LME – Environmental Effects & Coatings Branch

Craig Robinson March 3, 2017

LME – Major Thrusts

High Temperature Behavior of Materials - Chemistry and Physics

- Oxidation, compatibility & diffusion, experimental & computational methods
- Identification (thermodynamics) and quantification (kinetics) of experiments for identification of degradation/failure modes

Advanced Coatings Development: Concepts and Processing

- TBCs, EBCs, multi-layer engineered coatings
- Develop coating compositions to mitigate environmental degradation
- Characterize and develop new coating processing methods

Durability testing in Extreme Environments

- Exposure to relevant conditions (thermal + mechanical + environmental)
- High temp, high heat flux, isothermal & cyclic, combustion, oxidation & corrosion, steam & water vapor, CMAS, erosion, impact

Space & Planetary Environments: Simulation & Analysis

- Flight experiments, durability testing, modeling, life prediction
- Atomic oxygen, vacuum ultraviolet radiation, lunar dust adhesion, extreme temperature electronics, Mars atmosphere

High Temperature Behavior of Materials

Experimental Thermodynamics & Kinetics Capabilities:

- Identify gaseous reaction products for unknown reactions
- Determine kinetic rate of candidate materials degradation modes

Knudsen Effusion Mass Spectrometer

Thermo-gravimetric Analysis (air/water/vacuum)

GRC identified Si(OH)₄ product for reaction of SiC with moisture – **reaction is life limiting to SiC/SiC durability in turbine engines**

Computational Thermodynamics & Computational Models:

- Thermodynamics & kinetic approach
 - Identify degradation modes due to adverse reactions w/ adjoining materials and environment constituents
 - Code generated phase diagrams (FactSage / ThermoCalc / Dictra)
 - Modeling efforts complimented with in-house experimental capabilities
- Atomistic, nanoscale, and continuum DFT materials modeling
 - Molecular dynamics, Metropolis/Kinetic Monte Carlo, and particle statics/dynamics

LME Mass Spectrometer Lab

(3) unique instruments to identify gas and vapors at high temperatures. One-of-a-kind facility in US, only 2-3 worldwide.

- Vacuum studies based on Knudsen cell
 - Typical 1cm dia x 1cm high, 1 mm orifice, establish equilibrium, vapor effuses
 - Wt loss rates relates to pressure

Knudsen Cell Mass Spectrometers

- Magnetic Sector KEMS
 - Magnet sorts ions by mass-to-charge ratio and ion intensity α vapor pressure
 - High stability / resolution
- Fast Scanning Quadrupole KEMS
 - Electric field sorts the ions
- Thermodynamic information provided:
 - Heats of Vaporization & composition of vapor phases
 - Activity measurements & phase diagram boundaries
- **High Pressure Mass Spectrometer**
 - Free Jet Expansion
 - Allows (10⁻⁶ atm) sampling at 1 atm
 - Series of differential chambers
 - Eliminates cold surface condensate
 - Chemical & dynamic integrity of gases
 - More qualitative (approx. amts)

FREE JET EXPANSION SAMPLING SYSTEM

SKIMMER COLLIMATOR

ATMOS PHERI

SAMPLING

ORIFICE

STAGE IL STAGE III | STAGE IV

MASS SPECTROMETER

CS-84-0555

Computational Modeling

Overall Approach:

- Kinetic Monte Carlo (kMC) computer simulations of oxygen/H2O diffusion in candidate materials such as Yb2Si2O7, Y2Si2O7, and HfSiO4.
- Processes are assumed to be thermally activated.
- Consider vacancy and interstitial diffusion mechanisms.
- Migration barrier energies are computed using Density Functional Theory (DFT).
- Barrier energies are used to produce diffusivities using a kMC code developed in our laboratory.

Yb2Si2O7 Structure

Advanced Coatings: Concepts

- Incorporation of Si-based ceramics into turbine hot section has substantial benefits
 - High temperature, low density
 - 1990's: Observation that SiC undergoes rapid recession in water vapor
- Environmental barrier coatings (EBCs) are necessary to protect the underlying ceramic
 - Chemical compatibility between layers
 - CTE match @ EBC/bond coat/substrate
 - Thermal stability w/ limited volumetric change
 - Limited O2/H2O ingress & weight loss, CMAS resistant, erosion toughness
 - Total thickness of 5-10 mil (125-250 micron)
 - 2000s: Development of coatings to minimize water vapor effects at 2400°F
- Current NASA goals require durable coating systems at 1482C (2700F) w/ reduced cooling
 - Limited recession and good adhesion
- Traditional processing methods may not be able to meet the requirements
 - Plasma Spray-Physical Vapor Deposition (PS-PVD)
 - Slurry casting

Environmental Barrier Coating (EBC)

An external coating to protect CMC from water vapor

EBC is essential for CMC operation. Uncoated CMC suffers rapid recession.

Advanced Coatings: Processing

Develop in-house new techniques and partner with outside contractors in parallel paths:

- Rich history of Thermal and Environmental Barrier Coatings
- In-house facilities include:
 - Ambient / High Temperature Plasma Spray
 - Plasma Spray-Physical Vapor Deposition (PS-PVD)
 - Slurry Coating Deposition (new)
- Partner externally for developing EB-PVD, CVD, DVD

Plasma Spray-Physical Vapor Deposition:

- One of 5 systems worldwide, online in 2010
- Relatively high deposition rate over other methods
- Non line of sight deposition
- Wide range of applications

Same material, different processing parameters

Plasma Spray-Physical Vapor Deposition (PS-PVD)

- Bridges the gap between plasma spray and vapor phase methods
 - Variable microstructure
 - Multilayer coatings with a single deposition
- Low pressure (70-1400 Pa)
 High power (>100 kW)
 - Temperatures 6,000-10,000K
- High throughput¹
 - 0.5 m² area, 10 mm layer in < 60s
- Material incorporated into gas stream
 - Non line-of-sight deposition
- Attractive for a range of applications
 - Solid oxide fuel cells, gas sensors, etc.

EBC Failure Modes

Synergies between failure modes lead to the ultimate EBC failure

EBC Steam Oxidation

- Silicon oxidizes faster in H₂O(g) than in air by an order of magnitude
- Attributed to high solubility of $H_2O(g)$ in SiO₂
- Ceramic top coat does not stop the transport of H₂O(g) to Si bond coat

Oxidation of EBC/CMC system must be evaluated in H₂O environments

Thermomechanical Testing of CMC/EBC

- First integration and testing of NASA developed CMC with the NASA developed EBC system
- Sustained peak low cycle fatigue (SPLCF) test with laser gradient heating for thermomechanical validation
- Milestones have been reached for desired temperature and loading conditions.

After testing

NASA EBC Development Test Rigs

Rig	Capability	Failure modes to be tested
Mass Spectrometer	$P(H_2O) = N/A$	Recession (High pressure measurement of
	v = N/A	reaction products and Low pressure
	$P_{total} = N/A$	measurement of activities)
Steam TGA	P(H ₂ O) = up to ~0.5 atm	Recession (Initial screening of candidate
	v = a few cm/s	materials)
	P _{total} = 1 atm	
Mach 0.3 Burner rig	P(H ₂ O) = ~0.1 atm	CMAS, Erosion, FOD
	v = 230 m/s	
	P _{total} = 1 atm	
Steam cycling rig	P(H ₂ O) = up to ~1 atm	Steam oxidation
	v = a few cm/s	
	P _{total} = 1 atm	
High heat flux laser rig	P(H ₂ O) = ambient air	Thermal fatigue in temp gradient
	v = zero	Thermo-mechanical fatigue in temp gradient
	P _{total} = 1 atm	
Natural gas burner rig	P(H ₂ O) ~ 0.5 atm,	Recession
	v ~ 250m/s	Thermal fatigue in temp gradient
	P _{total} = 1 atm	(Coupons, Tensile bars, components)
CE-5 combustion rig	P(H ₂ O) ~ 3 atm	Steam oxidation w/ temperature gradient
	v ~ >30 m/s	Recession
	P _{total} ~ 30 atm	(Coupons, Tensile bars, components)

- Combinations of rigs to investigate synergies between failure modes
- The only test vehicle that has all key variables is an engine

Environmental Durability Testing

Materials evaluated in relevant conditions with a wide range of facilities:

High Heat Flux Laser Rigs

- (4) rigs capable of up to 315 W/cm²
- Thermal-mechanical capability
- Isothermal, thermal gradient, steam
- In Situ Thermal Conductivity

Mach 0.3 Burner Rigs

- Jet fuel / air combustors (Mach 0.3 0.7)
- Tgas over 3000°F / Tsrf up to 2700°F
- Automated, thermal cycling, impact, loading

Dedicated Erosion Burner Rigs

- Alumina erodent particulates (1-600 micron)
- Adapted for CMAS compositions
- Continuous/uniform feeding (.08-60 gm/hr)

Steam Cyclic Oxidation Testing

- 90% water vapor (9 atm total pressure)
- Temperatures up to 2700°F (1482 C)
- Natural Gas / O2 Burner Rig
 - Natural gas / O2 combustion
 - 4200 F, 250 m/s, up to 58% H2O, 160-215 W/m2
 - Versatile: water recession, full coverage high heat flux, complex geometries, film cooling, combine with erosion / CMAS

High Heat Flux Laser Rigs

Typical Laser Test Rig:

- Laser Heating (4000 W) on Front
- Backside Air Cooling
- Surface Temperature Measured with Pyrometers and/or IR Camera
- Surface Temperatures up to 3000 °F (Material Dependent)
- Thermal Fatigue and Combined Thermal Gradient and Axial Fatigue
- Uncoated / EBC Coated SiC/SiC CMCs

Testing Features:

- Servo-hydraulic , 25 kN Load Cell
- Water-cooled Wedge Grips
- Two 1 in. Gage Length, Water-Cooled
- Extensometers; 6 in. Long Tensile
 Specimens
- Frequencies up to 30 Hz
- Load and Stroke Control
- Strain-Control capability in progress
- Tensile, flexural, HCF, LCF, SPLCF
- In situ thermal conductivity measurement

Mach 0.3 Burner Rig Facility

- 8 computer-controlled jet-fueled combustors in individual test cells Building 34
- Extremely efficient means of testing the durability of new jet engine materials
- Material test temperatures from 600 $^\circ$ to 2700 $^\circ\text{F}$, flame temperatures to 3000 $^\circ\text{F}$
- Creates the extremely hostile operating environment found in turbine engines
- Multiple or single samples tested using rotating carousels to compare materials
- Thermal cycling duplicates actual flight cycles: takeoffs, cruise, and landings

Cyclic Steam Oxidation Testing

- Steam oxidation required to determine durability of EBC
 - Limitation of formation and growth of SiO₂ layer critical to lifetime
 - Oxidation of Si-based ceramics (including Si) is an order of magnitude or more in steam
- Steam oxidation performed at NASA
 - "Hot cycle" temperature 1426°C
 - 0.9 atm H₂O bal. O₂
 - 2.2 cm/sec flow rate
 - 1 hour hot followed by 20 minute cool

- Scales formed in cyclic steam oxidation are often much thicker and more porous
- TGO scales at coating interface lead to spallation failure

Space Environments

Space and Planetary Environment Durability and Performance Prediction

Environmental Degradation Abatement Technology Development

Environment Effects Knowledge

- Flight Experiments (EOIM-III, LDEF, Mir, MISSE 1-7, etc.)
- Environment Simulation
 (Low Earth Orbit, Lunar, Mars ...)
 - Atomic Oxygen, UltraViolet Radiation, Dust Adhesion
 - Atmosphere & surface
 interaction
- Modeling (Erosion of Polymers, Sunspot Prediction)
- Analysis and Life Prediction
- Abatement, High Performance Surfaces, and Component Development
 - AO & UV resistant coatings
 - Orion docking seals / windows
 - High Emittance Radiator Coatings
 - Radiation Durable Solar Cells
 - Extreme Temperature Electronics
- Technology Transfer of Developed Technologies (for Aerospace, Medical, Industrial and Art Applications)

Space Environment Simulation

Environmentally Durable High Performance Surfaces and Component Development

Atomic Oxygen Modeling

- Monte Carlo Analysis: 2-D Computational modeling of atomic oxygen erosion of polymers based on observed in-space results
- Takes into account:
 - Energy dependence of reaction probability
 - Angle of impact dependence on reaction probability
 - Thermalization of scattered oxygen atoms
 - Partial recombination at surfaces
 - Atomic oxygen scattering distribution functions
- Modeling parameters tuned to replicate in-space erosion

LDEF Teflon FEP AO F= 7.78x10²¹ atoms/cm²

Atomic Oxygen Art Restoration

Fire damaged

Atomic oxygen restoration