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The Spaceport Command and Control System (SCCS) is the National Aeronautics 

and Space Administration’s (NASA) launch control system for the Orion capsule and Space 
Launch System, the next generation manned rocket currently in development.  This large 
system requires a large amount of intensive testing that will properly measure the capabilities 
of the system. Automating the test procedures would save the project money from human labor 
costs, as well as making the testing process more efficient. Therefore, the Electrical 
Exploration Systems Division (formerly the Electrical Engineering Division) at Kennedy Space 
Center (KSC) has recruited interns for the past two years to work alongside full-time engineers 
to develop these automated tests, as well as innovate upon the current automation process. 

 
Nomenclature 

GUI =  Graphical User Interface 
CSV =  Comma Separated Values 
 
DA =  Development Activity 
IDE =  Integrated Development Environment 
KSC =  NASA Kennedy Space Center   
LCC =  Launch Control Center 
LCS =  Launch Control Subsystem 
 
MPEG =  Motion Picture Experts Group (video file type) 
NACK =  Negative Acknowledged Response 
NASA =  National Aeronautics and Space Administration 
NE-XES =  KSC Engineering – Exploration Division/Software Branch 
OSB II =  Operations Support Building II 
2SCCS =  Spaceport Command and Control System 
 
SLS =  Space Launch System 
OCR =  Optical Character Recognition 
 

I. Introduction 
he work that was done in the duration ofduring this internship aimeds to develop automated software testing to 
make the software development process more optimized by reducing the amount of manual testing for software 

through developing automated software testing. This software will be used for future Human Spaceflight Program 
launches. Making automated software tests will allow software engineers to spend their skills and time on other aspects 
of the project rather than spend a lot of their time manually testing software. Automating software tests will also help 
reduce human error that would appear, especially after hours of rigorous testing. After the automation process has 
been practiced and implemented and refined for this project, it will apply can be applied to future projects. 

The majority of this development involves using an automated testing framework and an automation library. The 
automated testing framework has its own syntax and utilizes keywords to operate automation features. It is 
implemented with Python and automates anything that appears on a desired screen with the use of image recognition 
software to detect and control GUI components. 
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There are currently spreadsheets of test procedures that contain step-by-step test cases that would normally be 
followed by engineers. Generally, the tests we’ve automated test the given sections of a system GUI and produce 
measurements and statuses, which are then verified by checking the values that they indicate. 

When we, the interns, could not work on our automated testing development in the LCC due to set scheduling 
conflicts or reprovisioning of the system, we would either attempt to blind code the automated test procedures to the 
best of our abilities or work on side projects that were individually assigned to the interns. These side projects mostly 
contained working on the current tools that assist the automation, as well as trying to incorporate more tools to make 
the automation process more efficient. 
  

II. Approach 
To work on this project, I had to learn the objectives and tools by researching into each topic. Then, I ran tests, 

learning from trial and error until I developed a solid understanding of how to use the tools and software. 
 
A. Training/Familiarization 
 

I started this internship in mid-January of 2017. For the first week, all of the interns that were working this 
semester were together, regardless if they were new or returning/yearlong interns. We introduced ourselves and met 
our intern coordinator and other important points of contact. We went through a few training sessions. These sessions 
were about security, safety, and other such topics. The second week we split up into our groups of interns with whom 
we would be working closely. In our group, there were three returning/yearlong interns and three of us new interns. 
We paired up and we watched each other work and became familiar with the system, where the files are stored, how 
to use version control software, etc. We watched the “senior” interns work during the second week, and then we got 
our own assignments and went straight to work, asking them for advice/assistance along the way. 

Later on, after a couple of months, we had separated and categorized the general keywords normally used for our 
test cases based on to what the keywords are commonly applied. This change took a little adjustment for the team, 
because it changes the file paths that we reference to in our code, and causes keywords to “break”. However,but for 
the in the long term it will provide a more efficient process of searching for desired keywords. Because of this and 
other changes, including syntactical changes to the coding standards, we had to refactor what we had done and change 
the way we would develop future tests. 

 
B. Automated Testing for SCCS Dashboard 
 

The test case spreadsheets we had been working from were written by system test engineers, people who manually 
tested the software and wrote guidelines for testing the software. Below is an example of what the major parts look 
like. The number of test cases steps in each case varies, but is usually around 60-120, ranging from 20 to 300. 

 
Step # Operator Action Expected Response 

18 Launch display, “Some Display”  “Some Display” display appears 

19 Execute the command script “Some 
Script”, to Load data 

Values on “Some Display” are 
changing 

Table 1: Generalized Examples of Test Steps from a Test Procedure Spreadsheet. 
 
Since I am not familiar with all the different displays in the software (and the possibility of them changing), I did 

some of the steps manually to familiarize myself with them before going ahead and coding the automation. 
 
a. Technical Specifics 
 
 While writing test steps that will automate a GUI, there are buttons, text fields, editable value fields, and dropdown 
menus that need to be considered. This requires precise selection of those desired areas on the screen. Because we are 
not using the source code of the GUI to locate and select this items, we have to take pictures of the text we want to 
select or the button we want to click on. This involves taking a lot of screenshots and using image recognition tools 
to correctly find the matching images. 
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b. Test File Formatting 
 
 The actual files that we write are high-level and are used by the automation software. They start with 
documentation and file paths to the resources that they use, as every test case is different. The majority of our work 
goes into writing the test steps, under the “Test Cases” section. The work we do is usually done in a general-purpose 
text editor named gedit. However, we could use any text editor, including those that are built into the operating 
systems’ command line interface. Below is an example of what the final result would look like. The number of test 
steps written usually matches the number of test steps in the spreadsheets. 
 

 
Figure 1: Format of Sample Automated Test File. 
(Picture owned by Andrew Hwang) 
 
C. Future Developments 
 
 As of now, the automated tests rely on the image recognition capabilities and the images that we produced and 
captured, but we are getting closer to using a more effective method of OCR. This will only require screen shots of 
the entire screen, which is far more automatable than specifically capturing portions of the screen and creating images 
whenever something on the screen is updated. This will also make the automated test cases more adaptable to a change 
in the screen’s environment. We have been working on getting these tools incorporated in our systems. 

 
III. Conclusion 

 
So far we have finished about 60% of all the automated testing there is to do. This 60% consists of tests that we 

have already run in the LCC to make sure they work. However, we have been delayed at times due to not having 
access to the systems in the LCC to run and make sure our tests are working. When we experienced this, we just kept 
on “blind coding” the test cases, writing them based on our knowledge of the displays and such. This does help us 
make progress because later when we get access to the computers in the LCC, we will only have to make a few changes 
to get the test cases working. The work we are doing is important, and we used the actual software and hardware that 
is going to be used to launch NASA's Space Launch System, the next generation of rockets destined to go to Mars. 
Our work has proven itself cost and time-effective. 
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