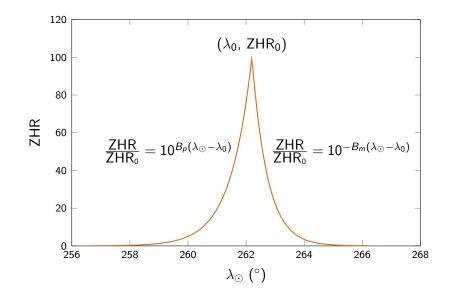
Meteor shower forecasting for spacecraft operations

Althea Moorhead, Bill Cooke NASA Meteoroid Environment Office, MSFC

> Margaret Campbell-Brown University of Western Ontario

Forecast outputs Shower flux Baseline flux Enhancement factors


Shower activity profiles

Background Data Fitting algorithm Improved profiles

Summary

Shower fluxes are computed from ZHR

Shower activity profile

Shower fluxes are computed from ZHR Koschack & Rendtel (1990; KR90)

1. Calculate magnitude-limited flux from ZHR:

$$f_{6.5} = \frac{\mathsf{ZHR}_0 \cdot (13.1r - 16.5)(r - 1.3)^{0.748}}{37200 \; \mathsf{km}^2}$$

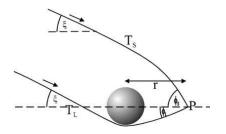
2. Convert to milligram-or-larger flux (faster = brighter):

$$f_{\rm mg} = f_{\rm 6.5} \cdot r^{9.775 \log_{10} \left(\frac{29 \text{ km/s}}{v_{\rm 100 \text{ km}}}\right)}$$

3. Scale to desired mass:

$$\frac{f_m}{f_{\rm mg}} = \left(\frac{m}{1 \, \rm mg}\right)^{1-s}$$

where $s = 1 + 2.3 \log_{10} r$ is the mass index.


We report fluxes to 4 limiting particle kinetic energies.

KE _{ref} (J)	$m_{\rm ref}$ (g)	<i>d</i> _{ref} (cm)
6.7	$3.35 imes10^{-5}$	0.04
104.7	$5.24 imes10^{-4}$	0.1
2827.	$1.41 imes 10^{-2}$	0.3
104720.	$5.24 imes10^{-1}$	1.0

▶ For each shower, we calculate the appropriate limiting mass:

$$m_{\rm lim} = m_{\rm ref} imes \left(\frac{20 \ {\rm km/s}}{V_{400 \ {\rm km}}} \right)^2$$

Shower flux Gravitational focusing and shielding

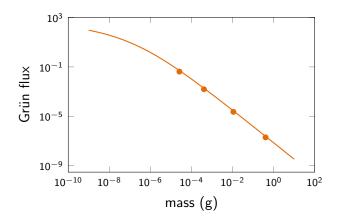

- Earth's gravity enhances the meteoroid flux near Earth
- The Earth also physically blocks some meteoroids

Diagram from Jones & Poole, 2007

- Shower fluxes include gravitational focusing but not shielding.
- Reflects a "worst-case" scenario in which a spacecraft element is fully exposed to the shower.

Baseline flux

- ▶ We use the Grün meteoroid flux as a point of comparison.
- Reference speed is 22.75 km s⁻¹ at 400 km altitude (due to grav focusing).

Baseline flux Gravitational focusing and shielding

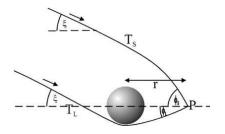
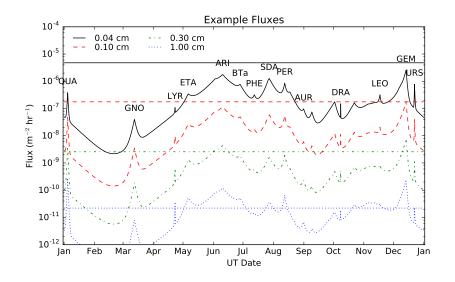
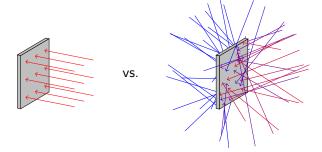
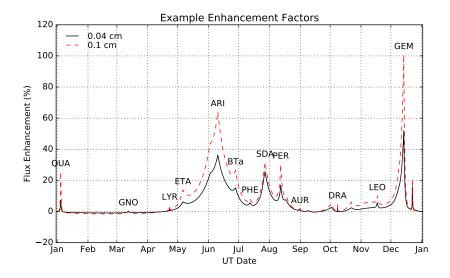



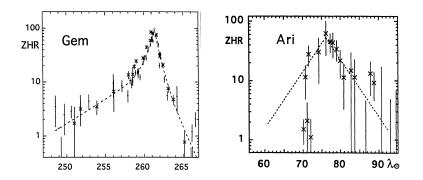
Diagram from Jones & Poole, 2007


- Earth's gravity enhances the meteoroid flux near Earth
- The Earth also physically blocks some meteoroids

- Baseline flux includes gravitational focusing and shielding.
- A portion of the sporadic flux will be blocked by the Earth.

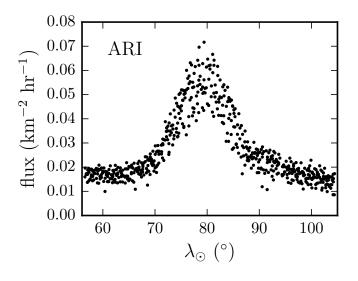

Enhancement factors

The forecast reports fluxes on a flat plate facing the shower radiant

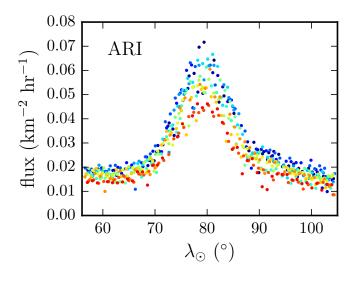

This is a "worst-case scenario" for shower exposure. Although typically showers are a small fraction (0.9% - 15%) of the baseline flux, the risk enhancement can be significant for a fully exposed element.

Enhancement factors

Activity profiles in the annual forecast

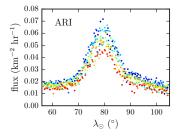

Original forecast parameters from Jenniskens (1994)

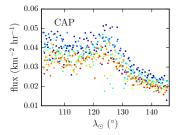
Plots from Jenniskens (1994)


Visual observations in both the northern and southern hemispheres.

14 years of CMOR data $\ensuremath{\mathsf{Arietids}}$

14 years of CMOR data

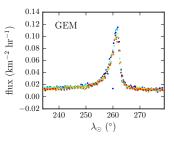

Arietids: color-coded by year



Challenges

background varies by year:

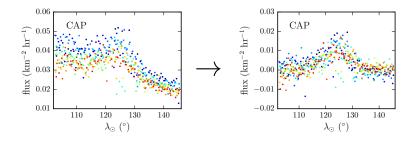
trends in background:



sensitivity varies by year:

 $\begin{pmatrix} 0.050 \\ 0.045 \\ 7 \\ 0.035 \\ 7 \\ 0.030 \\ 0.025 \\ 0.020 \\ 0.015 \\ 0.000 \\ 195 200 205 210 215 220 225 230 \\ \lambda_{\odot} (^{\circ}) \end{pmatrix}$

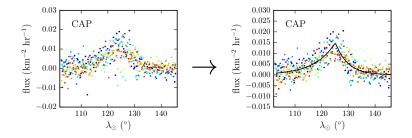
outliers:


Step 1: Fit trend to background

I weight the data away from the peak more:

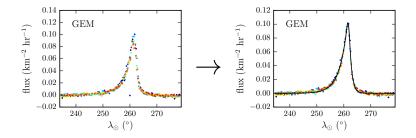
$$w_i = (\lambda_{\odot,i} - \lambda_0)^2 \tag{1}$$

And fit a linear trend:


$$f_{bg} = a\lambda_{\odot} + b_{yr} \tag{2}$$

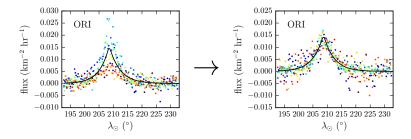
Next, I fit for f_0 , B_p , B_m , and λ_0

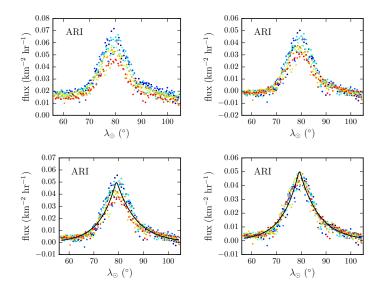
$$f = f_0 \cdot \begin{cases} 10^{+B_p(\lambda_{\odot} - \lambda_0)} & \lambda_{\odot} < \lambda_0 \\ 10^{-B_m(\lambda_{\odot} - \lambda_0)} & \lambda_{\odot} > \lambda_0 \end{cases}$$


I clip 5- σ outliers and iterate until there are none.

Next, I fit for f_0 , B_p , B_m , and λ_0

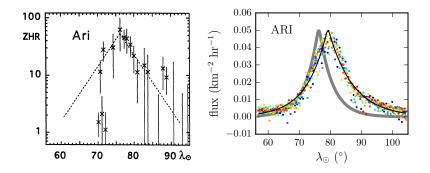
$$f_{1} = f_{0} \cdot \begin{cases} 10^{+B_{p}(\lambda_{\odot} - \lambda_{0})} & \lambda_{\odot} < \lambda_{0} \\ 10^{-B_{m}(\lambda_{\odot} - \lambda_{0})} & \lambda_{\odot} > \lambda_{0} \end{cases}$$


I clip 5- σ outliers and iterate until there are none.

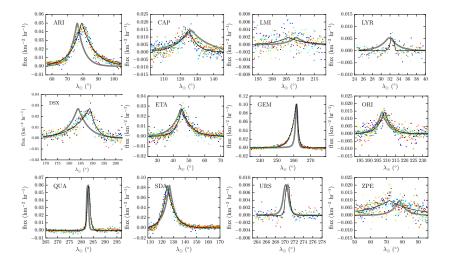

Using $f_1(\lambda_{\odot})$ from Step 2, I allow the amplitude to vary by year:

$$f_i = \sum_{yr} f_1(\lambda_i) * a_{yr} + b_{yr}$$

I use these a and b values to normalize the data, and then again fit for the shape parameters.



Arietids


Arietids

- Comparing Jenniskens (1994) with this work (right).
- Previous forecast profiles appears in gray (peak amplitude matched)

Improved showers

In the end, we were able to improve the activity profiles for $12 \ \mbox{showers:}$

- The MEO generates annual meteor shower forecasts that report:
 - Shower fluxes (based on ZHR and other shower parameters)
 - Baseline fluxes
 - Enhancement factors (to support risk assessments)
- More recent, we revised many shower activity profiles.
 - We used 14 years of fluxes from CMOR (advantageous for daytime showers in particular)
 - We were able to improve the profiles of 12 major meteor showers.
- We plan to expand this in the future to include additional data and constrain mass indices.