
The velocity and density distribution of Earth-intersecting
meteoroids: implications for environment models

Introduction

I Meteoroid environment models describe population characteristics
such as speed, directionality, and density.

I We revise the speed distribution using radar meteor observations
and a modern treatment of the ionization e�iciency.

I We revise the density distribution based on a study of optical
meteors that uses TJ as a proxy.

I Both corrections a�ect the relative importance of sporadic sources
for in situ experiments.

Velocity de-biasing

I Meteor ionization increases
with speed, and does not
occur below v0 ∼ 9 km s−1.

I Detections are complete to
smaller masses at higher
speeds, producing bias.

I We use the Jones ionization
e�iciency [1, 2] to de-bias
the radar meteor speed
distribution [3].
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Velocity “sharpening”

I Measurement uncertainties “smear” the speed distribution like a
point-spread function blurs images.

I We used meteor showers to characterize this e�ect:
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I We inverted this filter to sharpen the observed top-of-atmosphere
speed distribution. The sharpened distribution naturally lacks
“hyperbolic” meteors as well as those slower than 14 km s−1.

I The spike in slow meteors is removed from the speed distribution:
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Density distribution

I KB (a classification based on meteor start height [4]) was not a good
proxy for density in any data set we examined
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I TJ served as a good proxy for density in one study [5]; we fit two
log-normal distributions to these data.

I High density = helion and antihelion meteoroids
Low density = apex and toroidal meteoroids
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I Density does not a�ect peak brightness
(L); denser meteors simply peak at lower
heights (see plot).

I Impact crater depth does depend on ρ:

depth ∝ ρ4/27

I Ratio of radiation pressure to gravity
also depends on ρ:

Fr/Fg ∝ ρ−2/3

I Density a�ects the conversion of
β-limited to mass-limited distributions,
or mass-limited to crater-limited
distributions.

Crater-limited radiant distribution

The de-biased radiant distribution is dominated by the helion and
antihelion sources. We predict up to 93% of impact craters (vs. 38% of
radar meteors) are produced by helion and antihelion meteoroids.
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