

TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

¹ T. Ozaki

² H. Tsuda

³ M. C. Halbig

⁵ M. Singh

¹ Y. Hasegawa

² S. Mori

⁴ R. Asthana

¹Technology Research Institute of Osaka Prefecture, Osaka, Japan

²Osaka Prefecture University, Osaka, Japan

³NASA Glenn Research Center, Cleveland, Ohio, USA

⁴University of Wisconsin-Stout, Menomonie, WI, USA

⁵Ohio Aerospace Institute, Cleveland, Ohio, USA

outline

1. Introduction

properties and applications of SiC (SA-THX) purpose of diffusion bonding

2. Sample preparations used for diffusion bonding

Substrates : SA-Tyrannohex ™ (SA-THX)

Interlayers: Ti-Mo, Ti-Cu foil

3. Experimental results

STEM images of the bonding area

TEM images and SAED patterns of the reaction compound

- Discussion about the microstructure of the formed phases by diffusion bonding
- 5. Summary

SiC fiber-bonded ceramics, SA-Tyrannohex ®

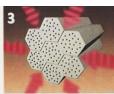
SiC composite material

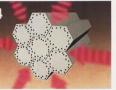
- 1. Excellent mechanical properties
- 2. Good oxidation resistance
- 3. High thermal stability

Especially,

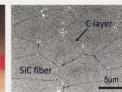
SA-Tyrannohex (SA-THX)

- ... SiC fiber-bonded ceramics
- High strength sustained up to 1600°C in air
- -High fracture toughness (1200 J·m⁻²)
- ⇒Promising material for <u>high-temperature</u> and extreme environment applications
- e.g. injector applications, combustion liner, nuclear fusion reactor and turbine engine applications


http://www.ube-ind.co.jp/japanese/products/chemical/chemical 19.htm


Under high pressure & high temp. in a hot press

Deforming fibers & Evaporating SiO and CO gas


Closed-pack hexagonal columnar structure

Diffusing remain carbon in the center of fibers to its surface

Unique SA-Tyrannohex

T. Ishikawa et al, *Science*, 282, 1295-1297 (1998). T. Ishikawa et al, *Nature*, 391, 773-775 (1998).

For wide range uses of SA-THX

However, geometrical limitations hinder the wide use of SA-THX. It is difficult to fabricate large, or complex shaped components by Hot Pressing or CVD.

Therefore, new advanced methods are needed.

Under those circumstances,

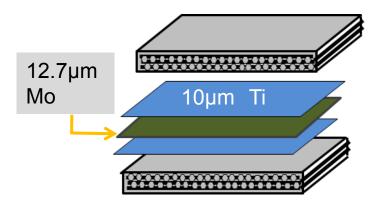
One <u>cost-effective solution</u> for fabricating large, complex-shaped components is the **joining** of simple shaped ceramics.

> In this study, we are going to focus on diffusion bonding.

Diffusion Bonding of SA-THX using metallic Interlayers

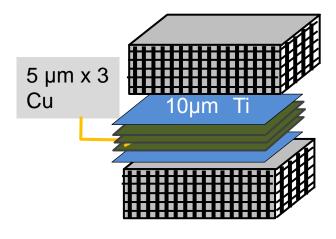
Used sample

@NASA


substrate: SA-THX ... SiC fiber-bonded ceramics, UBE Industries

metallic interlayer: Ti-foil, Mo-foil and Cu-foil, Goodfellow Corporation

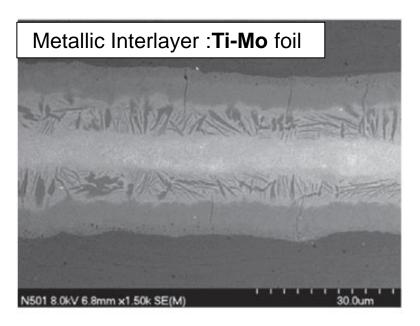
Bonding process

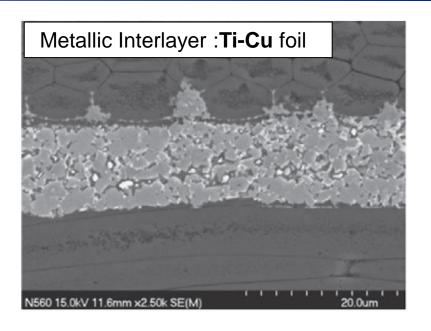

Hot-press in 1200°C, 4hour, vacuum 30MPa

Ti-Mo foil

10μm Ti and 12.7 μm Mo interlayer

Ti-Cu foil


10μm Ti and 15μm Cu interlayer


M.C. Halbig, et. al., Ceramics International41(2015)2140–2149

Diffusion Bonding of a SA-THX using metallic Interlayers

Knoop hardness of diffusion bonded joints.

	Average HK (joint)	Average HK (⊥ joint)
SA-THX/Ti/Mo/Ti/SA- THX	717.7 ± 273.6	758.9 ± 299.3
SA-THX/Ti/Cu/Ti/SA-THX SA-THX (un-bonded)	$\frac{816.5 + 43.9}{1244 \pm 176}$	

M.C. Halbig, et. al., Ceramics International41(2015)2140–2149

Objectives

We diffusion bonded SiC and SiC (<u>SA-THX</u> and <u>SA-THX</u>)
using <u>Ti/Cu foil</u> metallic interlayer.
We carried out <u>TEM and STEM observations</u> with the diffusion bonded sample <u>prepared by FIB technique</u>.

- 1. Evaluate microstructures of the diffusion bonding area by TEM and STEM.
- 2. Characterize the reaction compound in the diffusion bonding area by STEM-EDS and SAED analysis.

Experiment (FIB and STEM)

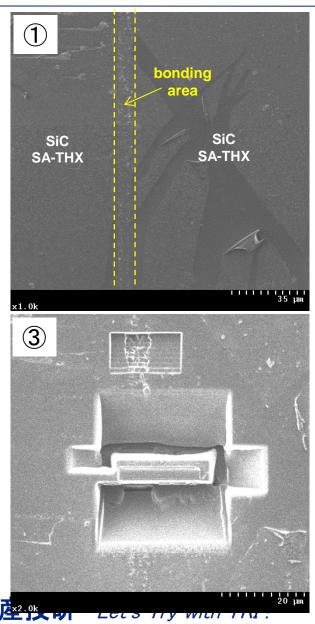
Focused Ion Beam, FIB

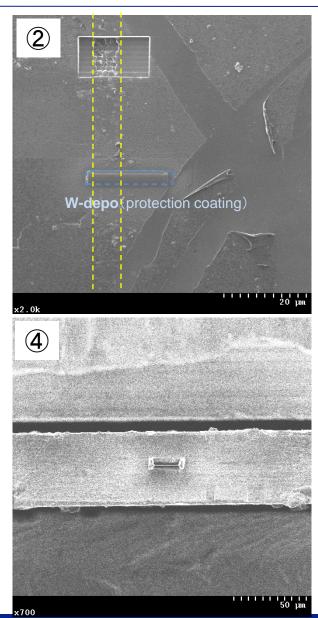
(Hitachi FB-2200)

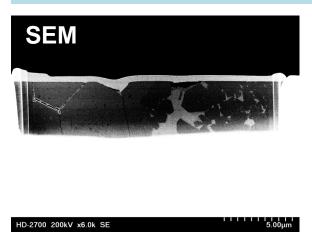
Cs-corrected STEM (Hitachi HD-2700)

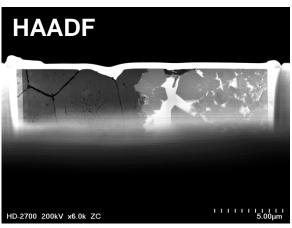
Prepared thin samples for TEM and STEM.

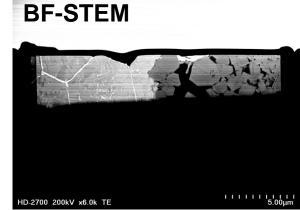
Checked the thin samples prepared by FIB.


Three-Observation mode:

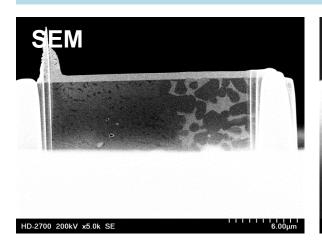

SEM, **BF-STEM** and **HAADF**

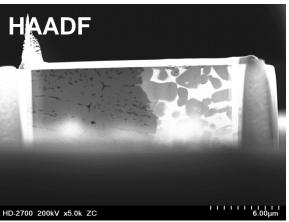

Fabricating procedure of the thin sample (SIM image obtained by FIE

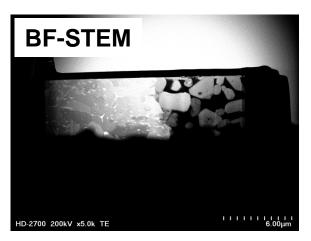


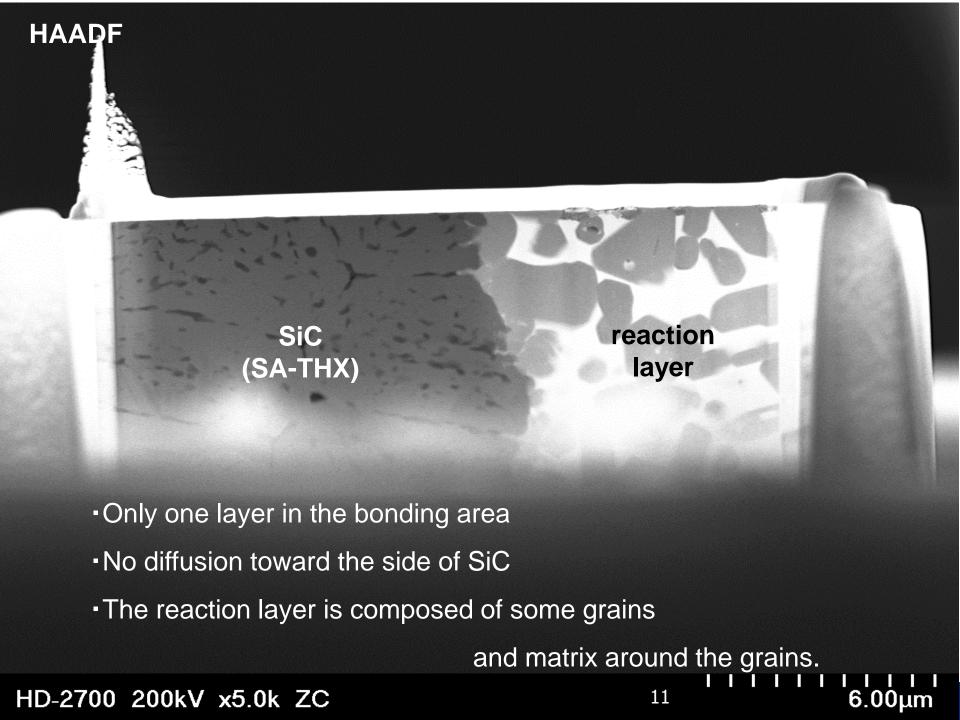


STEM observation of the FIB sample

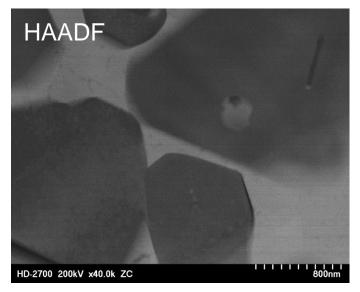

Ti/Cu interlayer parallel to SiC fiber

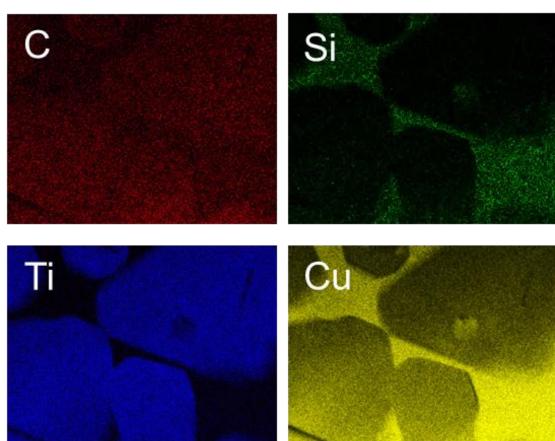




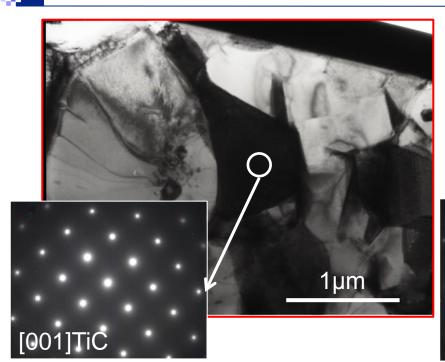


Ti/Cu interlayer Perpendicular to SiC fiber

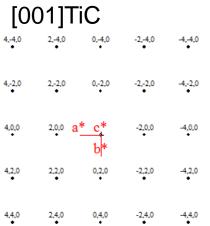


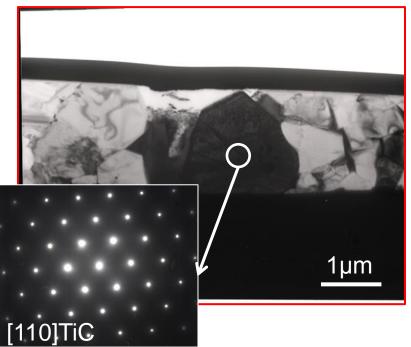


Element Mapping obtained by STEM-EDS analysis



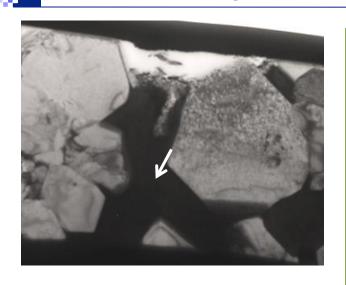
* FIB mesh: Cu metal

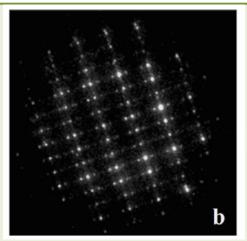



<u>Cu-Si matrix</u> + <u>precipitated TiC grains?</u>

TEM image and SAD patterns of Ti-C compound

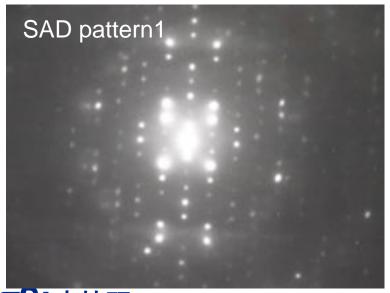
TiC S.G.: Fm3m NaCl-type

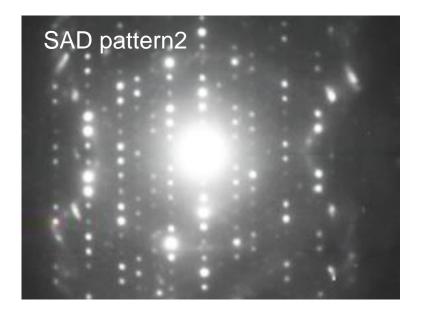



[110]TiC

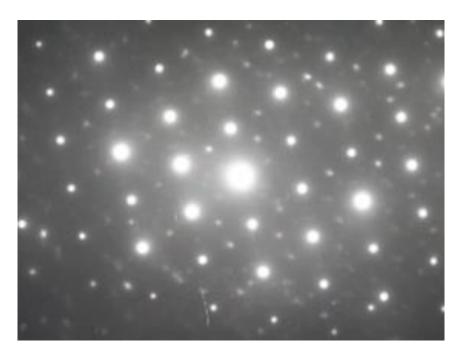
-4.4.4 •		-2,2,4		0,0,4		2,-2,4		4,-4,4
	-3,3,3		-1,1,3		1,-1,3		3,-3,3	
-4,4,2		-2,2,2		0,0,2		2,-2,2		4,-4,2
	-3,3,1		-1,1,1	c*	1,-1,1		3,-3,1	
-4.4.0 •		-2,2,0	ь	* a	*	2,-2,0		44.0
	-3,3,-1		-1,1,-1		1,-1,-1		3,-3,-1	
-4,4,-2		-2,2,-2		0,0,-2		2,-2,-2		4,-4,-2
	-3,3,-3		-1,1,-3		1,-1,-3		3,-3,-3	
-4.44		-2,2,-4		0.04		2,-2,-4		444

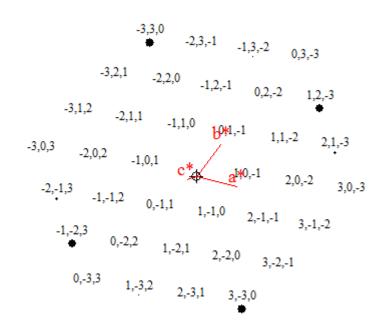
TEM image and SAD patterns of Cu-Si compound

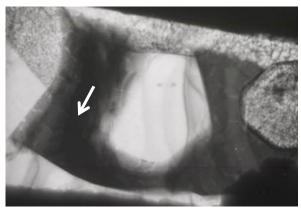




SAD pattern of <u>Cu₃Si</u>: η"-phase (RT phase of Cu₃Si)
//[001]
4 times superstructure
//[111]


3 times superstructure


M. Heuer, et. al., JAP 101, 123510 (2007)

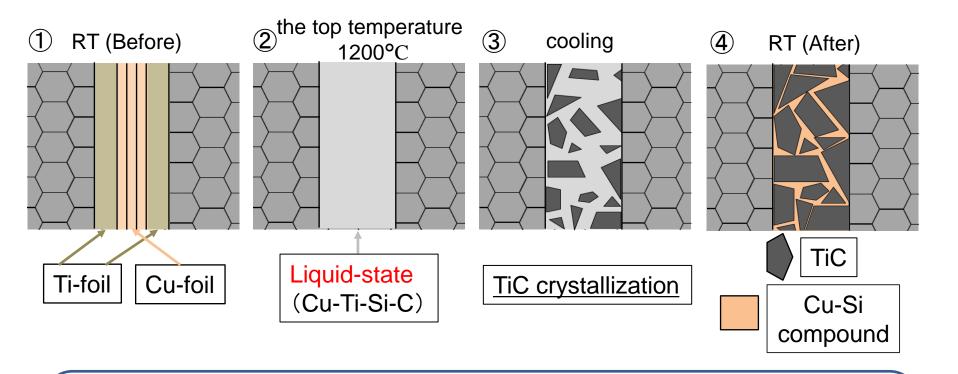


TEM image and SAD patterns of Cu-Si compound

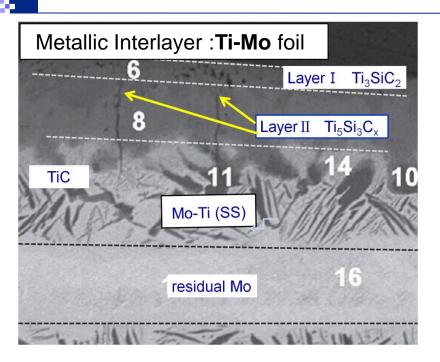
η-phase Cu₃Si:

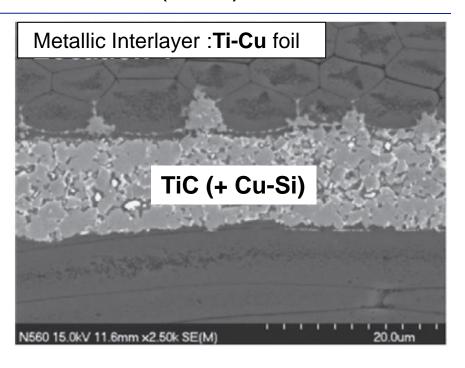
(high temperature phase)

S.G.: P-3m1


a=0.4091 nm, b=0.7358

N. Mattern, et. al., HASYLAB ANNUAL REPORT (2001)


Consideration of the Results



The bonding layer is composed of **TiC precipitations in Cu-Si matrix**.

Cu-Si matrix plays a role of the binder of TiC precipitations?

Consideration of the Results (CTE)

coefficient of thermal expansion (CTE; α)

material	a-SiC	Мо	Ti	Cu	TiC	Ti3Si5		Ti3SiC2	
						а	С	а	С
CTE α (10 ⁻⁶ K ⁻¹)	3.2	5.1	8.4	16.8	7.4	6.1	16.6	8.9	10

M.C. Halbig, et. al., Ceramics International41(2015)2140–2149

Summary

- ➤ 1. We picked up thin samples from the bonded area of diffusion bonded SA-THX by a FIB micro-sampling technique. The prepared thin samples were sufficiently thin and less-damaged, and allowed the detailed evaluation by TEM and STEM.
- ➤ 2. The microstructure of diffusion bonded area was observed by STEM and TEM. The composition and crystal structures of the reaction compound were investigated by STEM-EDS and SAED method. The reaction layer of the diffusion bonding was composed of TiC precipitations in Cu-Si compound matrix.

This work was supported by JSPS KAKENHI Grant Number JP16K06802.