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Abstract:  There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) 

to measure biological responses potentially relevant to those expected during a human mission to 

Mars.  Such experiments could be payloads onboard precursor missions, including unmanned private-

public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for 

"biosentinel" type missions.  Designing such experiments requires knowledge of the radiation 

environment and its interactions with both the spacecraft and the experimental payload.  Information 

is provided here that is useful for designing such experiments. 

 

Introduction  

 

 Understanding the impact of the space environment on biological systems is becoming 

particularly important now that extended human missions beyond low Earth orbit (LEO) are being 

planned (NASA 2016). The radiation environment in interplanetary space, including that expected 

during future human missions to Mars, is both quantitatively and qualitatively different from that in 

LEO. The International Space Station (ISS) is a good test platform in LEO to evaluate biological 

responses to various space-flight factors, including microgravity. However, radiation-induced 

biological responses evaluated using experiments on the ISS have been difficult to quantify due to 

low dose rate, relatively few high-LET particles, and the challenges associated with obtaining suitable 

controls for comparison. This is discussed in a later section "Interplanetary Space vs the International 

Space Station (ISS)". 

 

 Biological experiments as secondary payloads associated with unmanned precursor missions 

are under development to evaluate the space environment beyond LEO and return critical biological 

response information via telemetry (e.g., Bhattacharya et al. 2016).  Such "biosentinel" missions 
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would be relatively low cost and provide flight opportunities, but are technically and scientifically 

challenging. 

 

 The radiation environment in interplanetary space is complex and consists of galactic cosmic 

radiation (GCR), which is slowly varying during an 11-year solar cycle, and an occasional (and not 

yet predictable) solar energetic particle (SEP) event.  Radiation flux (and dose rate) from GCR can 

change by a factor of 2 or more from solar minimum to maximum. The largest dose rate from GCR 

occurs during solar minimum because the Sun’s diminished solar wind permits more charged 

particles from our galaxy to enter our solar system. Large SEP events, although rare, can be very 

intense. For an overview of the space radiation environment and its potential risks to astronauts, the 

reader is referred to Simpson (1983), Townsend (2005), NCRP (2006), Cucinotta et al. (2013), and 

Straume (2015). 

 

 The emphasis here is to provide space-relevant radiation information useful for designing 

biological experiments in space.  To that end, we provide: (a) nuclide-specific dose rates for the GCR 

spectrum in interplanetary space, (b) particle track traversal rates in selected biological targets, (c) 

relationships between particle flux and dose, (d) comparisons of radiation environment in 

interplanetary space with that inside the International Space Station (ISS), (e) implications of particle 

track microstructure, and (f) probability-dose relationships for solar energetic particle events. 

 

Nuclide-Specific Dose Rates 

 

 Listed in Table 1 are nuclide-specific dose rates vs shielding thickness for GCR radiation in 

interplanetary space at 1 astronomical unit (AU).  Absorbed dose (D) rates and dose-equivalent (DE) 

rates were calculated using OLTARIS (Singleterry et al. 2011), a validated web-based radiation 

analysis tool developed by the NASA Langley Research Center. Included are dose rates for selected 

shielding scenarios and the resultant average quality factors based on ICRP (2007). These quantities 

are for the 1977 solar minimum GCR conditions (O'Neill 2010) and are scalable for mission duration 

based on that environment. 

 

 It is observed in Table 1 that some nuclides produce much larger dose rates than others.  This 

is in part because of the well-known "even/odd" effect (Simpson 1983), i.e., even numbered nuclei 

are more stable and therefore relatively more abundant.  The lightest elements (Z = 1-4) are 
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exceptions.  A handful of nuclides in the GCR spectrum contribute most of the dose.  With 1 g/cm2 

Al shielding, 63% of the D rate is contributed by H and He alone.  In contrast, these elements 

contribute less than 20% of the DE rate behind the same shielding. Four nuclides in the GCR 

spectrum (Z = 8, 12, 14, and 26) contribute almost half of the DE.  Of particular note is that Z = 26 

(Fe) contributes almost a quarter of the total DE from GCR for 1 g/cm2 Al shielding. The total D rate 

for the GCR spectrum in interplanetary space (with 1 g/cm2 Al shielding and based on the 1977 solar 

minimum) was calculated to be 0.38 mGy per day.  The D rate obtained from measurements by MSL-

RAD en route to Mars in 2012 was 0.48±0.08 mGy per day (Zeitlin et al. 2013).  Given the 

uncertainties and differences in shielding and solar cycle, these are in reasonable agreement. 

 

 It is also observed in Table 1 that the nuclide-specific D and DE contributions are affected by 

shielding.  Most notable, the DE contribution from neutrons (Z=0) becomes significant with thicker 

shields. Small lightly shielded spacecraft do not result in substantial neutron dose because few 

neutrons are produced via GCR or SEP primary particle interactions and most of those that are 

produced escape the spacecraft before they can deposit their energy. This is illustrated in Fig. 1 for 

GCR and a large SEP event interacting with a spherical shield with radius equal to the listed shield 

thickness.  For GCR, the dose rate without neutron contribution (solid circles) is plotted as a function 

of Al shielding thickness and compared with the dose rate from neutrons produced in the shield (open 

circles). For SEP, the total dose from the event without neutron contribution (solid circles) is plotted 

as a function of Al shielding thickness and compared with the dose from neutrons produced in the 

shield (open circles).   

 

 Effective shielding of small biosentinel spacecraft including their payloads is likely to be only 

a few g/cm2 and therefore not expected to experience much neutron dose.   However, it should be 

noted that deep-space vehicles for future human missions and habitats will likely have thick shielding 

and therefore contributions from neutrons and light ions may dominate the total DE (Norbury and 

Slaba 2014). Such differences will have to be considered when using results obtained from bio-

sentinel missions designed with thin shielding to infer biological responses behind the thicker shields 

expected for human missions (Curtis and Letaw 1989). 
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Figure 1.  The contribution of neutrons to dose as a function of Al shielding thickness for 
GCR and SEP radiation.  The GCR (top) is dose rate based on 1977 solar minimum 
conditions and the SEP (bottom) is total dose for the event based on the uncommonly large 
August 1972 event.  Open circles are for neutrons and closed circles are for dose without 
neutrons.  Calculated using OLTARIS with Al sphere shielding. 
 

 

Particle Track Traversal Rates in Biological Targets 

 

 Table 2 provides the calculated integral flux for each nuclide in GCR and the 

calculated traversals per day for individual cell nuclei (additional considerations are required 

for multiple cells in a sample, as discussed later). For these examples we assumed a spherical 

8 µm diameter mammalian cell nucleus, a 2.5 µm diameter spherical yeast cell nucleus, and 

an 1 µm x 2 µm rod-like bacterium.  The calculations assumed 1977 solar minimum 

conditions (O'Neil 2010) and 1 g/cm2 Al shielding. The nuclide-specific flux can be used to 

estimate traversal rates for any target size, with considerations for shielding, the nature of the 

biological sample, and solar cycle effects on GCR. 
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 It's important to note that in space, particle traversals are essentially random in both 

time and direction and for small biological targets such as cells and organelles the traversals 

are rare (Curtis and Letaw1989).  As seen in Table 2, the expected GCR particle traversal 

rates are substantially less than one per day for any of these biological targets.  For a typical 

mammalian nucleus, the traversal rate is about 1 per week from H plus He but less than 1 per 

year from the heavy ions. For a yeast nucleus it is about one H plus He traversal every two 

months, and for a bacterium it is about one per 5 or 6 months. 

 

 GCR particles are mostly high energy and will pass through the entire biological 

sample in a straight line.  For a three-dimensional multicellular tissue sample or cells in 

suspension, this could result in many cells (nuclei) in the sample being traversed by each 

track.  It is also the case that the radiations in space are omni-directional, which could 

potentially result in two or more tracks passing through the same cell but from different 

directions. As a result, the data in Table 2, while completely correct, must be used with care.  

These values represent the averages for individual cells in a tissue sample that is large 

compared to the distance between individual GCR tracks.  However, when one cell nucleus is 

hit there is a chance that additional cell nuclei along the path of the charged particle will also 

be hit at essentially the same time.  The number of nuclei hit depends on the spacing between 

nuclei and the characteristics of the cosmic ray particle. This is discussed in more detail 

under section "Track Structure Considerations". 
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Table 2. Nuclide-specific flux and mean traversals per day calculated for GCR in inter-
planetary space at 1 AU for three hypothetical biological targets.a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a For 1 g/cm2 Al shielding.  Calculations using OLTARIS are based on 1977 solar minimum 
environment (O'Neil 2010).  For single cells only. Sample-dependent adjustments to these 
calculations are required for multicellular samples. 
b 8 µm diameter. 
c 2.5 µm diameter. 
d 1 x 2 µm rod like bacterium. 
 

The Relationship Between Nuclide-Specific Flux, D, and DE 

 

 It is observed in Fig. 2a that the GCR particle flux is strongly weighted toward the 

lighter elements, primarily H and He.  At the high velocities characteristic of GCR these 

particles have stopping powers in the same range as the secondary electrons produced by x 

Nuclide Integral Flux Mammalian     Yeast   
Z per cm2-day nucleusb nucleusc Bacteriumd 

1 3.187E+05 1.60E-01 1.56E-02 6.37E-03 
2 3.351E+04 1.68E-02 1.64E-03 6.70E-04 
3 1.242E+02 6.24E-05 6.09E-06 2.48E-06 
4 7.883E+01 3.96E-05 3.87E-06 1.58E-06 
5 2.538E+02 1.27E-04 1.25E-05 5.08E-06 
6 8.912E+02 4.48E-04 4.37E-05 1.78E-05 
7 2.401E+02 1.21E-04 1.18E-05 4.80E-06 
8 8.424E+02 4.23E-04 4.13E-05 1.68E-05 
9 1.688E+01 8.48E-06 8.28E-07 3.38E-07 
10 1.281E+02 6.44E-05 6.29E-06 2.56E-06 
11 2.705E+01 1.36E-05 1.33E-06 5.41E-07 
12 1.653E+02 8.30E-05 8.11E-06 3.31E-06 
13 2.805E+01 1.41E-05 1.38E-06 5.61E-07 
14 1.235E+02 6.21E-05 6.06E-06 2.47E-06 
15 4.923E+00 2.47E-06 2.42E-07 9.85E-08 
16 2.380E+01 1.20E-05 1.17E-06 4.76E-07 
17 4.948E+00 2.49E-06 2.43E-07 9.90E-08 
18 9.438E+00 4.74E-06 4.63E-07 1.89E-07 
19 7.084E+00 3.56E-06 3.48E-07 1.42E-07 
20 1.794E+01 9.01E-06 8.80E-07 3.59E-07 
21 3.668E+00 1.84E-06 1.80E-07 7.34E-08 
22 1.228E+01 6.17E-06 6.03E-07 2.46E-07 
23 5.960E+00 2.99E-06 2.92E-07 1.19E-07 
24 1.206E+01 6.06E-06 5.91E-07 2.41E-07 
25 7.812E+00 3.92E-06 3.83E-07 1.56E-07 
26 8.225E+01 4.13E-05 4.04E-06 1.64E-06 
27 4.101E-01 2.06E-07 2.01E-08 8.20E-09 
28 3.860E+00 1.94E-06 1.89E-07 7.72E-08 
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and γ rays.  These low LET values persist until the ions slow to a small fraction of their 

original velocity.  This results in most of the hits in a biological sample being from low Z 

(and relatively low LET) nuclides. 

 

 
Figure 2.  (a) Nuclide-specific flux for GCR spectrum. (b) Nuclide-specific absorbed dose 
(D) rates for GCR spectrum.  (c) Nuclide-specific dose-equivalent (DE) rates for GCR 
spectrum.  All were calculated using OLTARIS for 1977 solar minimum conditions and 
behind 1 g/cm2 Al shielding. 
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 In contrast to the flux in Fig. 2a, it is seen in Figs. 2b and 2c that the higher Z 

elements in GCR contribute relatively more to the D and DE than the lighter elements for 

thin shielding.  This is particularly the case for DE (Fig. 2c).  In that case, the highest DE rate 

is not from H and He but rather from Z=26 (Fe). Also, the time in the solar cycle further 

modifies the relative contribution of heavy ions to the fluence and dose.  At solar maximum 

the dose is reduced due to the lighter ions being deflected by the solar wind.  Due to their 

greater magnetic rigidity the fluence of heavy ions is reduced very little, and therefore they 

become an even more dominant part of the radiation spectrum. Hence, both shielding and 

solar cycle can have important implications for biological experiments in deep space, 

especially for biological endpoints with large relative biological effectiveness (RBE), which 

can be identified using ground-based simulated space radiations. 

 

 The above is for thin shielding (1 g/cm2 Al). As shielding is increased (Fig. 3), the 

heavier elements are impacted relatively more than the lighter elements.  For example, Z=26 

(56Fe) produces a larger DE than either H or He with a 1 g/cm2 shield, but much smaller DE 

when shielding thickness is increased to 30 g/cm2. This effect is mainly due to nuclear 

interactions resulting in fragmentation of the high Z nuclides into a spectrum of lighter 

particles and nucleons. In fact, one can see from Fig. 3 that as shielding is increased, the DE 

for H and He actually increases, reflecting gains in their flux from the break-up of heavier 

ions.  Again, this can be an important consideration depending on spacecraft design and 

placement of the bio-experiment within the spacecraft.  
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Figure 3.  Influence of shielding on nuclide-specific dose-equivalent (DE) rates for GCR 
spectrum.  Calculated using OLTARIS for solar minimum conditions. 
 
Interplanetary Space vs the International Space Station (ISS) 
 
 A major purpose for the ISS is to use it as a space research platform. It is therefore 

instructive to compare the radiation environment inside the ISS with that in interplanetary 

space at 1AU.  Dosimetric quantities are compared in Table 3.  Two observations are most 

notable:  (1) the dose rate is substantially higher in interplanetary space than inside the ISS 

even for comparable shielding, and (2) the quality factor (Q) is substantially larger in space 

with light shielding than inside the ISS.  These two differences converge to make it more 

likely that radiation-induced biological responses may be detected on a lightly shielded 

biosentinel mission in interplanetary space than on the ISS. Biological experiments onboard 

the ISS would only receive about 0.08 Gy during a 12-month mission.  This is below or 

approaching the lower limit of detection for most biological endpoints and would be 

challenging for providing statistically significant data when comparing with "unexposed" 

controls.  Beyond LEO, the combination of higher dose rate and larger Q (i.e., relatively 

more high LET particles) increases the chances that biological effects may be detected. 

Importantly, this is a key rationale for biosentinel-type missions. 
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Table 3.  Comparison of dosimetric quantities inside the ISS and in interplanetary space with 
various thicknesses of Al shielding. 

Location D (mGy/d) DE (mSv/d) Q 

ISS (service module) 0.22 0.50 2.3 

Space (1g/cm2) 0.38 2.34 6.1 

Space (10g/cm2) 0.38 1.65 4.3 

Space  (30g/cm2) 0.36 1.10 3.1 

 

 These results are further illustrated in Fig. 4 where nuclide-specific flux inside the 

ISS is compared with that in interplanetary space for various thicknesses of Al shielding. The 

median shielding inside the ISS service module is about 20 g/cm2 Al and the shield thickness 

for a deep space human mission will likely range from 20 g/cm2 to 40 g/cm2. 

 

 
Figure 4.  Comparison of nuclide-specific flux inside the ISS service module with that 
calculated for interplanetary space at 1 AU with 1, 10, and 30 g/cm2 Al shielding.  Based on 
modeling calculations using OLTARIS and 1977 solar minimum environment (O'Neil 2010). 
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 It is noted in Fig. 4 that as shielding is increased in interplanetary space to thicknesses 

comparable to the ISS the differences between the nuclide-specific particle flux inside a deep 

space vehicle and inside the ISS are reduced, but not eliminated. This difference can be 

attributed to the geomagnetic field and terrestrial blockage, which attenuate ISS exposures 

compared to free space. Behind only 1 g/cm2 of Al shielding, integral flux values for heavy 

ions (Z > 2) were noticeably larger, as would be expected, and suggests that biosentinel 

missions will encounter a radiation environment with a larger concentration of high LET 

particles compared to what astronauts might encounter in deep space or in the ISS. This must 

be taken into account when using information obtained from lightly shielded experiments to 

estimate risk associated with heavier shielded deep-space human missions.  

 

Track Structure Considerations 

 

 The number of track traversals and energy deposited per traversal are not the only 

considerations for radiation damage in the biological sample.  The ionizing particle track 

itself must be considered.  The track can be thought of as composed of a core of dense 

ionizations and a penumbra of delta rays (electrons) emitted radially from the core.  The core 

of a high Z particle track produces very dense damage (high LET) and for heavy ions is often 

lethal to the cell if traversing the nucleus.  The penumbra is less dense (consisting of lower 

LET electron tracks) and produces a dose distribution that decreases with the square of the 

distance from the core center (Chatterjee and Schaefer 1976, Chatterjee and Holley 1993). 

There is no sharp distinction between the core and penumbra or cutoff at the limit of the 

penumbra.  The values given by the Chatterjee model are intended to represent regions 

relevant to radiation chemistry processes. 

 

   An illustration of the sizes of the track core and penumbra as a function 

of particle kinetic energy is provided in Fig. 5.  It is seen that the core radius is small 

compared to dimensions of biological cells and organelles and will therefore require a rather 

precise hit to damage a target via direct action. The radius of the core is less than about 0.01 

µm for essentially all GCR and solar particle radiations.  In contrast, the penumbra (delta 

rays) emanating from the core is much larger and can extend to more than 1 mm for very 
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high-energy particles, and therefore can deposit energy in biological targets at substantial 

distances away from the central particle track. 

 

 
Figure 5.  Core radius and penumbra (delta-ray) radius as a function of particle energy.  
Plotted from data provided in Chatterjee and Schaefer 1976, which are empirically derived 
based on particle tracks in an aqueous medium. 
 

 A subsequent derivation of the radius of the core and penumbra was presented in 

Chatterjee and Holley (1993), and provides similar results, albeit some differences are 

apparent in the penumbra radius at the highest particle energies. However, as previously 

mentioned, there is no sharp cutoff at the limit of the penumbra and the differences in the 

derivations do not have practical implications for this paper. 

 

 Dose in the track core (Dc) as well as from delta rays (Dp) at various distances from 

the track center can be calculated for single particle tracks using Eqns. 1 and 2 below 

obtained from Metting et al. 1988. 

Dc = 16 (L/2)/π rc
2 + (L/2)/2π rc

2 ln(2.718*rp/rc).    Eqn. 1 

 

Dp = 16 (L/2)/(2π b2 ln(2.718*rp/rc).      Eqn. 2 
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where D is in cGy, L is the unrestricted LET in keV/µm, rc and rp are the radius of the core 

and penumbra in µm, and b is the radial distance from the center of the core in µm. 

  

 In the above equations, inserting rc and rp calculated by the method provided in 

Chatterjee and Schaefer (1976) for 250 MeV protons, 200 MeV/n 12C, and 1 GeV/n 56Fe, and 

the corresponding L for these particles, provides the results in Fig. 6.  It is observed that the 

mean (expected) dose in the track core is high for all particles and that the dose from delta-

rays diminishes sharply with distance from the core. From these results one may infer that to 

receive a dose from delta-rays large enough to provide a detectable response in a biological 

system would require the "target" to be in close proximity to the track core. For example, the 

expected delta-ray dose from a 1 GeV/n 56Fe particle is about 16 cGy at 1 µm and only about 

1 cGy at 4 µm, which would require a very sensitive biological endpoint to detect.  It has 

been suggested that beyond 4 µm the targets would be hit by only single electron events, 

which are unlikely to result in a detectable biological response (Curtis 2012). 

 

	  
Figure 6.  Estimates of average dose (expected value) in single particle tracks from 250 MeV 
protons, 200 MeV/n 12C, and 1 GeV/n 56Fe.  Doses are provided for the track core itself and 
for the penumbra at various distances from the core. 
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 It should be noted that both the track core and the penumbra have fine structure 

(Chatterjee and Holley 1993), which can impact the biological response. The core contains 

"spurs" that depend on Z and velocity.  For light ions such as H and He, the spurs are widely 

spaced along the length of the core, and for heavy ions, the spurs overlap forming a 

continuous column.  In the penumbra, the delta-ray electrons are separated from each other 

by relatively large distances along the primary track, which results in a small average dose 

from delta rays because a large fraction of the cells have no energy deposition.   However, if 

a small sensitive target (e.g., DNA) is hit by a delta-ray electron it can deposit much more 

energy than inferred from the average absorbed dose (Braby 2008).  Evaluating such fine 

structure would require Monte Carlo modeling, which is beyond the scope of this paper.  

 

 Biological samples employed in biosentinel experiments can be of various forms, 

e.g., cells in dry state, cells in suspension, cells in a monolayer adhering to a surface, or 

multicellular tissue (which could be either a sample or an entire organism). The form of the 

sample can influence the microdosimetry and therefore the biological response to the 

radiation environment.   Cells that can exist for extended periods of time in the dry state and 

then begin growing only after a liquid medium is added could be particularly useful for 

extended biosentinel-type missions in deep space. An example of such biological systems 

would be yeast, which will be employed in an upcoming NASA BioSentinel mission using 

sensitive genetically-engineered strains (Bhattacharya et al. 2016).  

 

 For a sparse monolayer of cells on a flat surface, the likelihood of a track passing 

through two or more cells is very small.  Under such conditions, it is observed in Fig. 7 that 

only the two lightest elements (Z = 1-2) are expected to traverse every yeast cell nucleus 

during missions lasting 3 to 18 months.  The expected average hits per nucleus from these 

elements range from about 1.5 at 3 months to almost 10 at 18 months. The heavier elements 

are very unlikely to produce multiple traversals in a nucleus during the mission.  This makes 

it particularly important to consider sample size (the number of cells per sample) when 

designing the experiment, i.e., the expected number of cells traversed per sample would be 

the probability of traversals per cell times the number of cells per sample. 
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Figure 7. Particle track traversals per yeast nucleus if single layer on a flat surface as a 
function of time in interplanetary space.  For selected groupings of Z as indicated in the 
Figure legend. 
 

 Fig. 8 shows the Poisson distribution (Haight 1967) of Z = 1-2 traversals through a 

yeast nucleus during 12 months in interplanetary space. The expected value is 6.3 traversals 

per nucleus.  The probability of no traversals is small, 0.2%.  This implies that 99.8% of the 

nuclei will be traversed by at least one H or He particle during 12 months in space.  If the 

traversals are randomly distributed over time, an average of about one traversal every 2 

months would be expected.  This is a long time between hits such that one would expect the 

GCR environment to produce effects characteristic of low dose-rate exposures. 
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Figure 8.  The Poisson distribution of GCR traversals (Z = 1-2) per yeast nucleus during 12 
months in interplanetary space. 
  

Traversal probabilities were also calculated for the other GCR nuclides during 12 months in 

space. 

 P (Z=3-10) = expected value is 0.0461, at least one hit is 0.045, no hits is 0.955. 

 P (Z=11-20) = expected value is 0.0074, at least one hit is 0.007, no hits is 0.993. 

 P (Z=21-28) = expected value is 0.0023, at least one hit is 0.002, no hits is 0.998. 

 P (Z=26) = expected value is 0.0015, at least one hit 0.001, no hits is 0.999. 

 

 Assuming 105 cells are uniformly distributed in a monolayer on the bottom of a 5 mm 

diameter well, approximately 160 will be within the penumbra of a 200 MeV/n particle, as 

described by Chatterjee and Schaefer (1976).  Using Eqn. 2, the dose at a given distance from 

the core can be estimated for tracks perpendicular to the cell monolayer.  In this case, the 

"dose" is the average energy per mass for cells hit by delta rays and cells not hit.  The energy 

per mass for single delta ray events is approximately 0.9 cGy (Metting et al 1988) so if, for 

example, the average dose at a particular distance from the center of the track is 0.1 cGy 

approximately 11% of the yeast nuclei at that distance would be hit by a delta ray, i.e., 

(0.1/0.9) x 100.  In the dry state there will be only gas or vacuum on the top side of the 

monolayer, particles approaching from the top will not produce delta ray equilibrium at the 

monolayer and will produce somewhat less energy imparted per mass resulting in a smaller 

fraction of cells hit by delta rays. 
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 For cells in suspension, if 105 cells are dispersed in 100 µL solution, the cell 

concentration based on cell volume-to-solution volume would be about 1.1 x 10-4.  Although 

this would be a dilute cell suspension with substantial average distance between cells, a track 

(core plus penumbra) passing through the cell suspension would have a significant 

probability of passing through more than one cell nucleus. Assuming random positioning of 

the cells in the well, each cell would occupy a neighborhood measuring 100 x100 x 100 µm, 

then each track would on average traverse about 46 of these neighborhoods, i.e., (105)0.33.  

Because of the very small cross-sectional area of the track core there is only a 0.022 

probability that a nucleus (yeast used for this example) will actually be hit by a single-track 

core passing through the suspension of cells described above. For the flux and spectrum of 

GCR particles in interplanetary space the expected number of track core traversals of nuclei 

in a sample of 100,000 yeast cells during a 12-month mission would be 6.31x105 (Z = 1-2), 

4.61x103 (Z = 3-10), 7.38x102 (Z = 11-20), and 2.30x102 (Z = 21-28).   

 

 In contrast, the penumbra is much larger than the core and therefore has much greater 

probability of hitting the nucleus.  Listed in Table 4 are the calculated average doses and 

number of delta-ray hits per nucleus at selected distances from the core center of individual 

tracks for 1 GeV/n 56Fe, 200 MeV/n 12C, and 250 MeV protons. Again, these are delta-ray 

hits from a single track passing through the cell suspension described above.  For a yeast 

nucleus, one delta ray hit is estimated to result at about 4 µm from a 1 GeV/n 56Fe track, at 

about 1.5 µm from 200 MeV/n 12C, and at <0.3 µm from a 250 MeV proton track. At larger 

distances the probability of a nucleus being hit by a delta ray decreases rapidly.  For most 

biological endpoints a single delta-ray hit (0.9 cGy for a yeast nucleus) may be neglected 

(Curtis 2013), but for some very radiosensitive endpoints it could potentially be significant.   

  

 The number of delta rays per nucleus during a mission in interplanetary space would 

be proportional to the integral particle fluence in the biological sample. Detailed Monte Carlo 

track simulation calculations are needed to produce accurate probabilities for delta ray 

interactions in cell nuclei at specific distances from GCR tracks.  The results in Table 4 are 

estimates derived from the absorbed dose as a function of distance and measured 

characteristics of HZE tracks (Brooks et al. 2001, Metting et al. 1988).  
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Table 4.  Expected doses and nuclear hits from delta rays as a function of distance from the 
center of a particle track.a 
 
Distance  

(µm) 
1-GeV/n 26Fe  

 
200 MeV/n 12C 

 
 

250-MeV 1H 
 
 

D (cGy) Number 
of delta 
rays per 
nucleus 

D (cGy) Number 
of delta 
rays per 
nucleus 

D (cGy) Number 
of delta 
rays per 
nucleus 

0.1 1570 1744 187 208 4.65 5.16 
0.3 174 194 21 23 0.52 0.57 
0.4 98 109 12 13 0.29 0.32 
0.5 63 70 7.5 8.3 0.19 0.21 
1 16 17 1.9 2.1 0.046 0.052 
2 3.9 4.4 0.47 0.52 0.012 0.013 
3 1.7 1.9 0.21 0.23 0.0052 0.0057 
4 0.98 1.09 0.12 0.13 0.0029 0.0032 
5 0.63 0.70 0.075 0.083 0.00186 0.0021 
10 0.16 0.17 0.019 0.021 0.00047 0.00052 
25 0.025 0.028 0.0030 0.0033 0.0000743 0.000082 
50 0.0063 0.0070 0.00075 0.00083 0.0000186 0.000021 
100 0.0016 0.0017 0.00019 0.00021 0.0000046 0.000005 

a From a single particle track traversing the center of a yeast nucleus. 

 

Solar Particle Events and Solar Cycle Considerations 

 

 The Sun's activity cycles from low to high with about an 11-y period, which has been 

observed to vary from 9 y to more than 12 y.  The variation in the Sun's activity includes 

changes in the levels of solar radiation and ejection of solar material and changes in the 

number of sunspots, flares, and other manifestations.  Even with their periodicity, it is not 

possible at present to accurately predict future minima and maxima. Hathaway (2016) has 

recently extrapolated the current solar cycle (Cycle 24) to 2020.  Given the uncertainties, his 

estimate suggests the next solar minimum will occur in the 2019 - 2021 time period, which 

may be an important consideration for biosentinel-type experiments in the planning phase. 

 

 Due to their stochastic nature, SEP events are generally modeled probabilistically 

(Xapsos et al. 1999).  Fig. 9 illustrates such estimates of the dose expected from SEP events 
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in interplanetary space at 1 AU during solar maximum conditions. The results are for 18 mo 

duration and two shielding thicknesses, 0.3 g/cm2 (1.1 mm) and 1 g/cm2 (3.7 mm) Al. 

 

 Based on these modeling calculations, there is a 50% chance that a dose of 48 cGy or 

greater will be received from SEP events during an 18-mo mission in deep space with 0.3 

g/cm2 (1.1 mm) Al shielding.  This is reduced to 15 cGy with 1 g/cm2 (3.7 mm) Al.   There is 

a 10% chance for a dose of at least 356 cGy and 161 cGy behind 0.3 g/cm2 and 1 g/cm2, 

respectively.  As can be seen in Fig. 9 even larger doses are possible, but unlikely. SEP 

events are less likely to occur during solar minimum compared to solar maximum. However, 

for biosentinel type missions with thin shielding, even low intensity events could present a 

non-trivial dose from low energy (<100 MeV) protons and should at least be considered 

before final mission architecture is defined. 

 

 Importantly, for a lightly shielded spacecraft, the dose from a large SEP event could 

substantially exceed that received from GCR radiation and therefore render the GCR 

contribution to the bio-response impossible to interpret. For example, based on the 

probabilistic estimates in Fig. 9 for 1 g/cm2 Al shielding, an 18 mo mission would result in 

50% chance that a dose of 15 cGy would be received from SEP events.  This is compared 

with about 21 cGy during that time period from GCR alone. Added shielding would 

substantially reduce the dose contribution from SEP events, while not attenuating GCR 

significantly.  Hence, differential shielding within the payload could be used as a strategy to 

obtain bio-response information for both GCR and SEP radiation. 
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Figure 9.  Probabilistic estimates of dose from SEP events in interplanetary space at 1 AU 
during solar maximum conditions.  Based on Xapsos et al. 1999. 
 

 

Conclusions 

 

 Space radiation modeling results are provided to help in the design of future 

biological experiments onboard missions beyond LEO.  Nuclide-specific flux and dose rates 

were calculated using OLTARIS and these results were used to determine particle traversal 

rates and doses in selected biological targets. The lightest elements (H and He) have by far 

the highest flux and therefore traversal rates in biological targets, but heavy nuclides 

contribute substantially to the mean dose and dose equivalent for thin shielding and can 

produce large energy deposition in small biological targets such as cell nuclei. In 

interplanetary space, the total GCR spectrum would contribute less than 1 particle traversal 

per day to a cell nucleus, and less than one per year from the heaviest ions.  Such rare (low 

dose rate) events must be considered in the design of biological experiments.  

 

 A comparison is provided between GCR in interplanetary space and inside the ISS.  

The radiation dose rate inside the ISS is below or approaching the lower limit of detection for 

most biological endpoints and has been a challenge for providing statistically significant 

radiobiological data when comparing with "unexposed" controls.  Beyond LEO, the 

combination of higher dose rate and larger Q (i.e., relatively more high-LET particles) 
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increases the chances that biological effects may be detected, particularly for lightly shielded 

spacecrafts. This is a key justification for biosentinel-type experiments. 

 

 Large solar particle events could substantially impact biological experiments beyond 

LEO, especially for lightly shielded spacecraft.  Large events are rare so they may not occur 

during a particular mission, but planning for them is prudent and could possibly be aided 

using payload shielding designs, i.e., SEPs are much easier to shield against than GCR.   

 

 Because of the many challenges associated with the success of such missions, 

extensive ground-based studies would be required to characterize a biological system prior to 

flight to determine that the response endpoints selected can be expected to be detected during 

the mission.  This would include exposure to simulated space radiation available at 

accelerator facilities such as NSRL (La Tessa, et al. 2016). A major challenge would be the 

sensitivity of the biological system to the low-dose-rate GCR radiation environment in space, 

which is at or near the detection limit for most biological endpoints. 
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