National Aeronautics and Space Administration

THE INTEGRATED MEDICAL MODEL: OUTCOMES FROM INDEPENDENT REVIEW

J. Myers¹, Y. Garcia², D. Griffin¹, J. Arellano³, L. Boley², D. A. Goodenow¹, E. Kerstman⁴, D. Reyes⁴, L. Saile², M. Walton², and M. Young⁵

¹NASA - Glenn Research Center, ²KBRwyle, ³MEIT, ⁴UTMB, ⁵NASA - Johnson Space Center

Providing a tool to help informed decision making

IMM in a Nutshell

- Platform to assess mission medical risk using proven risk assessment techniques.
- Platform for exploration of the medical kit trade space effects on risk.
- Gives decision-makers a means to balance medical risk with limited resources.
- Provides engineering teams with quantitative medical information to characterize risk.

This is fundamentally about how the NASA Medical and Engineering communities communicate.

Validation Against Real World Observations

- Model validation utilized real world system (RWS) observations from International Space Station (ISS) Expedition (Exp) 14 through 39/40
- IMM simulation for each expedition
 - Assuming ISS med capabilities, crew specific parameters and duration
 - Using data obtained from ISS missions and STS missions prior to referent
- Total number, type and outcomes compared to RWS

Snapshot of results for RWS ISS missions: IMM generally overpredicts by 3-4 medical events as indicated by regression intercept estimates and slope generally less than 1 (considering IMM Condition List events only).

Model and External Review

Review Expertise Needed in Red

Software

External Review Board

ExMC convened an external review panel through the GSFC Systems Review Branch

- Chair: Dr. Bryant Cramer (GSFC Retired)
- Review Manager: Mr. Neil Martin (GSFC)
- Aerospace Medical: Dr. Jan Stepanek (Mayo Clinic)
- Epidemiologist: Dr. Guohua LI (Columbia University)
- Chief Engineer /Software: Mr. Steve Scott (GSFC)
- Software: Mr. Robert Schweiss (GSFC)
- Biostatistics/Probability Theory: Dr. Nancy Lindsey (GSFC)
- Software/ Project Management: Mr. Dick Kauffman (Criterion systems)
- Computational Modeling: Dr. Gary Pradhan (Mayo Clinic)

From Nov 2015 to May 2016

- 2 Pre-Meeting Summaries : "Introduction to IMM" and "IMM Validation Strategies"
- Board formally convened three times Dec 2015, Jan 2016, March/April 2016

External Review Topics

- Model Concepts and Software and code standards (i.e. JPR- 7150.2B compliance)
- Input pedigree of incidence and outcomes information (NASA-STD-7009: Input Pedigree Credibility Factor)
- Model performance (NASA-STD-7009 Verification, Validation, Sensitivity, Operations, Use History)

Ensure internal processes for identifying, ranking quality, and including medical data with evidence-based rationale are appropriate to capture medical risk likelihood, medical information, and outcome uncertainty for the model application.

- Presented evidence related to data process and data capture
 - A selection of 10 Clinical Findings Forms (CliFFs) summarizing the types of data and conditions used to inform IMM simulations
 - Atrial Fibrillation
 - Burns Secondary to Fire
 - Decompression Sickness Secondary to EVA
 - Dental Abscess
 - Headache (Space Adaptation)

- Hip-Proximal Femur Fracture
- Eye Chemical Burn
- Stroke
- Sepsis
- Urinary Retention (Space Adaptation)

Summary Review Comments

Board identified strengths:

- The concept of the IMM is scientifically sound and it works.
- The IMM represents a necessary, comprehensive approach to identifying medical and environmental risks facing astronauts in long duration missions.
- Because it integrates with the Exploration Probabilistic Risk Assessment (ExPRAT), the IMM has become an excellent tool through which engineers and physicians can better communicate with each other by speaking a common risk assessment language.
- The validation approach is sound and the use of actual space medical data is logical and compelling.
- IMM statistical methods for processing and analyzing the input data, performing simulations, and generating and presenting quantitative outputs are scientifically sound.
- The IMM validation approach is sound and the match between the IMM and the real world system is good.

Board identified issues:

- Need for stronger software engineering involvement particularly in terms of quality assurance.
- Accuracy concerns regarding the CliFFs; the Board found a number of errors necessitating a robust review of all remaining CliFFs.
- Need for a sustainable approach to augment, peer review, and maintain the CliFFs.

Organizational issues:

- Physical separation of Project Management from Development Team presents a challenge.
- Evolutionary path for IMM insufficiently defined.
- Need for a well-developed Operations Concept.

RFA Summary

- Total of 28 RFAs and 6 advisories submitted
- Project combined 8 of the RFAs for consolidated responses
 - New total : 24 RFAs
- RFA closure summary
 - All submitted for closure as of 11/15/2016
 - 23 Evidence or plan to secure evidence supplied as a response
 - 1 Element and project decision not to pursue a response at this time
 - Closure acceptance received 12/2016

Summary of Significant RFA Closure Activities

NASA

• Code modifications were performed to reduce run times by 70%.

Adjustments to reviewed condition information

- Minor typographical updates to DCS and Stroke CLIFF.
- Updated data after addressing board suggestions and source data from the primary references.
 - Dental Abscess CLIFF reevaluation of source data categorization of medical condition.
 - Space Adaptation headache leading to evacuation reduced from 1.5% max to 0% max.
 - Eye Chemical Burn updated rationale.
 - Sepsis updated rationale.
- Developed survey document guidelines for improved configuration management of clinical data identification.
- Performed a calibration of CHI using the RWS and iMED data information (Accepted for Closure RFA 3.02).

IMM Project Planned Pre-Delivery Activities

- Updated NASA-7009 Credibility Thresholds per accepted RFA plan (12/1/2016 – 3/7/2017)
- Complete STS RWS validation activity (12/1/2016 6/1/2017)
- Complete iMED 6.5 (12/5/2016 2/10/2017)
- Add RWS data to iMED 6.5 (3/31/2107 4/21/2017)

Conclusions

- IMM is a tool intended to help mission planners make decisions regarding medical risk and supplies.
- It is intended to pull in data and experience to provide the best current information to inform medical resource planning.
- Outcomes of the IMM 4.0 review
 - Definite need for the model of this type validation testing illustrates its utility
 - Concerns expressed that the medical condition information requires further review
- Forward work plan toward transition to customer baselined
 - Final negotiation of ConOps plan with CHS
 - RWS validation for STS and RWS data integrated into iMED
 - Completion planned NLT 5/30/2017