
The use of D-criteria to assess meteor shower signi�cance

Introduction

I The anisotropy of the sporadic meteor background complicates
meteor shower extraction.

I Using static orbital similarity criteria to identify shower members
can produce too many false positives near sporadic sources.

I Concept: We use shower “analogs" to characterize the density of
meteor orbits in a region of parameter space when the shower is not
active.

Orbital Similarity Criteria

I D-parameters quantify orbital similarity.
I We obtained the best results using DN [1]:
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2 + ∆ξ2

where u = vg/v⊕, θ = cos−1 (uy/u), and φ = tan−1 (ux/uz).
I DN is based on geocentric speed and radiant (~vg) and solar longitude

(λ�) instead of orbital elements.

Construction of shower analogs

I We construct a set of analogs for each
shower.

I Analogs have the same geocentric
speed and sun-centered ecliptic radiant,
but are o�set from the shower by at
least 60◦ in λ�.

I This e�ectively defines a shower as an
enhancement lasting < 4 months.

I We calculate DN of all meteors relative to each analog and to the
shower and compare.

I This provides us with an estimate of the false positive rate for
shower association as a function of DN .

Data

I We apply our method to 36,617 all-sky meteors from NASA All Sky
Fireball Network [2] and the Southern Ontario Meteor Network
(SOMN) [3].

I Possible showers were identified using orbital element heat maps
(see below) or as short-lived clusters of meteors [4]
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Application #1: Testing Shower Significance

I Example 1: The October Lyncids (OLY) were not detected: meteor
density around the shower and its analogs is similar.

I Example 2: The July γ Draconids (GDR) were detected: meteor
density around the shower exceeded the false positive rate.
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Application #2: Shower membership probability

I The ratio of meteors that lie close to the shower orbit vs. its shower
analogs provides an estimate of shower membership probability as a
function of D:

P(shower|D) ' ND − Nspor,D

ND

Application #3: Limiting Sporadic Contamination

I Shower analogs yield a false positive rate
I Dmax can be chosen to limit this to a desired percentage
I Example 1: Dmax = 0.15 limits sporadic contamination to less than

10% for the July γ Draconids (GDR).
I Example 2: Dmax = 0.475 limits sporadic contamination to less than

10% for the Perseids (PER).
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Application #4: Shower strength estimates

I It is not necessary to identify each shower member in order to
estimate the strength of a meteor shower.

I Example: This CDF indicates that we have ≈ 1870 Geminids (GEM)
in our data set.
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