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LME – Major Thrusts

High Temperature Behavior of Materials - Chemistry and 
Physics

• Oxidation, compatibility & diffusion, experimental & computational 
methods

• Identification (thermodynamics) and quantification (kinetics) of 
experiments for identification of degradation/failure modes

Advanced Coatings Development: Concepts and Processing
• TBCs, EBCs, multi-layer engineered coatings

• Develop coating compositions to mitigate environmental degradation

• Characterize and develop new coating processing methods

Durability testing in Extreme Environments
• Exposure to relevant conditions (thermal + mechanical + 

environmental) 

• High temp, high heat flux, isothermal & cyclic, combustion, oxidation & 
corrosion, steam & water vapor, CMAS, erosion, impact 

Space & Planetary Environments:  Simulation & Analysis
• Flight experiments, durability testing, modeling, life prediction 

• Atomic oxygen, vacuum ultraviolet radiation, lunar dust adhesion, 
extreme temperature electronics, Mars atmosphere



High Temperature Behavior of Materials

GRC identified Si(OH)4 product for reaction of SiC

with moisture – reaction is life limiting to SiC/SiC

durability in turbine engines

Experimental Thermodynamics &  Kinetics Capabilities:

• Identify gaseous reaction products for unknown reactions  

• Determine kinetic rate of candidate materials degradation modes

Knudsen Effusion 

Mass Spectrometer

Thermo-gravimetric

Analysis (air/water/vacuum)

Computational Thermodynamics & Computational Models:

• Thermodynamics & kinetic approach
• Identify degradation modes due to adverse reactions w/ adjoining 

materials and environment constituents

• Code generated phase diagrams (FactSage / ThermoCalc / Dictra)

• Modeling efforts complimented with in-house experimental capabilities

• Atomistic, nanoscale, and continuum DFT materials modeling
• Molecular dynamics, Metropolis/Kinetic Monte Carlo, and particle 

statics/dynamics Oxygen Diffusivity in ZrO2



LME Mass Spectrometer Lab
(3) unique instruments to identify gas and 

vapors at high temperatures. One-of-a-kind 

facility in US, only 2-3 worldwide.

• Vacuum studies based on Knudsen cell  
• Typical 1cm  dia x 1cm high, 1 mm orifice, establish near 

equilibrium, vapor effuses

• Wt loss rates relates to pressure

• Knudsen Cell Mass Spectrometers
• Magnetic Sector KEMS

• Magnet sorts ions by mass-to-charge ratio

and ion intensity α vapor pressure

• High stability / resolution

• Fast Scanning Quadrupole KEMS
• Electric field sorts the ions

• Thermodynamic information provided:
• Heats of Vaporization & composition of vapor phases

• Activity measurements & phase diagram boundaries

• High Pressure Mass Spectrometer
• Free Jet Expansion

• Allows (10-6 atm) sampling at 1 atm

• Series of differential chambers

• Eliminates cold surface condensate

• Chemical & dynamic integrity of gases

• More qualitative (approx. amts)

Magnetic
Sector

Quadrupole



Computational Modeling

Overall Approach:

• Kinetic Monte Carlo (kMC) computer 
simulations of oxygen/H2O diffusion in 
candidate materials such as 
Yb2Si2O7, Y2Si2O7, and HfSiO4.

• Processes are assumed to be 
thermally activated.

• Consider vacancy and interstitial 
diffusion mechanisms.

• Migration barrier energies are 
computed using Density Functional 
Theory (DFT).

• Barrier energies are used to produce 
diffusivities using a kMC code 
developed in our laboratory.

Yb2Si2O7 Structure



• Incorporation of Si-based ceramics into turbine 
hot section has substantial benefits

• High temperature, low density
• 1990’s: Observation that SiC undergoes rapid 

recession in water vapor

• Environmental barrier coatings (EBCs) are 
necessary to protect the underlying ceramic

• Chemical compatibility between layers

• CTE match @ EBC/bond coat/substrate

• Thermal stability w/ limited volumetric change
• Limited O2/H2O ingress & weight loss, CMAS 

resistant, erosion toughness

• Total thickness of 5-10 mil (125-250 micron)

• 2000s: Development of coatings to minimize water 
vapor effects at 2400°F

• Current NASA goals require durable coating 
systems at 1482C (2700F) w/ reduced cooling

• Limited recession and good adhesion

• Traditional processing methods may not be able 
to meet the requirements

• Plasma Spray-Physical Vapor Deposition (PS-PVD)
• Slurry casting

Advanced Coatings: Concepts

EBC

Bond Coat

SiC/SiC CMC



Environmental Barrier Coating (EBC)
An external coating to protect CMC from water vapor

H2O(g) Si(OH)4(g) H2O(g) H2O(g)

SiO2 (s) + 2H2O (g) = Si(OH)4 (g)

EBC
Chemical 

compatibility

Low stress
Oxidation 

Resistance

Environmental durability

- H2O

- CMAS

CTE match  

Phase stability

Low modulus 

Sinter resistance

EBC is essential for CMC operation. Uncoated 

CMC suffers rapid recession.



Oxide topcoat

Mixture interlayer

Environmental Barrier

Advanced Coatings: Processing

Develop in-house new techniques and partner with outside contractors in 

parallel paths:

• Rich history of Thermal and Environmental Barrier Coatings

• In-house facilities include:

• Ambient / High Temperature Plasma Spray

• Plasma Spray-Physical Vapor Deposition (PS-PVD)

• Slurry Coating Deposition (new)

• Partner externally for developing EB-PVD, CVD, DVD

Plasma Spray-Physical Vapor Deposition:

Plasma during vapor deposition

Same material, different processing parameters

• One of 5 systems worldwide, online in 2010

• Relatively high deposition rate over other methods

• Non line of sight deposition

• Wide range of applications      

Ambient Plasma Spray High Temp Plasma Spray

Multiple materials

Different processing 

parameters



• Bridges the gap between plasma 
spray and vapor phase methods

• Variable microstructure 

• Multilayer coatings with a single 
deposition

• Low pressure (70-1400 Pa)

High power (>100 kW)

• Temperatures 6,000-10,000K

• High throughput1

• 0.5 m2 area, 10 mm layer in < 60s

• Material incorporated into gas 
stream

• Non line-of-sight deposition

• Attractive for a range of 
applications

• Solid oxide fuel cells, gas sensors, 
etc.

20 mm

Planar

40 mm

Columnar

Plasma Spray-Physical Vapor Deposition
(PS-PVD)



EBC Failure Modes
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K. N. Lee, “Environmental Barrier Coatings for CMC’s”; in Ceramic Matrix Composites, Wiley, New York (2015)

Synergies between failure modes lead to the ultimate EBC failure

CMC

SiO2

CMC

EBC

EBC

CMC

CMC

EBC

CMC

• Steam oxidation

• Recession by 

water vapor

• Thermal fatigue

• Thermo-mechanical 

fatigue 

• Sand/Volcanic Ash Ingestion

• CMAS: Calcium-

Magnesium-Alumino-Silicate

• Erosion

• Foreign Object Damage

Bond Coat

H2O

Cycle 

under 

DT

H2O

Si(OH)4 (gas)

CMC

EBC

FOD
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- Silicon oxidizes faster in H2O(g) than in air by an order of magnitude
- Attributed to high solubility of H2O(g) in SiO2

- Ceramic top coat does not stop the transport of H2O(g) to Si bond coat 

First Gen EBC
0.9 atm pH2O + 0.1 am O2

GE Final Report – AMAIGT Program      Dec. 2010  

SiO2

Silicon
0.9 atm pH2O + 0.1 am O2

Silicon
O2 = 0.1 atm

H2O(g) Si(OH)4(g)

H2O (g)

Silicon Bond coat

Isothermal Oxidation, T = 2200oF (1204oC) 

Oxidation of  EBC/CMC system must be evaluated in H2O environments

Cyclic Oxidation, 2400oF, 90% H2O 

Gen 2, 100h, TGO 6~7 mm

SiO2

Si

Yb2Si2O7

NASA, Unpublished data

EBC Steam Oxidation



• First integration and testing of NASA 

developed CMC with the NASA 

developed EBC system

• Sustained peak low cycle fatigue 

(SPLCF) test with laser gradient heating 

for thermomechanical validation

• Milestones have been reached for 

desired temperature and loading 

conditions.

Thermomechanical Testing of CMC/EBC

EBC coated CMC under stress  heated by 
a high heat flux laser

Laser 
Heating

CMC with 
EBC

After testing

Cycle 

under DT

CMC

EBC
Mechanical 

Loading
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Rig Capability Failure modes to be tested

Mass Spectrometer P(H2O) = N/A
v = N/A
Ptotal = N/A

Recession (High pressure measurement of 
reaction products and Low pressure 
measurement of activities)

Steam TGA P(H2O) = up to ~0.5 atm                      
v = a few cm/s
Ptotal = 1 atm

Recession (Initial screening of candidate 
materials)

Mach 0.3 Burner rig P(H2O) = ~0.1 atm
v = 230 m/s
Ptotal = 1 atm

CMAS, Erosion, FOD

Steam cycling rig P(H2O) = up to ~1 atm                      
v = a few cm/s
Ptotal = 1 atm

Steam oxidation

High heat flux laser rig P(H2O) = ambient air                     
v = zero                                       
Ptotal = 1 atm

Thermal fatigue in temp gradient
Thermo-mechanical fatigue in temp gradient

Natural gas burner rig P(H2O) ~ 0.5 atm, 
v ~ 250m/s
Ptotal = 1 atm

Recession
Thermal fatigue in temp gradient
(Coupons, Tensile bars, components)

CE-5 combustion rig P(H2O) ~ 3 atm
v ~ >30 m/s 
Ptotal ~ 30 atm

Steam oxidation w/ temperature gradient
Recession
(Coupons, Tensile bars, components)

NASA EBC Development Test Rigs

• Combinations of rigs to investigate synergies between failure modes

• The only test vehicle that has all key variables is an engine



Environmental Durability Testing
Materials evaluated in relevant conditions with a wide range of facilities:

• High Heat Flux Laser Rigs
• (4) rigs capable of up to 315 W/cm2

• Thermal-mechanical capability

• Isothermal, thermal gradient, steam

• In Situ Thermal Conductivity

• Mach 0.3 Burner Rigs
• Jet fuel / air combustors (Mach 0.3 - 0.7) 

• Tgas over 3000°F / Tsrf up to 2700°F

• Automated, thermal cycling, impact, loading

• Dedicated Erosion Burner Rigs
• Alumina erodent particulates (1-600 micron)

• Adapted for CMAS compositions

• Continuous/uniform feeding (.08-60 gm/hr)

• Steam Cyclic Oxidation Testing
• 90% water vapor (9 atm total pressure)

• Temperatures up to 2700°F (1482 C)

• Natural Gas / O2 Burner Rig
• Natural gas / O2 combustion

• 4200 F, 250 m/s, up to 58% H2O, 160-215 W/m2

• Versatile: water recession, full coverage high heat flux, 

complex geometries, film cooling, combine with erosion / 

CMAS
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Typical Laser Test Rig:

 Laser Heating (4000 W) on Front
 Backside Air Cooling 
 Surface Temperature Measured with 

Pyrometers and/or IR Camera
 Surface Temperatures up to 3000 °F 

(Material Dependent)
 Thermal Fatigue and Combined Thermal 

Gradient and Axial Fatigue
 Uncoated / EBC Coated SiC/SiC CMCs

(HO)

(H2O)

Testing Features:

 Servo-hydraulic , 25 kN Load Cell
 Water-cooled Wedge Grips
 Two 1 in. Gage Length, Water-Cooled 
 Extensometers; 6 in. Long Tensile 

Specimens
 Frequencies up to 30 Hz
 Load and Stroke Control 
 Strain-Control capability in progress
 Tensile, flexural, HCF, LCF, SPLCF
 In situ thermal conductivity measurement

High Heat Flux Laser Rigs



• 8 computer-controlled jet-fueled combustors in individual test cells Building 34

• Extremely efficient means of testing the durability of new jet engine materials

• Material test temperatures from 600° to 2700°F, flame temperatures to 3000ºF

• Creates the extremely hostile operating environment found in turbine engines

• Multiple or single samples tested using rotating carousels to compare materials 

• Thermal cycling duplicates actual flight cycles: takeoffs, cruise, and landings

Mach 0.3 Burner Rig Facility

(1) TBC/Super-alloy, (2) Erosion, 

(3) Film-cooled monolithic 

ceramic, (4) Metal Turbine Blade
(1)

(3)

(2)

(4)

Oxidation

Hot 
Corrosion

Thermal 
Cycle

Erosion & 
CMAS

Tensile

F.O.D.



Cyclic Steam Oxidation Testing

O2 H2O 

Quartz
Wool

“Hot 
Cycle”

• Steam oxidation required to determine 
durability of EBC

• Limitation of formation and growth of SiO2 layer 
critical to lifetime

• Oxidation of Si-based ceramics (including Si) is 
an order of magnitude or more in steam

• Steam oxidation performed at NASA

• “Hot cycle” temperature 1426°C

• 0.9 atm H2O bal. O2

• 2.2 cm/sec flow rate

• 1 hour hot followed by 20 minute cool

O2 H2O 

Quartz
Wool

“Cool 
Cycle”

31 Cycles at 1426°C 50 mm

• Scales formed in cyclic steam oxidation are 
often much thicker and more porous

• TGO scales at coating interface lead to 
spallation failure
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Space Environments

Space and Planetary 

Environment Durability

and Performance 

Prediction

Space Environment 

Simulation

Environmental Degradation

Abatement Technology

Development

Environmentally Durable

High Performance Surfaces 

and Component 

Development

• Environment Effects Knowledge

– Flight Experiments (EOIM-III,     

LDEF, Mir, MISSE 1-7, etc.)

– Environment Simulation                      

(Low Earth Orbit, Lunar, Mars …)
• Atomic Oxygen, UltraViolet

Radiation, Dust Adhesion

• Atmosphere & surface 

interaction

– Modeling (Erosion of Polymers, 

Sunspot Prediction)

• Analysis and Life Prediction 

• Abatement, High Performance 

Surfaces, and Component 

Development 

– AO & UV resistant coatings

– Orion docking seals / windows 

– High Emittance Radiator Coatings

– Radiation Durable Solar Cells

– Extreme Temperature Electronics

• Technology Transfer of Developed 

Technologies (for Aerospace, Medical, 

Industrial and Art Applications)



• Monte Carlo Analysis: 2-D Computational modeling 

of atomic oxygen erosion of polymers based on 

observed in-space results

• Takes into account:

• Energy dependence of reaction probability

• Angle of impact dependence on reaction 

probability

• Thermalization of scattered oxygen atoms

• Partial recombination at surfaces

• Atomic oxygen scattering distribution 

functions

• Modeling parameters tuned to replicate in-space 

erosion

Atomic Oxygen Modeling

O2

UV Radiation

O O CO or CO2OH

LDEF Teflon FEP
AO F= 7.78x1021 atoms/cm2



Fire damaged Atomic oxygen restoration

Atomic Oxygen Art Restoration


