional

US 9,626,566 B2

5

evidence for recognition, which is particularly useful for
ambiguous objects/scenes (e.g., occluded objects).

Visual Object Learning Models

In terms of learning, OpenEye may use two interchange-
able learning methodologies. The first method is based on
the Baraldi and Alpaydin (1998, 2002) and Baraldi and
Parmiggiani (1997) learning models, which provide the
following benefits. The second method is based on a recur-
rent adaptive architecture. Both methodologies simultane-
ously implement fast and slow learning.

Usually, fast learning (e.g., Carpenter and Grossberg,
1987) systems underperform slow-learning ones (Rumelhart
et al., 1986), but the former are much more useful in
engineered system such as robots or sensors operating in
real-time in a rapidly changing environment. After only
single instance of presentation of each item, humans and
other animals can learn to recognize pictures, words, names,
and faces, and recording at a local cellular level confirms
that neurons can change to reflect such fast learning (Bun-
zeck & Diizel, 2006; Rutishauser et al., 2006). To date, no
artificial system has been engineered to achieve this goal in
a machine.

Several object recognition algorithms have been devel-
oped over the last few decades (for reviews, see Besl and
Jain, 1985; Logothetis and Sheinberg, 1996; Riesenhuber
and Poggio, 2000; Bengio et al., 2012). In general, a
commonality between these algorithms is the focus on
finding the appropriate representation for the data, where the
difference among algorithms performance is due to the
nature of the features/input data transformations. For
instance, convolutional network models (Ranzato et al.,
2007; Jarrett et al. 2009; LeCun et al., 2010) and restricted
Boltzmann machines (Smolensky, 1986; Salakhutdinov and
Hinton, 2009) are among the best object recognition algo-
rithms. Both classes of algorithms perform three main steps:
a) feature extraction. This can be either hardwired, random,
or learned;

b) non-linear transformation on the resulting filtered data;
and

¢) A pooling step on the result of step b). The connectivity
between stages and the number of filter-transform-pool
stages can vary.

Deep learning networks include networks where there are
several layers of stacked filter-transform-pool, e.g. in the
HMAX model (Riesenhuber & Poggio, 1999) and deep
belief networks (Hinton et al., 2006).

Similarly, Spratling (2008, 2009, 2012) has introduced
several recognition systems built of stackable “cortical”
modules. These models are composed of modules that work
hierarchically and perform a process called “predictive
coding”, that looks very akin to matching in an ART system.
A close examination of the derivation of the learning laws in
these systems (Spratling et al., 2009) reveals that they were
developed as an incremental version of a well-known batch
coding algorithm, non-negative matrix factorization (NMF),
developed by Lee and Seung (1997, 1999). The algorithm
presented by Spratling at al. does allow incremental (fast)
learning, but does not include methods for object segrega-
tion/segmentation, scene recognition, and active vision.

However, none of the above-mentioned object recogni-
tion algorithms deals with the issues of how objects are
separated from their background, and neither of those mod-
els uses space-variant sampling.

The ARTScan (Fazl et al., 2009) model, the saccading
restricted Boltzmann machine (sRBM) (Larochelle & Hin-
ton, 2012), and the entropy minimization algorithm of
saccades (Friston et al., 2012)

10

25

30

40

45

6

The saccading restricted Boltzmann machine (Larochelle
and Hinton, 2012) uses space variant vision. However, it
does not include a mechanism that informs the system when
the system stops fixation from an object and starts fixating
on another, which is provided by a human supervisor. The
system could not tell apart two identical objects presented
side-by-side with a spatial gap separating them.

The entropy minimization algorithm of saccades (Friston
et al., 2012) includes bi-directional What-to-Where stream
interactions but does not use space-variant vision, and it
suffers from the same issue as Larochelle and Hinton (2012)
in terms of object fixation memory.

The ARTScan (Fazl et al., 2009) model includes Where-
to-What interaction in guiding when the What system should
learn/stop learning, but does not include What-to-Where
interactions to inform eye movement and visual search.
Additionally, OpenEye differs from ARTScan in these addi-
tional dimensions:

OpenEye and ARTScan use a different log-polar sam-
pling;

OpenEye shroud formation is feed-forward;

OpenEye is designed to operate in 3D environments in a
noisy background;

OpenEye is designed to handle self-motion;

OpenEye employs a concept of temporal continuity to
support dynamic scenes;

OpenEye can combine multiple saliencies, endogenous
spatial attention, attention to specific features in order to
make next saccade; and

While ARTScan used handcrafted images OpenEye can
be used with arbitrary image data, such as the standard
MNIST database;

Object learning models from Baloch and Waxman (1991),
Bradski and Grossberg, (1995), Seibert and Waxman (1992)
do use space-variant transformation, or “cortical magnifica-
tion”, but only focus statically at an object’s center-of-mass.

OpenEye methods discussed in Sections 4 employ a
learning scheme that maximizes memory efficiency in terms
of learning accuracy and capacity to enable both fast and
slow stable learning of sensory features.

Benefits and Applications

Benefits of these methods and systems include providing
a single process for identifying, learning, localizing, and
tracking objects in visual scenes provided by cameras.
Exemplary methods allow quick and stable learning of new
patterns without the need to retrain the system, while reduc-
ing network (system) size and communication between
system components with respect to competing models. The
method allows continuous learning of arbitrary sensory
representations in hierarchies of rate-based or spike-based
neural processing stages connected by adaptive (learnable)
synaptic weights. An additional benefit of this method is to
allow fast learning of new stimuli without the need to
interrupt the functioning of the machine, e.g., allowing a
robot with a camera to quickly learn the identity of a new,
previously unlearned input without the need to retrain pre-
viously seen input.

The novel method presented herein can have application
in designing software to either extract information or control
mobile robots or cameras. In particular, the method allows
these machines to increase their knowledge base over time
without the need to retrain the system on the entire knowl-
edge base.

OpenEye Overview

OpenEye is an artificial visual system operating on visual
data. The OpenEye model is comprised of four main mod-
ules: the Environment Module, the Where system, the What

US 9,626,566 B2

7

system, and an external module that can provide a teaching
signal to the what system (FIG. 1). These four components
will be discussed in detail below.

The Environment Module (100) abstracts interactions
between the vision system and the environment, which can
be a virtual environment or a real environment sampled by
a fix/pan-tilt camera, a robot-mounted camera, or other
visual (or non-visual) sensory system. This module delivers
a visual image to the visual system and executes camera
movement commands, which emulate human eye move-
ments. The environment module allows OpenEye to interact
with the environment: virtual or real, static or dynamic, real
time or prerecorded.

One task of the Where System (130) is to decide where the
sensory system should look based on salient image proper-
ties extracted from the visual image, or based on information
coming from the What System pertaining to the identity of
objects in the environments, and/or the scene identity as a
whole. Processing of a visual image by the where system
module includes aspects of the mammalian lateral geniculate
nucleus (LGN), primary visual cortex (V1), and higher
cortices (V2, MT, MST) processing. The image obtained
from the environment module in retinal coordinates under-
goes a log-polar transformation to simulate space-variant
sampling of the visual input and extraction of features such
as (but not limited to) edge, contour, color, and luminance.
OpenEye’s functioning is not limited to log-polar sampling,
and can operate with other space-variant transformations,
such as the reciprocal-wedge transform (Tong and Li, 1995),
or the pyramid method (Adelson et. Al, 1984), as examples.

Also known as the dorsal stream in vision literature
(Mishkin and Ungerleider 1982; Webster et al., 1994),
OpenEye’s Where System generates camera movements in
order sample an image by foveation on the spatial location
it selects as the most salient, where saliency can be deter-
mined by sensory input or semantic (What System) infor-
mation. Foveation is achieved by centering the sensor in the
object of interest, so that the object is likely to fall in the
center of the space-variant representation. A form-fitting
attentional shroud (namely a signal that fits the form, or
shape, of an object, similarly to the way a shroud or veil fits
the surface it rests on) is then formed around the foveated
object. The shroud serves to suppress surrounding objects in
order to isolate the object of interest for learning in the What
System, and enables the system to trigger further camera
movements centered exclusively on this enshrouded object.
The ability of the Where System to form this attentional
shroud around a single object has the added benefit of
detecting when a foveation has left the previous object of
interest. This change in foveated object produces a reset
signal that represents temporal discontinuity between the
foveations and is used by the What System to regulate
learning, with the result of allowing OpenEye to group
multiple views of an object (but not other objects, or the
background) into coherent object categories. Another func-
tion of the Where System is to maintain a visual working
memory of previously foveated locations such that the
camera does not persistently choose the same point of
fixation. Together with the Environment Module, the Where
System forms the Where Pathway (140) that concerns with
spatial interaction with the environment and spatial process-
ing.

The What System (150) includes a hierarchy of classifiers
that collectively learn to visually recognize an arbitrary
number of objects regardless of each object’s position and
orientation relative to the sensor(s), e.g. a camera. The What
System receives an object’s feature representation as input

30

40

45

50

8

from the Where System. Views are then clustered in an
incremental, unsupervised fashion into object representa-
tions based either on their similarity or according to their
temporal continuity as signaled by the Where System. The
Where System provides a shroud-based reset signal, dis-
cussed later, that informs the What System when seemingly
different views are part of the same or different object; this
signal is important to OpenEye’s ability to learn pose-
invariant object representations (Fazl et al., 2009). An
optional external Teacher (160) provides a supervised learn-
ing environment that not only improves classification accu-
racy and learning speed but also dynamically creates a
user-friendly search interface to the visual system’s learned
knowledge. Because of the hierarchical separation of unsu-
pervised view learning and supervised object-label learning,
the What System can be switched between unsupervised and
supervised learning modes at any time.

The What system and Teacher together form the What
Pathway (170), modeled upon the ventral visual processing
stream in the mammalian brain, which concerns the identity
of those objects viewed by OpenEye. FIG. 1 depicts the
overall structure of OpenEye. Each module is described
below with its corresponding block number.

Encoding OpenEye Activity

A critical task for OpenEye operation is switching
between the coordinate systems centered on the on the
robot/camera/sensor (ego-centric), the environment (image-
centric or world-centric), and between metrics systems (e.g.,
Cartesian or log-polar). For example, the image is sampled
using retinal (log-polar) metric, or other (e.g., pyramid or
reciprocal-wedge), but the signal for the cameral to move
and how much to adjust the pitch, yaw is provided in
Cartesian (linear) metric. One role of the Where System
concerns translating between representations of a signal to
different coordinate bases. For clarity, each coordinate sys-
tem is defined with a term that refers to where the system is
centered followed by a term that defines the distance metric
of the reference frame. Reference frames can be centered at
three possible locations: 1) sensor-centered, 2) ego-centered,
and 3) image-centered. Sensor-centered refers to a coordi-
nate system where the (0, 0) location resides at the position
of the current camera center. Ego-centered refers to a
coordinate system where (0, 0) corresponds to a neutral
position of a sensor, with respect which the camera center
may be shifted or rotated. This robot-centered coordinate
system can interface with other software systems to provide
object location data relative to the physical system or, when
paired with global navigation data, to provide a global object
location. Image-centered refers to a reference frame in
which the (0, 0) location is at the image center. Image-
centered can also be interpreted as global coordinates or
scene-centered when the scene is dynamically changing.
Correspondingly there are at least three set of dimensions
used in OpenEye: Image Dimensions [W, H,], Sensor Move-
ment Range [W,_ H,], and Sensor Dimensions [W H,] that
represent log-polar transform of the Sensor Movement
Range. This notation is used in OpenEye description below.

There are at least two distance metrics in the coordinate
frames: 1) log-polar, and 2) Cartesian. The log-polar dis-
tance metric reflects how the eye naturally samples the
image and image representation in primary visual cortex,
and is employed in the described system by performing a
space-variant (log-polar in this case, but other methods
could be used) transformation to the ray input, while the
Cartesian distance metric is more pertinent when mapping
representations onto the real word or for invoking linear
control of the eye/camera. In the figures and text below,

US 9,626,566 B2

9

coordinate frame are referred to as a combination of where
it is centered and what defines its distance.

FIGS. 1-3 depicts aspects of the What and Where systems
of'an example OpenEye system. FIG. 1 shows the Environ-
ment Module (120) and the Where System (130), which
collectively constitute the Where Pathway (140). The envi-
ronment module 120 includes an RGB image sensor 100,
which may acquire still and/or video images, whose field of
view can be shifted, narrowed, and/or expanded with one or
more actuators 110, including but not limited to zoom
lenses, tip/tilt stages, translation stages, etc. The environ-
ment module 120 provides both image data from the image
sensor 100 and actuation data (sensor position data) from the
actuator(s) 110 to the Where system 130, which in turn
provides processed image data to the What system 150. The
environment module 120 also provides actuation data (sen-
sor position data) from the actuator(s) 110 to the Teacher
160, which forms part of the What pathway 170 with the
What system 150.

FIG. 2 shows the Where system 130 in greater detail. A
first log-polar transformation block 260 in the Where system
130 performs a log-polar transformation on the image data
from the image sensor 100 as described in greater detail
below. A feature extraction block 240 identifies features in
the transformed image data, which is segmented into
bounded regions by a segmentation block 180. A figure/
segragation block 210 segregates the bounded regions to
form a spatial shroud that fits the foveated region of the
image. The figure/segregation block 210 provides a repre-
sentation of this spatial shroud to the What system 150.

FIG. 2 also shows that the actuator(s) 100 provide sensor
position data to a foveation memory 250 and an inhibition of
return block 220, which together prevent the image sensor
from foveating the same portions of the scene (acquiring
and/or processing imagery of the same portions of the scene,
e.g., at enhanced resolution) unnecessarily. A second log-
polar transformation block 230 performs a log-polar trans-
formation on the output of the inhibition of return block and
passes the transformed output to a hot spot selection block
190, which determines the next portion of the scene for
foveation. A reverse log-polar transformation block 270
transforms the output vector into the frame of reference used
by the actuator(s) 100 and provides the transformed output
vector to the actuator(s) 100 for actuation of the sensor 100.
A temporal object continuity block 200 processes another
copy of the hot spot selection block output to determine if
the next foveation location falls off the current object
surface. If so, the temporal object continuity block 200
transmits a “reset” signal to the What system 150

FIG. 3 shows the What system 150 in greater detail. The
What system 150 uses data from the temporal object con-
tinuity block 200, the feature extraction block 240, and the
figure/ground segregation block 210 to identify and locate
objects in the scene imaged by the image sensor 100. A view
layer 280 uses features and shroud data from the Where
system 130 to cluster shroud-gated visual representations of
object views according to their feature similarity. A disam-
biguation map block 310 generates a disambiguation map of
the scene based on these representations from the view layer
280.

The object layer 290 uses the representations from the
view layer 280 to learn pose-invariant object representations
by associating different view prototypes from the view layer
280 according to their temporal continuity provided by the
reset signal from the Where system 130. This yields an
identity confidence measure, which can be fed into a name
layer 300 that groups different objects under the same user

10

15

20

25

30

35

40

45

50

55

60

65

10

label, which may be obtained from an optional teacher 160.
The optional teacher 160 shapes the association between
objects and their labels and feeds this information from the
Name layer 300 to the Object layer 290 and View layer 280
to the speed and accuracy of future object learning.

The What system and the Where system can be imple-
mented in hardware, firmware, software, or a suitable com-
bination thereof. For example, the What and Where systems
may be implemented as processor-implementable instruc-
tions that are stored in non-transient form in one or more
memories located in or on a robot, such as a unmanned
aerial, ground, or submersible vehicle. Some or all of the
processor-implementable instructions may also be stored on
remote memory, such memory in or accessible by a server
that communicates with the robot via a wireless communi-
cation link (e.g., a radio-frequency or optical link).

The robot may include one or more processors that are
coupled to the memory and configured to execute the
instructions so as to implement the What and Where sys-
tems, including the individual modules shown in FIGS. 1-4.
For example, the robot may execute the instructions with a
central processing unit (CPU) and a graphics processing unit
(GPU), e.g., as disclosed in U.S. Pat. No. 8,648,867, which
is incorporated herein by reference in its entirety. The
processor(s) can also be implemented as application specific
integrated circuits (ASICs), field-programmable gate arrays
(FPGAs), and/or other device or component as understood
in the art.

In some embodiments, some or all of the processors may
be located remotely—that is, not on or in the robot. For
example, the processors (include GPUs) may be located in
one or more smart phones, tablets, and/or single board
computers (SBCs). The processors may also form part or all
of a cluster computing environment, with each processor in
the cluster dedicated to particular task or group of tasks. In
these embodiments, the processors may communicate with
sensors, actuators, and other devices and components on or
in the robot via a suitable communications link, such as a
radio-frequency or optical communications link.

FIG. 5 illustrates an OpenEye system 500 used to control
a wheeled robot 510. The OpenEye system 500 includes a
computing device 504, such as a tablet computer or other
electronic device with wireless capabilities, that is con-
trolled by a user 502. The computing device 504 commu-
nicates with the robot 510, which includes an image sensor
512 and an antenna 514, via a wireless link. The user 502
issues commands to the robot 510 via software running on
the computing device 504, a processor (not shown) on the
robot 510, and/or on other cloud-based processors (not
shown).

In operation, the image sensor 512 can be oriented and/or
positioned either by the user when manually operating the
robot or automatically by the software. For example, the
image sensor 512 may be mounted on a pan/tilt stage,
translation stage, or rotation stage that can be actuated to
change the image sensor’s orientation and/or position. The
image sensor 512 may also have a (motorized) zoom lens
that can be used to zoom in or out on certain portions of the
environment. In addition, or instead, the image sensor 512
can be oriented or positioned as desired by moving the robot
510. In some cases, the image sensor 512 may static with
respect to the robot 510; this is roughly equivalent to
somebody without, say, neck and eye muscles. In order to
change the static image sensor’s point of view, the body of
the robot rotates and/or moves, e.g., using wheels or legs for
ground robots, propellers for drones, thrusters for submers-
ible robots, etc.

US 9,626,566 B2

11

Environment Module (120)

This Environment Module abstracts away the source of
visual imagery (cameras, real or virtual, or other sensors,
e.g. LIDAR) and applies sensor movement commands in the
manner consistent with the environment in which OpenEye
currently operates. OpenEye supports the following envi-
ronments:

Static Scenes—JPEG, PNG images, etc.

Dynamic Scenes—movie files (.avi, .mp4, etc.)

Camera—Real 3d visual world

Virtual Camera—virtual environment, based on the

JMonkey game engine

Concrete implementations of this module are specific to
the environment, but the input and the output should comply
with the specification below.

RGB Sensor (100)

RGB delivers the RGB image sampled from the environ-
ment as directed by the RGB Sensor Actuator. The later
simulates eye movement by moving the camera.

Input:

Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
Sensor Vector 0 Unsigned, 2 Cartesian Ego-
(e.g., Byte centered
camera)
Position*

*This input does not have to be used in all environments. If the environment includes
Sensor Movement Actuator (for example, P&T camera, or Virtual Camera), this input is
not necessarily used by the RGB Sensor.

Output:
Element
Data Data Element Dimen-
Name Type Dimensions Type sions Metric Base
RGB Vector [W, H,] Unsigned, 3 Car- Sensor-
Sensor Field Byte tesian centered

Sensor Movement Actuator (110)

Sensor Movement Actuator implements sensor (e.g., cam-
era) movement commands if they are supported by the
environment, otherwise this module returns eye position in
ego-centric coordinates.

Input:
Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
Sensor Vector 0 Unsigned, 2 Cartesian Ego-
(Eye) Byte centered
Position
Location Vector 0 Unsigned, 2 Cartesian ~ Sensor-
to foveate Byte centered
Output:
Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
Sensor (Eye) Vector 0 Unsigned, 2 Car- Ego-
Position Byte tesian centered

w

10

15

20

25

30

35

40

45

50

60

12
Where System (130)

One function of the Where System is to produce a
foveated view of the object to be interpreted by the What
System, to select the next location to foveate based on
sensory and internal semantic information, and to determine
and track the position of objects in the visual field and return
their coordinates. The diagram of the Where System is
presented on FIG. 2. All modules part of the Where System
are enclosed in the module described in (130). The Where
System receives the video image from the environment
module and produces camera movement commands to be
executed by the environment module (120). The Where
System supplies the What System with the view of the object
it currently looks at and the Reset signal, which marks the
beginning of the object foveation sequence. The detailed
description of the Where System modules is presented
below.

Log-Polar Transformations

Several modules (230, 260, 270) perform transformation
between log-polar and Cartesian encoding of the distance
metric. OpenEye adheres to a bio-inspired log-polar trans-
form of the input image, but the model can be used with
different transform. The log-polar transform is applied to the
RGB sensor subtending 136 degrees of visual angle, close to
that reported in humans and other animals (Traver and
Bernardino, 2010). The log-polar metric in space encoding
is used across both OpenEye Where and What Systems and
transformed back to the Cartesian metric by (230) to refer-
ence the external world beyond the current view, which is
required by the Environment Module (120), the Foveation
Memory module (250), and the Inhibition of Return module
(220) in the Where Pathway. All Log-polar transformation
modules share the parameters that specify dimensions of
log-polar [w, h] and Cartesian image [W H_].

Log-Polar Transformation of Retinal RGB Image (260)

The image sampled at the foveated location undergoes
log-polar transformation that amounts to space-variant sam-
pling with higher resolution in the foveal area and much
coarser resolution that falls with eccentricity outside the
foveal region (Traver and Bernardino, 2010). This provides
some invariance to translation/rotation and to save compu-
tational bandwidth while at the same time to acquire details
at the location of the image that present the highest interest
and is the most effective for the image representation.

Input:
Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
RGB Vector [W, H,] Unsigned, 3 Cartesian ~ Sensor-
Image I Field Byte centered
Output:
Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
Log-Polar Vector [w, h] Unsigned, 3 Cartesian ~ Sensor-
RGB Field Byte centered
Image O

US 9,626,566 B2

Processing: Output:
Data Element
0= { Lid(, j) <rp d(i,) =+(—io)* +(—jo) 5 Data Dimen- Element Dimen-
v - - ’ Name Type sions Type sions Metric Base
Lyd(is)2 iy d(x, y) = Ind(i,) i i
Hot Spot vector 0 Unsigned, 2 Cartesian ~ Sensor-
Where: O =[xvy] Byte centered
_max(W, W) . W =) . (W=D 0 p .
Fiov = = o= rocessing:
Log-Polar Transformation of Inhibition of Return (230) A6 D < rm dl, ==} + (= jo)?
0= ; o d, :
Similarly to retinal image, inhibition of return undergoes 15 (yld(,)= rp di, j)=Ind(x, y)
log-polar transformation in order to prevent the HotSpot Wi
. . CIe:
Selection Module (190) from repeated foveations.
max(We, W) . Hy-1 . W;-1
Input: o = 7 to=—5—ijo=——:
20
Data Element Feature Extraction (240)
)) Feature Extraction (240) includes, but is not limited to,
Data Dimen- Element Dimen- computation of luminance and color. Other features could
Name Type sions Type sions Metric Base include motion, or SIFT features (Lowe, 2004). “Features”
55 can be:
Inhibition of Scalar [W, H,] Unsigned, 0 Car- Sensor- 1. A property of an image that can be associated with each
Return I Field Byte tesian centered mage locatlon;
2. A scalar (luminance, 0-dimensions) or vector (color, 1
dimension);

Output: . 3.A numerical (1ntege}‘, or real, e.g. lqmlnancg, co!or) or
binary (Boolean, e.g., is an edge associated with this par-
ticular pixel) value. More abstract properties (e.g., “edge-
ness”) can also be represented by a numerical feature—

Data Element h of the ed
Data Dimen- Element Dimen- strength o t.e.e ge. .
Name Type sions Type sions Metric Base The description below specifies the features currently
: 35 implemented in OpenEye, but the description below should
Log-Polar = Scalar [w, h,] Unsigned, 0 Car- Sensor- not be intended to limit OpenEye applicability to these
inhibition of Field Byte tesian centered features alone
return O . .
Luminance, Color
Luminance and Color are extracted from the Log-polar
Processing: 40 RGB Image.
Input:
0. =) sien lydl,) <rpy dl,)= (-l +(-jof Data Element
ij sign Lyd(,) 2 rpy dx, y) = Ind(, j) 45 Data Dimen— Element Dimen— .
Name Type sions Type sions Metric Base
Where:
RGB Image Vector [w,h,] Unsigned, 3 Log- Sensor-
_max(W, W) . (W=D . (W -1 I=[rghb] Field Byte polar centered
VYiov = By sl = 5)= P .
50 Output:
Reverse Log-Polar Transformation of Inhibition of Return
(270)
. . . Data Element
HotSpot selected in the Log-polar view in sensor-centered Data Dimen- Element Dimen-
coordinates (190) needs to be transformed back to Cartesian g, Name Type sions Type sions Metric Base
metric by (230) before it can be converted into sensor Color Vector [w,h] Unsigned, 3 Log- Sensor-
movement command by the Environment Sensor Movement 0, = Field Byte polar centered
Actuator (110). Input: [hsv])
Luminance Scalar [w,h,] Unsigned, 0 Log- Sensor-
O, Field Byte polar centered
60
Data Element .
Data Dimen- Element Dimen- Processmg
Name Type sions Type sions Metric Base
Hot Spot Vector 0 Unsigned, 2 Log-polar Sensor-
I=1[i]] Byte centered 65 Or=r+g+b

O.=[h s v]

US 9,626,566 B2

-continued
Where:
v=max(r g b);
s
_v-min(r g b)
=
60(g - b) .
—_— ifv=r
v—min(r g b)
he 120+ 60(b-r) P
T minr g by TE
240+ 60(r —
‘7(rg) ifv=b
min(r g b)

Segmentation (180)

This module builds preliminary segmentation producing
binary image that represent closed (bounded) regions (Su-
zuki & Abe, 1985). This is achieved by using OpenCV
function findContours, which operates on edges produced by
the Canny edge detector (Canny, 1986). The result is the
image with pixels set to 1 at the locations that belong to the
bounded regions.

Input:
Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
Luminance Scalar [w,h,] Unsigned, 0 Log- Sensor-
Byte polar centered
Output:
Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
Contours Scalar [w, h,] Binary, 0 Log- Sensor-
Field Byte polar centered

10

20

25

30

35

40

Output:
Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
Shroud Scalar [w, h,] Binary, 0 Log- Sensor-
(@) Field Byte polar centered
Processing:
Iy Y Uy ==l jm) > 1
i=-1,0,1
=101
0;j=

0> Uy==limpm) =1
i=-1,0,1
=101

The Figure/ground segregation module (180) can also be
extended to accept input from the What System, for instance
in the form of semantic information pertaining the identity
of pixels which can be obtained via a fast processing of the
visual information that bypasses the Where System. For
instance, a separate What System can be trained to recog-
nize, on a pixel-by-pixel basis, areas in the image. E.g., the
separate What System can initially classify areas of the
image as “sky”, “grass”, “road”, and this information can be
used as input to the Figure/ground segregation module (180)
as additional input to drive figure/ground segregation.

Hot Spot Selection (190)

This module produces a vector that determines the next
foveation location. The module determines the most salient
locations on the image by using the OpenCV function
goodFeatures ToTrack, which finds the most prominent cor-
ners in the image as described in (Shi and Tomasi, 1994).
The image passed to the corner finding algorithm is the
luminance feature produced by the feature extraction mod-
ule (240). The Inhibition of Return signal produced by the
log-polar transformation module (230) disables the non-zero
locations on the image to be selected as the next foveation
position.

45
Figure/Ground Segregation (180) Input:
This module builds a shroud around the object at the
center of the view. This is achieved via a seeded flood fill
algorithm, which uses the OpenCV floodFill function. This Data Element
1 ithm fill ted t starti £ the 30 Data Dimen- Element Dimen-
algor §a conn.ec €d component starting from . € Name Type sions Type sions Metric Base
center of the log-polar image produced by the segmentation :
module (180). Connectivity is determined by the brightness Icomours ls:lcjll;r [w: b] g;selgned’ 0 15215} S:Ets;re 4
closeness of the neighbor pixels. As the result this step Inhibition of Scalar [w,h] Binary, 0 Log- Sensor-
produces a shroud (Fazl et. all, 2009), roughly fitting the . Return mask Field Byte polar centered
form of the closed region that includes the foveated location L
(the center of the image).
Input: Output:
60
Data Element Data Element
Data Dimen- Element Dimen- Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base Name Type sions Type sions Metric Base
Contours Scalar [w, h,] Binary, 0 Log- Sensor- HotSpot ~ Vector 0 Unsigned 2 Log- Sensor-
I Field Byte polar centered 65 (@) Byte polar centered

US 9,626,566 B2

17

Processing:

Finding most prominent corners in the input image fol-
lows the algorithm below:
1. Covariation matrix M,; is computed for every pixel in the
image for the 3x3 neighborhood N

2la 2lEs)

Ny N

- a1 diy 42
(&a) 2.5
N N

i i

The derivatives are computed using the Sobel operator by
convolving the input with the following kernels

P -1 0 -1
1
%:conv L|-2 0 2
-1 0 -1
and
P -1 -2 -1
1
— =comy| 1, 0 0 0
dy
-1 -2 -1
and
A=min (41, 4,),

where A, A, are unsorted eigenvalues of M
2. Eigen values are used as a measure of corner quality,
which are sorted and the locations below the quality thresh-
old T, (T,=0.001) are rejected.

At this point the list of candidates O, containing locations in
the image I where eigenvalues exceed the threshold T, is
produced. The mask signal I, is used to exclude the candi-
dates, for which 1,=0.

3. The remaining candidates are tested in descending order
as new seeding points, with the floodFill function (see 3.4).
If figure ground/segregation is possible for the given can-
didate (the seeded value does not flood over log-polar image
boundary, i.e. image corners) it becomes the next selected
foveation point, in other words—the output vector O. Oth-
erwise the process is repeated for the next candidate until
good hot spot is found capable of producing a shroud.

Temporal Object Continuity (200)

In order to build view invariant object identity, OpenEye
may maintain temporal continuity between subsequent
object foveations. OpenEye determines if the next foveation
location falls off the current object surface in order to signal
the object recognition system that building of the new object
identity begins or continues. This is achieved via producing
the RESET signal, which is set to 1 in the next cycle when
the selected new foveation location falls off the shroud
(output of module 210) built from seeded activity in the
center point of the view.

Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
Shroud Scalar [w,h,] Binary, 0 Log- Sensor-
I Field Byte polar centered

10

15

20

25

30

35

40

45

50

55

60

-continued
Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
HotSpot Vector 0 Unsigned, 2 Log- Sensor-
I, =[xv] Byte polar centered
Output:
Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
RESET Scalar 0 Binary 0 Log- Sensor-
(@) Byte polar centered
Processing:
O=L,;
Xy

Implementation of temporal continuity requires referenc-
ing discovered objects in space. Since individual compo-
nents of the OpenEye require different encoding of space to
refer to the object’s location, several OpenEye computations
involve translating spatial references between coordinate
frames, different metrics, and different types of coordinate
system. The following table summarizes usage of spatial
representations by individual OpenEye Components:

Open Eye Data Frame of Reference Metrics Coordinate type

Object Map Camera-centered Linear Spherical (pitch,
yaw, distance)

Object Memory Allocentric Linear Cartesian (X, Y, Z)

Camera Position Egocentric Linear Euler (pitch, yaw,

Orientation roll = 0)

Robot Location Allocentric Linear Cartesian (X, Y, Z)

Robot Orientation Allocentric Linear Euler (yaw, pitch,
and roll)

Shroud Camera-centered Log Cartesian (X, Y)

Inhibition Camera-centered Log Cartesian (X, Y)

of Return

Disambiguation Camera-centered Log Cartesian (X, Y)

Map

Hot Spot (Next Camera-centered Log Cartesian (X, Y)

Foveation)

In an allocentric frame of reference, the location of one
object is defined relative to the location of other objects. (In
an egocentric frame of reference, on the other hand, an
object’s location is defined relative to the body axes of the
robot.) For example, an allocentric coordinate frame can be
aligned as follows: Axis Y—up vertically, axis Z with initial
robot heading, and axis X in the direction perpendicular to
axes Y and Z. In OpenCV (the software framework used to
develop OpenEye) the direction of axis y is reversed.
OpenCV representation is used for camera-centered frame
of reference. Orientation is encoded by the Euler angles:
yaw, pitch, and roll. Camera-centered representations could
be expressed in spherical coordinates, with the X, Y treated
as yaw and pitch angles, while the distance to the projected
pixel will correspond to the radius R. This spherical inter-
pretation of the camera-centered projection will be used to
describe coordinate transformation. Two types of coordinate
transformation are crucial for the approach to temporal
continuity:

US 9,626,566 B2

19

1) Translation of spatial reference from camera-centered to
allocentric coordinates; and

2) Mapping location in allocentric coordinates to the cam-
era-centered frame of reference.

The first may be utilized for learning discovered objects’
locations; the second may be utilized for maintaining aware-
ness of discovered objects in the field of view. After log-
polar transformation, OpenEye segments the image and
shroud a foveated object. Once the object shroud is pro-
duced, the location of the foveated object can be added to the
object memory, where it is stored in allocentric coordinates
for future referencing. Thus, position of the object in the
sensed image should be transformed to the allocentric loca-
tion given the current robot position, orientation as well as
camera orientation. Finally a new hotspot is selected, which
should cause new saccade, sensing new image and translat-
ing the hotspot position into a frame, where a new shroud
will be produced using seeded filling-in from the adjusted
hotspot position, which should take into account robot
ego-motion.

FIG. 6 provides an overview of how the OpenEye deter-
mines temporal object continuity. In block 602, an image
sensor, which may or may not be mounted to the robot,
obtains imagery of the robot’s environment. One or more
OpenEye processors translate one or more these images
from the camera frame of reference to an allocentric frame
of reference (e.g., a log-polar frame of reference) in block
604. The OpenEye processor then segments the translated
images in block 606. Next, the OpenEye processor con-
structs a spatial shroud for a first image (block 608) based on
the current position and orientation of the input sensor and
uses the shroud to identify an object in the first image (block
610). It then translates, rotates, skews, and/or otherwise
transforms the shroud to account for the sensor’s change in

xO
Yo
Zo

orientation and/or position between acquisition of the first
image and a second image (block 612).

The processor then determines if the transformed shroud
maps to an object in the second image (block 614). If so, the
processor determines that the object in the second image is
the same as the object that appears in the first image and
learns the object’s location (e.g., stores a representation of
the object, its features, and/or its position in memory for
later retrieval). At this point, the processor may use an
actuator to orient and/or position the sensor in order to image
a different portion of the robot’s environment. If the shroud
does not overlap with an object sufficiently in the second
image, the processor determines that the objects are different
and updates its memory accordingly. The processor may
then actuate the sensor to obtain additional images of the
object and the surrounding portion of the robot’s environ-
ment.

FIGS. 7A-7C illustrate the shroud construction and trans-
lation process. In FIG. 7A, the sensor is centered on a face
702, where the center is marked by the dashed lines through
the field of view. The OpenEye processor 704 shroud is built
around this face 702, shown by the gray shading in the
diagram. After the sensor is reoriented and another image
acquired, the shroud 704 is translated and rotated to com-
pensate for the sensor motion. If the sensor is now centered

20

on a location marked by the shroud 704 in FIG. 7B, the

system identifies that this object is the same as the one

previously viewed. If the sensor is instead centered on a

location off of the shroud 704, as in FIG. 7C, the system
5 identifies and learns views of a new object.

Note that the What system (aka the classifier or semantics
module) can also contribute to controlling the Where system
(aka the spatial attention module). In particular, if the What
system has gathered enough evidence (namely, a certain
number of classifications where confidence is high) about

10
the foveated object, it may cause the Where system to stop
foveating that object, producing Inhibition Of Return (IOR)
for a few time steps in the future, so as to bias the visual
system to classify other objects in the scene.
15 Translating Spatial References from Camera-Centered to
Allocentric Coordinates
Location in allocentric coordinates can be computed from
local reference as following:
20
X, X (3.6.1)
Yo |=Ral™ x| Yo |+T4
Zo %
2 Where:
Xo
30 Yo
2,
Position vector in the allocentric frame of reference.
IR | robot rotation matrix in allocentric coordinates
Position vector in the egocentric frame of reference.
T, is the robot translation vector in egocentric coordinates,
45 which can be obtained directly from the GPS system in
virtual environment.
IR, can be computed from GPS orientation sensory
signal as following:
50
Ry= (3.6.2)
55
cos(y)cos(p) sin(y)sin(r) — sin(y)cos(r) +
cos(y)sin(p)cos(r) cos(y)sin(p)sin(r)
sin(p) cos(p)cos(r) —cos(p)sin(r)
60 —sin(y)cos(p) sin(y)sin(p)cos(r)+ —sin(y)sin(p)sin(r) +
cos(y) sin(r) cos(y)cos(r)
65

Where v, p, and r correspond to yaw, pitch, and roll of the
robot in allocentric coordinates.

US 9,626,566 B2

21

xO

Yo

is computed from the position (x,y,) in camera-centered
coordinates, which is the output of the hot spot selection
module. First, (x,y,) should be translated to egocentric frame
using camera position (E,,E) in egocentric frame of refer-
ence. This enables us to compute location direction in the
egocentric frame of reference. The angles in the egocentric
coordinate system can be computed according to (3.6.3).

X =x+E,; (3.6.32)

Y, =x,+E, (3.6.3b)

Now we can compute the location’s Cartesian egocentric
coordinates for the equation (3.6.1) using the distance infor-
mation obtained from the depth sensor. Taking into account
reversed orientation of the y axis in OpenCV, position vector

xO

Yo

can be computed according to (3.6.4)

Xo —cos(X,) sin(Y,) (3.64)
Yo | = | —sin(X,) sin(Ye) | Xdy,
Z cos(Y,)

Where:

d,, is the depth signal available from the depth sensor in
virtual environment. d, , corresponds to the distance from the
robot to the location represented by pixel ¢ The range of
distances sensed by the depth sensor in virtual environment
is determined by the frustum settings for the virtual camera
and currently is set to the interval from 0.5 meters to 1000
meters. The distances are normalized between 0 and 1.
Everything closer the low frustum bound is sensed as O.
Everything further than upper frustum bound is sensed as 1.

Computing hotspot location requires translation of posi-
tion of the selected pixel from log to linear metric with
subsequent translation of the linear pixel position into the
spherical angles specific to camera angle of view and the
resolution.

x,=P,*R,, (3.6.52)
¥.=P,*R, (3.6.5b)
Where:

(P, P,) is the position of the selected hotspot translated from
log to linear metric

(R,R,) is the resolution in radians/pixel in x and y direction
correspondingly.

R, and R, can be determined from the size of the image (S,
S,) and the size of the field of view (V, V), which for our
simulation was set to (600,600) and (7/2, 7t/2) correspond-
ingly.

P, and P, are computed using reverse log-polar mapping as
following

10

15

20

25

30

35

40

45

50

55

60

o
o

22

[i j1dG, <Ry dli,) =~ (i=i0)* + (= jo)* |

byld(, j) = Ry d(i, j) =In d(x. y)

(3.6.6)
(PyPy) = {

Where:
[1j] is a hotspot location (row, column) in log-polar view in
the camera-centered frame of reference

max(Ws, Hy) .
Rr=—%g =73

Sy
H, = 2Ry log(ﬁ + 1]; W, =
f

R,is foveal radius as percentage of entire retina.
W, and H_ correspond to log-polar mapping of the image
sensor dimensions (S,, S,)

When an object, whose shape is defined by the shroud is
learned by the What system, its location and the shroud is
stored in the Object Memory in allocentric coordinates
[X,Y.,Z]. The allocentric coordinate system is aligned with
the initial robot location and orientation so the Z axis is
aligned with the heading of the robot.

Mapping Location from Allocentric to the Camera-Cen-
tered Frame of Reference

Pixel location in camera-centered coordinates (x,, y,) can
be computed from its egocentric Cartesian coordinates (X,
Yo Zo) as following:

E, than,l)yc_o (3.6.7a)
0
Xg = R
E, +COS—1%) (3.6.7b)
Vs = R

Where:
d:\/x02+y02+zo2 is the distance to the point (x; y,) in the
egocentric coordinates.
R,, and R, is the resolution in radians/pixel in x and y

direction correspondingly.
E, and B, are camera position in egocentric coordinates

Xo X, (8)
Yo | = IRal x| Yo |=T4
Yo Z,
Where:
Xo
Y,
Z,

Position vector in the allocentric frame of reference.
IR | robot rotation matrix in allocentric coordinates

T, is the robot translation vector in egocentric coordi-
nates, which can be obtained directly from the GPS system
in virtual environment.

US 9,626,566 B2

23

OpenEye Implementation of Temporal Continuity

In OpenEye, temporal continuity is based on the ability to
learn the location of the object selected during the foveation
(camera movement) cycle. The location is learned by trans-
lating pixel position corresponding to the object in the
camera-centered coordinates into object location in allocen-
tric coordinates. This is done using equations (3.6.1)-(3.6.6).

To ensure awareness of previously learned objects, their
locations is translated from allocentric coordinates stored in
object memory into camera-centered representation at each
foveation cycle using equations (3.6.7) and (3.6.8).

Similarly to objects, hot spot pixel position is translated to
allocentric coordinates using equations (3.6.1)-(3.6.5) In the
next foveation cycle, the position of hotspot is recomputed
using equations (3.6.6) and (3.6.7) forming the shroud
around the foveated object by seeded filling-in starting from
the hotspot selected at the previous foveation cycle

Foveation Memory (250)

The term “foveation” adopted below is borrowed from the
neuroscience literature, where foveation represents the loca-
tion of eye fixation. Foveation memory in OpenEye repre-
sents past foveation activity over the visual image. When
OpenEye operates on static images, foveation means sam-
pling of the image, at a particular (foveated) location.
Usually size of the sampled image is much smaller than the
entire image(scene) size. When OpenEye operates in real 3D
or virtual environment, foveation is sampling of that envi-
ronment as the result of real or virtual camera movement.
The visual memory is maintained over the spatial area that
depends on the environment. It could amount to the entire
image as in the case of static scene environment, or over the
region of space that is currently in the view as in the case of
movies or virtual environment. Foveation memory inhibits
foveations at the locations that have been foveated in the
past. After making a camera movement, OpenEye sets
foveation activity at the maximum value (255), this activity
decays with each foveation and eventually, when it decays
to 0, the location is enabled for new foveations. The Fove-
ation Memory is maintained in the image-centered coordi-
nate frame. However, the input (Sensor Position, 150) is
provided in ego-centered coordinates.

The history gets updated with each new foveation cycles.
The decay is implemented as a decrement by one with each
foveation step. Initial value immediately after foveation is
set to FMAX. This means that the same location cannot be
foveated at least the next FMAX cycles.

Input:
Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
Sensor Vector 0 Unsigned, 2 Cartesian Ego-
Position Byte centered
L =1[xv]
Foveation Scalar [W,H,] Unsigned 0 Cartesian Image-
Memory Field Byte centered
%
Output:
Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
Foveation Scalar [W,;H,] Unsigned 0 Cartesian Image-
Memory Field Byte centered
o

5

10

20

30

40

45

50

60

65

24
Processing:
O=I4255* K (x,y)-1,
where, K(x,y) is a Gaussian kernel centered at location [Xx,

y], which effectively inhibits location around [x,y] by adding
them to the foveation memory

K(x,y) =
1 L2
e202 D\2 D\2
2 PN = i_ 2 S T —4- D=
2ro ‘ d<Dd(i, j)= (l 2) +(/ 2) s O =4D=1.
0 otherwise

Inhibition of Return (220)

The purpose of the Inhibition of Return module (220) is
to prevent repeated foveations at the same spatial location.
To achieve that this module extracts the section of the
foveation history around the next foveation location that
falls in the view of the next saccade.

Input:
Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
Sensor Vector 0 Unsigned, 2 Cartesian Ego-
Position Byte centered
L=[xv]
Foveation Scalar [W/H;] Unsigned 0 Cartesian Image-
Memory Field Byte centered
I
Output:
Data Element
Data Dimen- Element Dimen-
Name Type sions Type sions Metric Base
Inhibition Scalar [W, H] Unsigned 0 Cartesian ~ Sensor-
of return Field Byte centered
O
Processing:
{If(X, NO<X<W;0<Y<H
0X>01X>W|Y<0|Y>H
where
Y=y+i-ip X=x+j-jo;
LU= (WD)
0= T Jo= Y
What System (150)

The What System (150) learns the identities of objects and
visual scenes. The What System may, for example, group
object views and learn them as a unified entity; maintain a
lifelong memory while preventing memory degradation and
saturation; make inferences about views acquired from the
Where System, which objects they belong to, and the names
associated with those objects; bias camera movements in the
Where System in order to intelligently guide image sam-
pling; and provide an interface by which an external user can
communicate with and leverage the system’s knowledge.

The What System is implemented as a series of hierar-
chically organized classifiers that perform unsupervised

US 9,626,566 B2

25

view clustering, classification of view categories into object
categories based on the reset signal from the Where System,
and supervised or unsupervised categorization of objects
into name categories. After learning occurs, the activation of
a name category primes the What system by inhibiting those
objects and views that are not associated with that name
category, further tuning the system by discouraging views
from being shared between multiple objects and names. The
activation of a name category can come from a bottom-up
activation of a newly viewed object, persistent activation
caused by a previously viewed object, or through external
activation by another system or user. This external activation
is provided by a Teacher (160) that represents the correct
name of the foveated object to aid learning. OpenEye does
not function in different modes to facilitate training or
testing mechanisms, and it does not require a reset of the
system upon transition to a new scene. FIG. 3 highlights the
high level system diagram of the What Pathway (170),
which includes the What System (150) and the Teacher
(160).

The inspiration for hierarchical clustering of views into
objects and names is detailed in the ARTScan model of
visual learning (Fazl, Grossberg, and Mingolla, 2009). The
Adaptive Resonance Theory (ART) learning scheme has
been altered from this work by replacing the learning system
of the view layer with a variant of Fuzzy Simplified ART
(F-sART; Baraldi and Alpaydin, 1998).

The View layer (280) clusters shroud-gated visual repre-
sentations of object views according to their feature simi-
larity. The Object layer (290) learns pose-invariant object
representations by associating different view prototypes
according to their temporal continuity provided by the reset
signal from the Where system. The Name layer (300) further
groups different objects under the same user label if given
from an optionally present Teacher (160). As an external
teacher shapes the association between objects and their
labels, this information is fed back from the Name layer to
the Object and View layers to improve the speed and
accuracy of future object learning.

Disambiguation Map (310)

This section describes in detail the Disambiguation Map
as introduced by Sherbakov et al. (2013a, b). A single input
view passed to the What System can activate multiple view,
object, and name nodes. Although the output of each of these
layers is sparse, the system output can occasionally be
unsure about object identity in the absence of an external
teacher. This is called “object ambiguity”, as a single view
of an object can be associated with many objects.

To facilitate object disambiguation, OpenEye uses a
novel, dynamically constructed, disambiguation map that
suggests potential saccade targets to the Where Pathway that
would maximally inform the What System as to which of the
potential object representations best matches the actual
viewed object. This map compares those views within the
resonant domain that are activating disparate object catego-
ries, and activates the disambiguation map in the areas
where input and view prototypes disagree.

The map is currently defined as the weighted average of

the feature differences between the input X and weight

templates ijv, where each template is mixed only if a view
v, in the resonant domain is coactive with its associated
object category o,” Specifically, the disambiguation map y
is defined as

5

10

15

20

25

30

35

40

45

50

55

60

65

26

v = (280.7)
%_]ojvj W, -%

3=
LoYv;
J

where 0" is the feedback activity of the object category
layer to a particular view category j, whose activities are
given by

V=, (W0). (280.72)

Note that equation 280.7 could be modified to include
multiple features by including a sum over features m.

Alternative OpenEye What System: Stable Sparse Coding

FIG. 4 shows an alternative classifier architecture for the
view layer 280 and object layer 290 in FIG. 3. This alter-
native classifier architecture goes beyond the Fuzzy Simpli-
fied ART (f-sART; Baraldi and Alpaydin, 1998). FIG. 4
shows that this alternative classifier is organized in several
submodules that mimic some properties of the respective
cortical and subcortical areas that they are named after (FIG.
4):

Thalamus layer (400)

Basal Forebrain (410)

Layer 4 (420)

Layer 2/3 (430).

As shown in FIG. 4, the thalamus layer 400 receives or
obtains input from a sensor—in this case, image data, such
as still pictures or video, from the RGB sensor 100. The
thalamus layer 400 pre-processes the sensor data and pro-
vides inputs to Layer 4 (420) and the Basal Forebrain (100).
Layer 4 learns online to represent its input (400), whereas
Basal Forebrain (410) regulates learning in (420). Layer 2/3
(430) maps the learned representation in Layer 4 (420) to
discrete classes which can be defined by a teacher (160)

One example of this system has been reduced to practice
in a synthetic alphabet dataset comprised of an 28 by 28=784
input image, where 2N=1568 is the total size of the input
image in (100) after complement coding, R=400 is the
number of coding cells (410), and M=26 is the size of layer
2/3 (430).

Thalamus (400)

Unsupervised learning of a sparse encoder occurs in the
synapses between thalamus (400) and Layer 4 (410). The
sensor input, I, is processed through (400) as a shunting
network, X, intended to represent the on-center off-surround
processing in the thalamic relay cells. The inputs (100) and
Thalamus (400) are represented here as two-dimensional
fields with indices i and j, which run from 1 to n (28). The
thalamus (400) includes two channels, light and dark, that
receive the positive input and its complement, respectively.
The activities are denoted x” for the light channel and x” for
the dark channel:

i W

L
e —axf + Egi,j,k,l(B = X)) -

DafEh (o) + E(C = By Y, s,
and

P @

—r = |l + 2B =X)L = l) =

DAl jui(xf) + E(C =)Zw‘-j,y,]/rx,

US 9,626,566 B2

27
where o, =0.4, B=1, C=-0.1, D=0.05, E=0.15, T =6 and g
is a Gaussian function of the difference between i and k
centered around O (mean) with a width of 0.4 (the standard
deviation), h is a likewise function of a width 2.8. The
parameter C corresponds to a hyperpolarization value.

Basal Forebrain (410)

The basal forebrain includes a single cell (b, a) which
responds to fluctuations in the activities of thalamic cells
(400) from both channels:

db

dt

©)

X

-b+ G%;W]/Tb’ and

B Xij Xij (C)]
a= ‘eau(cgﬁ —b]+H:zjz(—N —v)‘,

where G=2, V=0.00001, H=1.8, t,=1/0.13, &,=0.009,
and a represents the cholinergic signal. The function 1 is a
threshold linear function that nullifies all negative values:

fo = u,u>0 (5)
@W=10u<0"

This cholinergic signal drives a slower signal that bio-
logically might correspond to muscarinic receptor activa-
tion:

da -a+Ja (6)
— = ,and

dr Tz

a=1Ia) +e,, (7

where J=0.9, 7-=20, and &=0.001.
Layer 4 (420)
The activities at cortical coding cells in layer 4 (y)

fluctuate based on their thalamic input (x), lateral inhibition
and modulation (420):

(8
xij

Yr
2T i+ Twe
T [fy(t,+‘_jww

+§qxryx] =€y a+ay)|Ty,

where C,=3.1, a,, =0.001, and t,=2.5. The signal function
is a logistic function:

(©)]
fy(u) = m,

where B,=30. Layer 4 cortical activity must exceed a
threshold before it affects learning or it is transmitted back
to thalamus:

10

1,y 205
v,=4 7)
0,y,<0.5

10

15

20

25

30

35

40

45

50

55

60

65

28

Excitability homeostasis occurs at Layer 4 (v, Y) neurons
by adaptive thresholds (t):

% _ (Yr=p)Cra+0r)
dr ~ T

an

where C=0.6, 0,=0.3, t,=1/0.06, and p is the sparseness
parameter, set to 0.05. The values for t; are set to random
values uniformly chosen from the range 0.5 to 2.3. The
learning from Thalamic neurons (x, 400) to Layer 4 neurons
(v, Y, 420) is governed by:

(12

Wi
ar - AL x5 | =wyir)Y)T,

where t,,=384. The lateral inhibition (q) at Layer 4 (v, Y)
is adaptive (an “anti-Hebbian” law):

a3

s _

- MY, Y, - o), .

where t,=167. The learning rate A is a function of the
strength of feedback and the ratio of cholinergic modulation:

a 14

ae o[z e d
-1|(z=r)1 reg re

ijr

where [.=0.12, C,=0.04, and &,=0.005.

Layer 2/3 (430)

In this system, supervised learning of visual categories
occurs in the synapses between later 4 (420) and layer 2/3
(430). Specifically, layer 2/3 neurons (z, 430) use a variant
of the recurrent shunting on-center off-surround network:

(15)
Tegy =%t (B =2m)

D,
T+ foan) + FZwmyr} -

Zm

Cl=Tp) +Zfz(zk>}.
k

where ., =0.2, B=1, t,=1/0.75, D,=120, C,=0.1 and T is
the aforementioned supervision, or Teacher (160), vector
(i.e. the truth or target output). The supervision, therefore,
acts as an input to the Layer 2/3 cells. It does not directly
appear in the synaptic learning law. In this way, the full
circuit is stackable in a hierarchical way. Higher cortical
areas can simply send feedback that acts as this supervision
signal. The signal function is a logistic function:

1 (16)
T+ e oy’

Jolw) =

where 0,=0.65 and B,=15, and corresponds to slope and
threshold, respectively. The learning from Layer 4 neurons
(v, Y) to Layer 2/3 neurons (z) is governed by:

dwm
Ty—— =

dt

an

US 9,626,566 B2

29
-continued
2
/\w(% - wm)f(zm) £+ Z Lz | + wrm[ﬁw - Z ‘”""Z'”]
- 7

where A,=0.6, B,=0.04 (400*0.0001), T,=1/0.002, and
€,,=0.001.

CONCLUSION

While various inventive embodiments have been
described and illustrated herein, those of ordinary skill in the
art will readily envision a variety of other means and/or
structures for performing the function and/or obtaining the
results and/or one or more of the advantages described
herein, and each of such variations and/or modifications is
deemed to be within the scope of the inventive embodiments
described herein. More generally, those skilled in the art will
readily appreciate that all parameters, dimensions, materials,
and configurations described herein are meant to be exem-
plary and that the actual parameters, dimensions, materials,
and/or configurations will depend upon the specific appli-
cation or applications for which the inventive teachings
is/are used. Those skilled in the art will recognize, or be able
to ascertain using no more than routine experimentation,
many equivalents to the specific inventive embodiments
described herein. It is, therefore, to be understood that the
foregoing embodiments are presented by way of example
only and that, within the scope of the appended claims and
equivalents thereto, inventive embodiments may be prac-
ticed otherwise than as specifically described and claimed.
Inventive embodiments of the present disclosure are directed
to each individual feature, system, article, material, kit,
and/or method described herein. In addition, any combina-
tion of two or more such features, systems, articles, mate-
rials, kits, and/or methods, if such features, systems, articles,
materials, kits, and/or methods are not mutually inconsis-
tent, is included within the inventive scope of the present
disclosure.

The above-described embodiments can be implemented
in any of numerous ways. For example, embodiments of
designing and making the technology disclosed herein may
be implemented using hardware, software or a combination
thereof. When implemented in software, the software code
can be executed on any suitable processor or collection of
processors, whether provided in a single computer or dis-
tributed among multiple computers.

Further, it should be appreciated that a computer may be
embodied in any of a number of forms, such as a rack-
mounted computer, a desktop computer, a laptop computer,
or a tablet computer. Additionally, a computer may be
embedded in a device not generally regarded as a computer
but with suitable processing capabilities, including a Per-
sonal Digital Assistant (PDA), a smart phone or any other
suitable portable or fixed electronic device.

Also, a computer may have one or more input and output
devices. These devices can be used, among other things, to
present a user interface. Examples of output devices that can
be used to provide a user interface include printers or display
screens for visual presentation of output and speakers or
other sound generating devices for audible presentation of
output. Examples of input devices that can be used for a user
interface include keyboards, and pointing devices, such as
mice, touch pads, and digitizing tablets. As another example,
a computer may receive input information through speech
recognition or in other audible format.

10

15

20

25

30

35

40

45

50

55

60

65

30

Such computers may be interconnected by one or more
networks in any suitable form, including a local area net-
work or a wide area network, such as an enterprise network,
and intelligent network (IN) or the Internet. Such networks
may be based on any suitable technology and may operate
according to any suitable protocol and may include wireless
networks, wired networks or fiber optic networks.

The various methods or processes outlined herein may be
coded as software that is executable on one or more pro-
cessors that employ any one of a variety of operating
systems or platforms. Additionally, such software may be
written using any of a number of suitable programming
languages and/or programming or scripting tools, and also
may be compiled as executable machine language code or
intermediate code that is executed on a framework or virtual
machine.

In this respect, various inventive concepts may be embod-
ied as a computer readable storage medium (or multiple
computer readable storage media) (e.g., a computer memory,
one or more floppy discs, compact discs, optical discs,
magnetic tapes, flash memories, circuit configurations in
Field Programmable Gate Arrays or other semiconductor
devices, or other non-transitory medium or tangible com-
puter storage medium) encoded with one or more programs
that, when executed on one or more computers or other
processors, perform methods that implement the various
embodiments of the invention discussed above. The com-
puter readable medium or media can be transportable, such
that the program or programs stored thereon can be loaded
onto one or more different computers or other processors to
implement various aspects of the present invention as dis-
cussed above.

The terms “program” or “software” are used herein in a
generic sense to refer to any type of computer code or set of
computer-executable instructions that can be employed to
program a computer or other processor to implement various
aspects of embodiments as discussed above. Additionally, it
should be appreciated that according to one aspect, one or
more computer programs that when executed perform meth-
ods of the present invention need not reside on a single
computer or processor, but may be distributed in a modular
fashion amongst a number of different computers or pro-
cessors to implement various aspects of the present inven-
tion.

Computer-executable instructions may be in many forms,
such as program modules, executed by one or more com-
puters or other devices. Generally, program modules include
routines, programs, objects, components, data structures,
etc. that perform particular tasks or implement particular
abstract data types. Typically the functionality of the pro-
gram modules may be combined or distributed as desired in
various embodiments.

Also, data structures may be stored in computer-readable
media in any suitable form. For simplicity of illustration,
data structures may be shown to have fields that are related
through location in the data structure. Such relationships
may likewise be achieved by assigning storage for the fields
with locations in a computer-readable medium that convey
relationship between the fields. However, any suitable
mechanism may be used to establish a relationship between
information in fields of a data structure, including through
the use of pointers, tags or other mechanisms that establish
relationship between data elements.

Also, various inventive concepts may be embodied as one
or more methods, of which an example has been provided.
The acts performed as part of the method may be ordered in
any suitable way. Accordingly, embodiments may be con-

US 9,626,566 B2

31

structed in which acts are performed in an order different
than illustrated, which may include performing some acts
simultaneously, even though shown as sequential acts in
illustrative embodiments.

All definitions, as defined and used herein, should be
understood to control over dictionary definitions, definitions
in documents incorporated by reference, and/or ordinary
meanings of the defined terms.

The indefinite articles “a” and “an,” as used herein in the
specification and in the claims, unless clearly indicated to
the contrary, should be understood to mean “at least one.”

The phrase “and/or,” as used herein in the specification
and in the claims, should be understood to mean “either or
both” of the elements so conjoined, i.e., elements that are
conjunctively present in some cases and disjunctively pres-
ent in other cases. Multiple elements listed with “and/or”
should be construed in the same fashion, i.e., “one or more”
of'the elements so conjoined. Other elements may optionally
be present other than the elements specifically identified by
the “and/or” clause, whether related or unrelated to those
elements specifically identified. Thus, as a non-limiting
example, a reference to “A and/or B”, when used in con-
junction with open-ended language such as “comprising”
can refer, in one embodiment, to A only (optionally includ-
ing elements other than B); in another embodiment, to B
only (optionally including elements other than A); in yet
another embodiment, to both A and B (optionally including
other elements); etc.

As used herein in the specification and in the claims, “or”
should be understood to have the same meaning as “and/or”
as defined above. For example, when separating items in a
list, “or” or “and/or” shall be interpreted as being inclusive,
i.e., the inclusion of at least one, but also including more
than one, of a number or list of elements, and, optionally,
additional unlisted items. Only terms clearly indicated to the
contrary, such as “only one of” or “exactly one of,” or, when
used in the claims, “consisting of,” will refer to the inclusion
of exactly one element of a number or list of elements. In
general, the term “or” as used herein shall only be inter-
preted as indicating exclusive alternatives (i.e. “one or the
other but not both”) when preceded by terms of exclusivity,
such as “either,” “one of,” “only one of,” or “exactly one of.”
“Consisting essentially of,” when used in the claims, shall
have its ordinary meaning as used in the field of patent law.

As used herein in the specification and in the claims, the
phrase “at least one,” in reference to a list of one or more
elements, should be understood to mean at least one element
selected from any one or more of the elements in the list of
elements, but not necessarily including at least one of each
and every element specifically listed within the list of
elements and not excluding any combinations of elements in
the list of elements. This definition also allows that elements
may optionally be present other than the elements specifi-
cally identified within the list of elements to which the
phrase “at least one” refers, whether related or unrelated to
those elements specifically identified. Thus, as a non-limit-
ing example, “at least one of A and B” (or, equivalently, “at
least one of A or B,” or, equivalently “at least one of A and/or
B”) can refer, in one embodiment, to at least one, optionally
including more than one, A, with no B present (and option-
ally including elements other than B); in another embodi-
ment, to at least one, optionally including more than one, B,
with no A present (and optionally including elements other
than A); in yet another embodiment, to at least one, option-
ally including more than one, A, and at least one, optionally
including more than one, B (and optionally including other
elements); etc.

25

30

40

45

32

In the claims, as well as in the specification above, all
transitional phrases such as “comprising,” “including,” “car-
rying,” “having,” “containing,” “involving,” “holding,”
“composed of,” and the like are to be understood to be
open-ended, i.e., to mean including but not limited to. Only
the transitional phrases “consisting of” and “consisting
essentially of” shall be closed or semi-closed transitional
phrases, respectively, as set forth in the United States Patent
Office Manual of Patent Examining Procedures, Section
2111.03.

29 <

REFERENCES

The following references are incorporated herein by ref-
erence in their respective entireties:

Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J.,
& Ogden, J. M. (1984). Pyramid methods in image
processing. RCA engineer, 29(6), 33-41.

Baraldi, A. and Alpaydin, E. (1998). Simplified ART: A new
class of ART algorithms. International Computer Science
Institute, Berkeley, Calif., TR-98-004, 1998.

Baraldi, A. and Alpaydin, E. (2002). Constructive feedfor-
ward ART clustering networks—Part 1. [EEE Transac-
tions on Neural Networks 13(3), 645-661.

Baraldi, A. and Parmiggiani, F. (1997). Fuzzy combination
of Kohonen’s and ART neural network models to detect
statistical regularities in a random sequence of multi-
valued input patterns. In International Conference on
Neural Networks, IEEE.

Bengio, Y., Courville, A., & Vincent, P. (2013). Represen-
tation learning: A review and new perspectives.

Besl, P. J., & Jain, R. C. (1985). Three-dimensional object
recognition. ACM Computing Surveys (CSUR), 17(1),
75-145.

Bradski, G., & Grossberg, S. (1995). Fast-learning
VIEWNET architectures for recognizing three-dimen-
sional objects from multiple two-dimensional views. Neu-
ral Networks, 8 (7-8), 1053-1080.

Canny, J., A (1986) Computational Approach To Edge
Detection, [EEE Trans. Pattern Analysis and Machine
Intelligence, 8(6):679-698. Carpenter, G. A. and Gross-
berg, S. (1987). A massively parallel architecture for a
self-organizing neural pattern recognition machine. Com-
puter Vision, Graphics, and Image Processing 37, 54-115.

Carpenter, G. A., & Grossberg, S. (1987). A massively
parallel architecture for a self-organizing

Carpenter, G. A., and Grossberg, S. (1995). Adaptive reso-
nance theory (ART). In M. Arbib (Ed.), The handbook of
brain theory and neural networks. (pp. 79-82). Cam-
bridge, M. A.: MIT press.

Carpenter, G. A., Grossberg, S. and Rosen, D. B. (1991).
Fuzzy ART: Fast stable learning and categorization of
analog patterns by an adaptive resonance system. Neural
Networks 4, 759-771.

Dosher, B. A., and Lu, Z. L. (2010). Mechanisms of per-
ceptual attention in precuing of location. Vision Res.,
40(10-12). 1269-1292.

Fazl, A., Grossberg, S., and Mingolla, E. (2009). View-
invariant object category learning, recognition, and
search: How spatial and object attention are coordinated
using surface-based attentional shrouds. Cognitive Psy-
chology 58, 1-48.

Foldiak, P. (1990). Forming sparse representations by local
anti-Hebbian learning, Biological Cybernetics, vol. 64,
pp. 165-170.

US 9,626,566 B2

33

Friston K., Adams R., Perrinet L., & Breakspear M. (2012).
Perceptions as hypotheses: saccades as experiments.
Frontiers in Psychology, 3 (151), 1-20.

Geiger A, Lenz P, and Urtasun R (2012). Are we ready for
autonomous driving? The KITTI vision benchmark suite.
In Computer Vision and Pattern Recognition (CVPR),
Providence, USA.

George, D. and Hawkins, J. (2009). Towards a mathematical
theory of cortical micro-circuits. PLoS Computational
Biology 5(10), 1-26.

Grossberg, S. (1973). Contour enhancement, short-term
memory, and constancies in reverberating neural net-
works. Studies in Applied Mathematics 52, 213-257.

Grossberg, S., and Huang, T. R. (2009). ARTSCENE: A
neural system for natural scene classification. Jourral of
Vision, 9 (4), 6.1-19. doi:10.1167/9.4.6

Grossberg, S., and Versace, M. (2008) Spikes, synchrony,
and attentive learning by laminar thalamocortical circuits.
Brain Research, 1218C, 278-312 [Authors listed alpha-
betically].

Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast
learning algorithm for deep belief nets. Neural Compu-
tation, 18, 1527-1554.

Itti, L., and Koch, C. (2001). Computational modelling of
visual attention. Nature Reviews Neuroscience, 2 (3),
194-203.

Itti, L., Koch, C., and Niebur, E. (1998). A Model of
Saliency-Based Visual Attention for Rapid Scene Analy-
sis, 1-6.

Jarrett, K., Kavukcuoglu, K., Ranzato, M. A., & LeCun, Y.
(2009, September). What is the best multi-stage architec-
ture for object recognition?. In Computer Vision, 2009
IEEE 12th International Conference on (pp. 2146-2153).
IEEE.

Kowler, E. (2011). Eye movements: The past 25 years.
Vision Research, 51(13), 1457-1483. doi:10.1016/
j-visres.2010.12.014

Larochelle H., & Hinton G. (2012). Learning to combine
foveal glimpses with a third-order Boltzmann machine.
NIPS 2010, 1243-1251.

LeCun, Y., Kavukcuoglu, K., & Farabet, C. (2010, May).
Convolutional networks and applications in vision. In
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE
International Symposium on (pp. 253-256). IEEE.

Lee, D. D. and Seung, H. S. (1999). Learning the parts of
objects by non-negative matrix factorization. Nature, 401
(6755):788-791.

Lee, D. D., and Seung, H. S. (1997). “Unsupervised learning
by convex and conic coding.” Advances in Neural Infor-
mation Processing Systems, 9.

Lowe, D. G. (2004). Distinctive Image Features from Scale-
Invariant Keypoints. Journal International Journal of
Computer Vision archive Volume 60, 2, 91-110.

Lu, Z. L., Liu, J., and Dosher, B. A. (2010) Modeling
mechanisms of perceptual learning with augmented Heb-
bian re-weighting. Vision Research, 50(4). 375-390.

Mishkin M, Ungerleider L. G. (1982). “Contribution of
striate inputs to the visuospatial functions of parieto-
preoccipital cortex in monkeys,” Behav Brain Res, 6 (1):
57-77.

Najemnik, J., and Geisler, W. (2009). Simple summation
rule for optimal fixation selection in visual search. Vision
Research. 49, 1286-1294.

neural pattern-recognition machine. Computer Vision
Graphics and Image Processing, 37 (1), 54-115.

10

15

30

40

45

55

65

34

Oja, E. (1982). Simplified neuron model as a principal
component analyzer. Journal of Mathematical Biology
15(8), 267-273.

Pessoa L, Thompson E, and No& A (1998). Finding out about
filling-in: A guide to perceptual completion for visual
science and the philosophy of perception. Behavioral and
Brain Sciences 21(6), 723-748.

Raijmakers, M. E. J., and Molenaar, P. (1997). Exact ART:
A complete implementation of an ART network Neural
networks 10 (4), 649-669.

Ranzato, M. A., Huang, F. J., Boureau, Y. L., & Lecun, Y.
(2007, June). Unsupervised learning of invariant feature
hierarchies with applications to object recognition. In
Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on (pp. 1-8). IEEE.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models
of object recognition in cortex. Nature Neuroscience, 2
(11), 1019-1025.

Riesenhuber, M., & Poggio, T. (2000). Models of object
recognition. Nature neuroscience, 3, 1199-1204.

Rublee E, Rabaud V, Konolige K, and Bradski G (2011).
ORB: An efficient alternative to SIFT or SURF. In /EEE
International Conference on Computer Vision (ICCV),
2564-2571.

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011).
ORB: An efficient alternative to SIFT or SURF. In /EEE
International Conference on Computer Vision (ICCV)
2011, 2564-2571.

Rumelhart D., Hinton G., and Williams, R. (1986). Learning
internal representations by error propagation. In Parallel
distributed processing: explorations in the microstructure
of cognition, vol. 1, MIT Press.

Russell B, Torralba A, Murphy K, and Freeman W T (2008).
LabelMe: A database and web-based tool for image
annotation. International Journal of Computer Vision
77(1-3), 157-173.

Salakhutdinov, R., & Hinton, G. E. (2009). Deep boltzmann
machines. In International Conference on Artificial Intel-
ligence and Statistics (pp. 448-455).

Seibert, M., & Waxman, A. M. (1992). Adaptive 3-D Object
Recognition from Multiple Views. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 14 (2), 107-
124.

Sherbakov, L., Livitz, G., Sohail, A., Gorchetchnikov, A.,
Mingolla, E., Ames, H., and Versace, M. (2013a) CogEye:
An online active vision system that disambiguates and
recognizes objects. NeuComp 2013.

Sherbakov, L., Livitz, G., Sohail, A., Gorchetchnikov, A.,
Mingolla, E., Ames, H., and Versace, M (2013b) A
computational model of the role of eye-movements in
object disambiguation. Cosyne, Feb. 28-Mar. 3, 2013. Salt
Lake City, Utah, USA.

Smolensky, P. (1986). Information processing in dynamical
systems: Foundations of harmony theory. In D. E. Rumel-
hartand J. L. McClelland, editors, Parallel Distributed
Processing, volume 1, chapter 6, pages 194-281. MIT
Press, Cambridge.

Spratling, M. W. (2008). Predictive coding as a model of
biased competition in visual attention. Vision Research,
48(12):1391-1408.

Spratling, M. W. (2012). Unsupervised learning of genera-
tive and discriminative weights encoding elementary
image components in a predictive coding model of cor-
tical function. Neural Computation, 24(1): 60-103.

US 9,626,566 B2

35

Spratling, M. W., De Meyer, K., and Kompass, R. (2009).
Unsupervised learning of overlapping image components
using divisive input modulation. Computational intelli-
gence and neuroscience.

Tong, F., Ze-Nian Li, (1995). Reciprocal-wedge transform
for space-variant sensing,” Pattern Analysis and Machine
Intelligence, IEEE Tramsactions omn, vol. 17, no. 5, pp.
500-51. doi: 10.1109/34.391393

Torralba, A., Oliva, A., Castelhano, M. S., Henderson, J. M.
(2006). Contextual guidance of eye movements and atten-
tion in real-world scenes: the role of global features in
object search. Psychological Review, 113(4).766-786.

Versace, M. (2006) From spikes to interareal synchrony:
how attentive matching and resonance control learning
and information processing by laminar thalamocortical
circuits. NSF Science of Learning Centers PI Meeting,
Washington, D.C., USA.

Webster, Bachevalier, Ungerleider (1994). Connections of
IT areas TEO and TE with parietal and frontal cortex in
macaque monkeys. Cerebal Cortex, 4(5), 470-483.

The invention claimed is:

1. A system comprising:

an image sensor to acquire a plurality of images of at least

a portion of an environment surrounding a robot; and

a processor, operably coupled to the image sensor, to:

translate each image in the plurality of images from a
frame of reference of the image sensor to an allo-
centric frame of reference;

identify a position, in the allocentric frame of reference,
of an object appearing in at least one image in the
plurality of images; and

determine if the object appears in at least one other
image in the plurality of images based on the posi-
tion, in the allocentric frame of reference, of the
object.

2. The system of claim 1, wherein the processor is
configured to translate the at least one image from the frame
of reference of the image sensor to an allocentric frame of
reference by:

translating each image in the plurality of images from the

frame of reference of the image sensor to an egocentric
frame of reference based on a position and/or an
orientation of the image sensor in the egocentric frame
of reference, the egocentric frame of reference being
defined with respect to the robot; and

translating each image in the plurality of images from the

egocentric frame of reference to the allocentric frame
of reference.

3. The system of claim 1, wherein the processor is
configured to identify the position in the allocentric frame of
reference of the object by:

generating a segmented version of the at least one image

in the plurality of images; and

determining at least one spatial shroud fitting a form of the

object based at least in part on the segmented version
of the at least one image.

4. The system of claim 3, wherein the processor is
configured to determine if the object appears in at least one
other image in the plurality of images at least in part on by:

applying the at least one spatial shroud to the other image

in the plurality of images.

5. The system of claim 1, wherein the processor is
configured to:

map the position, in the allocentric frame of reference, of

the object to coordinates in the frame of reference of the
image sensor; and

10

15

20

25

30

35

40

45

50

55

65

36

determine a change to a position and/or an orientation of
the image sensor based at least in part on the coordi-
nates in the frame of reference of the image sensor.

6. The system of claim 5, further comprising:

an actuator, operably coupled to the processor and to the
image sensor, to adjust a field of view of the image
sensor based at least in part on the change to the
position and/or the orientation of the image sensor, and

wherein the image sensor is configured to acquire a
subsequent image in the plurality of images in response
to adjustment of the field of view.

7. A method of locating an object with respect to a robot,

the method comprising:

(A) acquiring, with a image sensor coupled to the robot,
a plurality of images of at least a portion of an envi-
ronment surrounding the robot;

(B) automatically translating each image in the plurality
of images from a frame of reference of the image sensor
to an allocentric frame of reference;

(C) identifying a position, in the allocentric frame of
reference, of an object appearing in at least one image
in the plurality of images; and

(D) determining if the object appears in at least one other
image in the plurality of images based on the position,
in the allocentric frame of reference, of the object.

8. The method of claim 7, wherein (B) comprises:

(B1) translating each image in the plurality of images
from the frame of reference of the image sensor to an
egocentric frame of reference based on a position
and/or an orientation of the image sensor in the ego-
centric frame of reference, the egocentric frame of
reference being defined with respect to the robot; and

(B2) translating each image in the plurality of images
from the egocentric frame of reference to the allocen-
tric frame of reference.

9. The method of claim 7, wherein (C) comprises:

(C1) generating a segmented version of a first image in the
plurality of images; and

(C2) determining a spatial shroud fitting a form of the
object based at least in part on the segmented version
of the first image.

10. The method of claim 9, further comprising:

(E) mapping the position, in the allocentric frame of
reference, of the object to coordinates in the frame of
reference of the image sensor; and

(F) determining a change to a position and/or an orien-
tation of the image sensor based at least in part on the
coordinates in the frame of reference of the image
sensor.

11. The method of claim 10, wherein (F) further com-
prises positioning and/or orienting the image sensor away
from the object.

12. The method of claim 10, wherein (F) further com-
prises positioning and/or orienting the image sensor to
acquire another image of the object.

13. The method of claim 10, wherein:

(D) comprises translating and/or transforming the spatial
shroud based at least in part on the change in the
position and/or the orientation of the image sensor
determined in (F), and

(C) comprises determining if the spatial shroud fits the
form of the object in a segmented version of a second
image in the plurality of images.

14. The method of claim 13, wherein (D) further com-

prises:

(D3) identifying at least one feature of the object in the
first image; and

US 9,626,566 B2
37 38

(D4) comparing the at least one feature to a plurality of
features identified in other images in the plurality of
images.

15. The method of claim 10, further comprising:

(G) adjusting a field of view of the image sensor based at 5
least in part on the change to the position and/or the
orientation of the image sensor.

16. The method of claim 15, wherein (A) comprises:

acquiring a subsequent image in the plurality of images in
response to adjustment of the field of view. 10

#* #* #* #* #*

	9626566-p0001.pdf
	9626566-p0002.pdf
	9626566-p0003.pdf
	9626566-p0004.pdf
	9626566-p0005.pdf
	9626566-p0006.pdf
	9626566-p0007.pdf
	9626566-p0008.pdf
	9626566-p0009.pdf
	9626566-p0010.pdf
	9626566-p0011.pdf
	9626566-p0012.pdf
	9626566-p0013.pdf
	9626566-p0014.pdf
	9626566-p0015.pdf
	9626566-p0016.pdf
	9626566-p0017.pdf
	9626566-p0018.pdf
	9626566-p0019.pdf
	9626566-p0020.pdf
	9626566-p0021.pdf
	9626566-p0022.pdf
	9626566-p0023.pdf
	9626566-p0024.pdf
	9626566-p0025.pdf
	9626566-p0026.pdf
	9626566-p0027.pdf
	9626566-p0028.pdf
	9626566-p0029.pdf
	9626566-p0030.pdf

