

Spaceport Command and Control System Software
Development Intern

Andrew Hwang

Kennedy Space Center
Major: Computer Science

Spring Session
Date: 19 04 2017

NASA NIFS – Internship Final Report

[1]

Spaceport Command and Control System Automation
Testing

Andrew T. Hwang1

Case Western Reserve University, Cleveland, Ohio, 44106

 The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space
Administration’s (NASA) launch control system for the Orion capsule and Space Launch System, the
next generation manned rocket currently in development. This large system requires high quality
testing that will properly measure the capabilities of the system. Automating the test procedures would
save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space
Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to
develop these automated tests, as well as innovate upon the current automation process.

Nomenclature

CSV = Comma Separated Values
GUI = Graphical User Interface
KSC = Kennedy Space Center
LCC = Launch Control Center
NASA = National Aeronautics and Space Administration
OCR = Optical Character Recognition
MD5 = Message Digest algorithm that produces a 128-bit hash value.
SCCS = Spaceport Command and Control System

I. Introduction

he importance of this internship is to make the software development process more optimized by reducing the
amount of manual testing for software to be used for future Human Spaceflight Program launches by developing

automated software testing. This will allow the software engineers, who previously spent large amounts of time
working on these tests, to spend their skills and time on other aspects of the project. In addition, the automated tests
can help avoid human errors that would possibly appear after hours of rigorous testing. Once these automated test
cases pass high-quality verification and contribute to a successful launch, we can be assured that the automation will
run the same way for future testing.
 The major pieces of software that we were using to develop our automated tests include an automated testing
framework and an automation library. The automated testing framework has tabular test data syntax and utilizes
keywords to operate automation features. The automation library contains functionality to automate anything that
appears on a desired screen with the use of image recognition software to detect and control GUI components.

The interns who worked on the automated testing project were Michael Backus, Abraham Glasser, Thomas Plano,
Mark Rodriguez, Meriel Stein, and myself.

II. Objectives

The main objective of this project was to automate the testing of given sections of a system GUI that would use
streamed simulated data from the testing servers to produce measurements, plots, statuses, etc. to the GUI. There are
spreadsheets of test procedures and each section contains step-by-step test cases that would normally be followed by
engineers.

When we, the interns, could not work on our automated testing development in the LCC because of scheduling
or because a system reprovisioning was in progress, we would either attempt to “blind code” the automated test
procedures to the best of our abilities or work on side projects that were individually assigned to the interns. My
alternative assignment was to develop a script to setup a user’s remote accessibility. My second alternative assignment

1 Spaceport Command and Control System Software Development Intern, NE-XS, Kennedy Space Center, Case Western Reserve
University

T

NASA NIFS – Internship Final Report

[2]

was to develop a script to update the password of multiple extra pseudo users, which are for the use of the automation
team.

III. Approach

My approach to effectively tackle the assignments that were given to all the interns is to first properly familiarize
myself with the objectives and tools that would be utilized by researching into each topic. Then, I’d proceed to run
tests, learning from trial and error until I have a solid understanding of the most optimal use of the tools and software
I am using.

A. Training/Familiarization

a. Automated Testing

I have been working with the automated testing framework for about 7 months now, but some changes were made
about two weeks ago to the file organization of the resource files. All of the general keywords normally used for our
test cases had been separated and categorized based on to what the keywords are commonly applied. This change took
a little adjustment for the team, but in the long term it will provide a more efficient process of searching for desired
keywords.

Another new addition was the introduction of sprint meetings to help keep track of which tests were assigned to
who and see how much the automation team has progressed. The meetings are held every other week, where we reflect
on what we have done well, what we could improve upon, and what we should keep in mind for the future.

b. Scripting
 The script is written with a command language that is commonly used in operating system terminals. I have had
past shell scripts assigned to me by my project lead, so I have a good understanding of programing the new scripts I
was assigned. There were a few times I had to research for a functionality of the command language to perform a task
that I could not program with my base knowledge. Thankfully, I had the help of my fellow interns when I needed a
different perspective of how I should approach the issue I was facing.

B. Automated Testing for SCCS Dashboard

For the primary objective of this internship, we were tasked with the responsibility to automate the testing process
for the SCCS dashboard. To know the testing procedure for the test case that needs to be automated, we were given
spreadsheets with each test step in a row with the operator action and expected responses.

Step # Operator Action Expected Response

12 Launch display, “Some Display” “Some Display” display appears
13 Execute the command script “Some

Script”, to Load data
Values on “Some Display” are

changing
Table 1: Example of a couple of Test Steps from a Test Procedure Spreadsheet.

After looking at the existing test steps, it seemed to make the most sense to initially run the test steps manually,

as if to mirror the process of a testing engineer. Then, once understanding the whole process of the test step, the next
step was to check for any suitable keywords that were found in the libraries, and thus starts the trial and error process.
Once a selection of keywords and a working algorithm were established, we were ready to do a first run of the
automated test step. If the test failed, the first step to take would be to take a look at the produced report file and read
through the specifics of the errors. If the test passed, the next step would be to verify that the test passes for all possible
edge cases.

a. Technical Specifics
 While writing test steps that will automate a GUI, there are buttons, text fields, editable value fields, and dropdown
menus that need to be considered. This requires precise selection of those desired areas on the screen, so the process
the automation team takes is to either produce an image of the text we desire to interact with or take a capture of the
image with which we wish to interact. We are able to perform these tasks with the use of keywords that compare
images from an image library to either the entire screen or a selected area of the screen; this is all possible with the
use of the automation library’s image comparison capabilities.

NASA NIFS – Internship Final Report

[3]

b. Test File Formatting
 The automated testing framework has a tabular-style syntax, which means the functionality of a line of code must
have the appropriate number of tabs for the line to function as intended. The header section contains either paths to
custom resources or the names of libraries being used; in the automated testing team’s case, the automation library
and common function file would be included in the header. The data section contains any data values strictly created
for the current automated testing framework. The body section holds the tests that are being run, but requires a title
for each procedure, and there is no limit to how many procedures that can be made; however, all of the procedures
must run sequentially based off where it was written in the file. The function section can include any number of
functions and does not run sequentially, but runs in whatever orientation the function was called by a procedure or
another function, and these functions may only be used by the current automated testing framework file or any other
file that resources it. The resources and body section are required for all test files; the data and function sections can
be left empty if the data values and functions being used are from a resourced library or file.

Figure 1: Format of Sample Automated Test File.

C. Script

The Project Lead of the Automated Testing Team, Jason Kapusta, assigned additional projects to a few of the
interns. The first project assigned was a script that would setup the current user’s remote accessibility. The second
script will modify the authentication for a group of pseudo users, which are used to for multi-user automated tests for
the automation testing teams.

D. Future Developments

As of now, the automated tests rely on the image recognition capabilities and the images that we produced and
captured, but we are getting closer to using a more effective method of OCR. This will only require the automated test
development to take screen shots of the entire screen, which is far more automatable than specifically capturing and
creating images whenever something on the screen is updated. This will also make the automated test cases more
adaptable to a change in the screen’s environment.

NASA NIFS – Internship Final Report

[4]

The Setup Script and Updater Script will help with automating these common setups for every user account and
make a user’s setup faster and simpler. The scripts are very modular, which means they can be adjusted easily for a
more specific or general application.

IV. Conclusion

Since a majority of development and testing for the automated test cases for the GUI in question has been done
at the LCC, a large amount of progress has been made. As of this writing, about 60% of all of automated testing has
been implemented, but as the GUI continues to be updated, some future edits will have to be done to make the
automated test cases compatible with the latest version of it. At times the consoles at the LCC would not be receiving
simulated data, which is required to run tests accurately; this would result in temporary restrictions on development
of automated test cases. On the days that this happened, the next prioritized task would be to work on any additional
projects that were assigned. There are still more automated test cases to finish, but even once these objectives have
been met, it’s best to remember that all of our efforts are contributing to the mission to get mankind to Mars.

Acknowledgements

 I have a many great people to thank for all of the accomplishments I was able to achieve throughout this internship.
I would like to first thank Caylyne Shelton for continuously offering her most gracious generosity, assistance, and
time, even if the help needed was minor assistance for simple project concerns or asking about programming advice
and assistance. Next, I would like to thank Oscar Brooks for always thinking of the interns’ safety and interests first.
Additionally, I would like to thank Jamie Szafran for her great assistance and honest advice for any general questions
I would have. Also, I would like to thank Jason Kapusta for always being patient with the interns and answering every
question that would be thrown at him with a smile. Lastly, I would like to thank all of the automated testing interns
and full-time engineers: Michael Backus, Raymond Bridges, Abraham Glasser, Susan Pemble, Thomas Plano, Mark
Rodriguez, and Meriel Stein, for all working so well together as a team with great communication, patience, and
support.

References
Spaceport Command and Control System Automation Testing, A. Hwang, 2016

	Spaceport Command and Control System Software Development Intern
	Andrew Hwang
	Andrew T. Hwang0F
	Nomenclature
	a. Automated Testing
	b. Scripting
	a. Technical Specifics
	b. Test File Formatting
	Figure 1: Format of Sample Automated Test File.
	Acknowledgements
	References

