
NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 1 06 April 2017

Spaceport Command and Control System Automated

Verification Software Development

Michael Backus

NASA Kennedy Space Center

Major: Computer Science

Spring Session

Date: 06 04 2017

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 2 06 April 2017

Spaceport Command and Control System Automated

Verification Software Development

Michael W. Backus1

Fayetteville State University, Fayetteville, North Carolina, 28301

For as long as we have walked the Earth, humans have always been explorers. We

have visited our nearest celestial body and sent Voyager 1 beyond our solar system1 out into

interstellar space. Now it is finally time for us to step beyond our home and onto another

planet. The Spaceport Command and Control System (SCCS) is being developed along with

the Space Launch System (SLS) to take us on a journey further than ever attempted. Within

SCCS are separate subsystems and system level software, each of which have to be tested and

verified. Testing is a long and tedious process, so automating it will be much more efficient and

also helps to remove the possibility of human error from mission operations. I was part of a

team of interns and full-time engineers who automated tests for the requirements on SCCS,

and with that was able to help verify that the software systems are performing as expected.

Nomenclature

ACK = Acknowledge Response

CLI = Command Line Interface (text editor)

CSV = Comma Separated Values

DA = Development Activity

IDE = Integrated Development Environment

KSC = NASA Kennedy Space Center

LCC = Launch Control Center

LCS = Launch Control System

MPEG = Motion Picture Experts Group (video file type)

NACK = Negative Acknowledged Response

NASA = National Aeronautics and Space Administration

NE-XS = NASA Engineering – Electrical/Software (branch)

PLC = Programmable Logic Controller

PNG = Portable Network Graphics (image file type)

SCCS = Spaceport Command and Control System

SLS = Space Launch System

OCR = Optical Character Recognition

I. Introduction
 The Space Launch System is NASA's latest launch vehicle, following the successes of the Saturn V (1967-

1973) during the Apollo program and the Space Shuttle (1981-2011) for the STS program. With the next generation

of launch vehicle comes a continuation of everything NASA has learned over the years, along with the latest in

technology and requirements to send humans to Mars and to bring them back home safely. Achieving this goal requires

merging several disciplines and technologies on a much larger scale than previous programs. More complexity in the

systems comes with a greater risk of something going wrong, so more resources must be poured into testing and

verification of the software on multiple levels. Unit tests are written for the software but often times the best way to

test a program is to give it a “test drive” similar to what an actual end user may do with it. A lot of effort is spent on

this task since it is the most important for safety- every command sent to the launch vehicle must be received and

processed properly for everything to go right.

 The task of running the Launch Control System (LCS) software through its paces requires the arduous task

of going through a series of test steps, sending commands, checking feedback and limit controls, opening up new

displays, and so on. While easy to perform, most of the steps can be quite repetitive and monotonous, which in turn

1Software Development Intern, NE-XS, NASA KSC, Fayetteville State University

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 3 06 April 2017

can lead to an even higher chance of human error. By utilizing open source and proprietary software tools, we

automated the process of testing SCCS. We used a testing framework that uses a keyword-focused coding approach

to automation. Other software we used included an automation test library which was integrated with our testing

framework by a previous group of interns. The automated testing framework works over image tracking and the test

libraries, which utilize code that was implemented in Python. Other software included computer vision

implementations and other optical recognition tools. Additional functions can be developed in Python or from within

the testing framework, depending on the development requirements. These were also known as keywords, when

developed from within our automation framework in its own, proprietary language.

II. Objectives
 The primary focus on this project was to automate test cases for the launch control software. A DA, a piece

of paperwork representing a unit of work, was assigned to us through a commercially available workflow tracking

tool. To complete this task, we were given access to the test procedures created by developers that operators would

normally use in verifying the software by hand. A

test procedure consists of a list of numerous test

steps that are to be performed in exact order, along

with expected responses. In Figure 1 is a mock-up

of a section of test steps. On the left are a set of

tasks. An example would be to load up a display

command window, change values, and send a

command. To the right of each test procedure step

are expected outcomes, such as a display changing

the value shown or an ACK response from a sent

command. Commands are sent to simulated PLCs

or servers which are linked to an end item such as a

launch vehicle.

Another objective was to create higher

level keywords with our testing framework and libraries for the purposes of encapsulating some of the repetitive tasks

even further. That is because some steps are in similar groups of three or four that are repeated several times. To do

this, we use keywords created with our framework to enlist automation functions to do the tasks we want. Keywords

created by our team were stored in several “common” files. As we went through test steps, we continually created

keywords to solve specific problems related to those steps. While many steps were on the simpler side, some steps

were more difficult, such as trying to see if a display was changing or a needing to find out how many times a specific

piece of text shows up on a display. One major task involved a way to launch automation scripts on separate computers

remotely, dealing with passwords and a controller written in Python for managing and directing these tasks. One of

my tasks included working with a virtual framebuffer to run the LCS software as remote, headless processes and use

these as separate testing platforms.

III. Methods
 The automation team was split up into three subgroups, which were command verification, measurement

processing, and command tracking. Each of these groups deal with the same overall LCS software, but have their own

windows and tasks to complete. Each smaller team was led by a full-time engineer and two shadowing interns. I was

on the command tracking team which included doing a set of test steps, then going back and verifying that they were

tracked properly. We wrote scripts, created custom keywords, and solved specific challenges related to our work.

Later we decided that it was more important to get one of the major groups done first, so we all migrated to the

command verification portion of the project.

A. Development Environment and Familiarization
 Development initially began on our Linux development workstations. Using a software management and

version control tool, we were able to install and configure the LCS GUI in question on our machines. Once we started

up that GUI we could begin running test scripts with our automation testing framework. However, we soon realized

that there were many limitations in working on our development workstations and not on the actual operations set, so

it was better to simply work in the Launch Control Center’s Firing Room. Within the Firing Room are special

workstations which allow full access to the LCS software. They run a Unix flavored operating system as well and are

set up to eventually support actual rocket launches. This way we could run the different servers, arbiters, and models

required to test the software.

Step # Operator Action Expected Response

71 On the flight display, send

the digital command.

Command has been

received by the end item.

72 Reset the value from step

48 by selecting the bypass

button. Send the command.

Verify that the values in

display GUI 120323112

are changing.

Figure 1. Example (Pseudo) Test Steps. These are steps that mimic

what the test procedures look like. They are not based on actual

commands or buttons. (Author owned image)

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 4 06 April 2017

The Firing Room contains many rows of identical workstation systems which are divided into the

development set while the others are on the LCS set. The LCS workstations are highly sought after for test engineers

because they have the latest released software versions on them. They represent what the actual, final software will

look and behave like. The development set has an older version on them and also requires more manual work to get

going, including loading models and starting processes. Scripts developed on the development set may produce errors

once tested on the LCS set. In addition to this, the development set also has slightly different fonts and display

resolutions than the LCS set, which complicates the process. Despite the drawbacks, I spent as much time as possible

developing on a development set, since getting an effective amount of time on an LCS set was much more difficult. I

knew that in the end I would have to tweak anywhere between 5% to 20% of my finished scripts once I finalized the

test procedures on an LCS set, but the tradeoff was worth it since I could typically get time on a development set for

a full workday without any issues. It’s also important to note that most of the edits were that of font changes or creating

screenshots.

B. Writing & Running Scripts
 Writing a script for the testing framework is rather straightforward. Files can be named in such a way as to

allow for them to run in a sequence, such as 01.filename, 02.filename, and so on. For our work in automation, we

matched file names to the test procedure steps, which made them easier for us to find. It is worth noting that these

files can also be saved in multiple folders downstream, and our software will run these files recursively according to

folder names. Several test steps can also be combined just as long as they’re named something easy for us to read,

such as 12-15.filename. Each script includes a space for settings, documentation, variables, and test cases. Note that

the automation framework considers test cases keywords, while we consider test cases to be an entire set of test

procedures. Scripts can be written in the automation IDE, gedit, or CLI editors such as vim, or emacs. Documentation

and settings for each automation script usually includes a description of the test step being performed, along with

required paths and dependencies set.

Under the test cases block is where we actually write our scripts. Depending on the complexity of the step,

this part can comprise anywhere between one to dozens of lines of code. In Figure 2, a list of two displays are iterated

through and a block of keywords are executed per each. For this example, it is pretty simple: simply click on a start

data button then click on the send button. After this, check if a display is changing or not by not finding the default

value, which was a number. In this case, we have used an image. If all keywords are completed, then a test case passes,

but in this case, we use two if statements to pass or fail the test case based on if an image is present.

 Each test step listed in the test procedures must include some sort of verification check. Expected responses

could be as simple as putting into focus a window that was expected to launch after a command was sent, to

confirmation that a display was changing, to confirm a value was set on another display, and so on. Other expected

responses my prompt for some kind of pulling of data, such as recording a value within a display.

Figure 2. Example (Pseudo) Automation Script. This is a mock example of what an

automation script could look like for testing SCCS. Names of displays or commands have

been modified for security reasons. (Author owned image)

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 5 06 April 2017

C. Creating Keywords
 Keywords are analogous to functions or methods and are easy to create. We simply start by either looking at

the keywords already in existence or by referencing source files within the testing library. Most keywords can be

created by simply combining other keyword blocks into scripts that simplify steps into fewer lines. For example, let’s

say that you wanted to load up a history window (or any dropdown menu) instead of having to click on the menu,

create an image with the custom image tool based on some text, click on it, then remove the created temporary images.

Instead, we can create a keyword, named something like “Click on Menu ${item}” where ${item} would be a string

of text to look for. This keyword would comprise all the steps listed above encapsulated into one line of code but with

the added bonus of being able to pass an argument to the keyword.

 This custom image tool is a simple Java program that was created by a previous intern. It simply creates four

small image files with text that has been defined. After this, an automation script is called to search for a part of the

screen that matches the small screenshot that was created. This is one way to bypass setting up any kind of optical

character recognition but has the side effect of creating a lot of image files. Fortunately, a keyword existed to clean

up after the custom image tool runs which removes these temporary image files. Another method of grabbing images

from a set of text or images is to take a region screenshot with a free program such as ksnapshot. You can then search

and hover, click on, or do whatever else you wish to do with them.

D. Command Tracking
 Command tracking collects data while SCCS is running. Test procedures for this part of software verification

were oftentimes very similar to both commanding and measurement processing, with the added step of verifying the

data collected. Once loaded, there are several steps in getting the browser set up for retrieving data, which includes

setting time and date limits, the set on which the commands were issued, and workstation type. Once this is done and

a configuration type file has been selected, we can then view the tracked data. We able to develop a single keyword

within the automation framework that consisted of only a few arguments that got us to this step. From here we were

able to use and create keywords to help assist in finding and tallying up all of the actions listed that were performed

in the specified time of the LCS session.

E. Extending the Toolset

 My part in extending the toolset involved working with a virtual framebuffer to launch processes that could

be used in running the LCS software, effectively simulating another workstation locally. This was just one part of a

solution to a major problem that arose once we found out that many of the test procedures involve some sort of parallel

requirements. Because the development workstations in the LCC are tied to the same server, or set running the

software, testing requires that the set and all of their identifiers are in the same state regardless of which user performs

actions. Even the instance of users on different workstations sending a conflicting command at the same time must be

verified. I composed a shell script that would launch a virtual framebuffer along with setting the resolution and displays

of that server. Further commands involved launching software and being able to record the screens since these are

launched as processes. For this I used another open source program which allowed recording of this virtual server as

an MPEG-4 file, or MP4, and fully featured options for video compression/encoder, framerates, resolution, and so

forth. This was very important in seeing the feedback in what was actually done on this server. I then coordinated with

Susan Pemble, one of our full-time software engineers, to incorporate and test this into our automation framework on

the development and LCS set.

Another intern, Andrew Hwang, worked

on a script to manage logins, making automating

test procedures that needed to run in parallel much

easier for us. Tom Plano worked on the controller

for directing the tasks of launching several

automated scripts on different machines, whether

they were physical boxes, headless systems, or

simply processes running in the background.

Meriel Stein worked on an Excel macro that

allowed us to avoid duplicate work assignments

and help to clean up our management tool.

Together we each developed our own part of

solutions to solve the challenges faced on this

project. We participated in peer review for each

other’s code prior to final delivery.

Figure 3. OCR Example. On the left, a small area of an LCS

display. Note the buttons and their values. The asterisk symbol is not

a button, but would still be recorded. On the right, the resulting OCR

values. OCR can take an image and extract their alphanumeric

values into a data structure such as a hash. Values such as location

in screen space can also be stored alongside the recorded value.

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 6 06 April 2017

F. Future Enhancements
This internship's primary focus was to get as many test procedures done as possible while continuing to

develop the automated testing keyword and tool library. An example is shown in Figure 3. Open source optical

character recognition software that utilizes machine learning from a data set of images on the screen would be very

useful. Images can still be created, but this process is faster because it can differentiate even if the background or text

changes to another color. The recorded text and numerical values along with their location on the screen are then

stored in a file that can later be accessed. Implementing such a feature could open up our automation framework to a

much broader use across other software projects at Kennedy Space Center

IV. Results
We have succeeded in automating test cases and procedures for SCCS and the LCS system. Once fully

completed by future teams of interns, this will complete the software integration testing of SCCS and LCS. We were

able to run our scripts on the actual software and hardware that is going to be used to launch NASA's Space Launch

System, the next generation of rockets destined to go to Mars. There is still going to be more work involved in

completely automating all of the procedures, but through our work we have shown that it is both possible and more

efficient to do so.

While there are some parts of the test procedures that are difficult to automate, this can and should be done

fully to help increase the efficiency of the space program. Making software verification quicker means more funds

can go to help cover other costs. While the Saturn V was the largest rocket that ever achieved operational status and

the Space Shuttle was the most complex vehicle NASA ever built, Block Two of the SLS is larger than the Saturn V

and the vehicle that it’s carrying- the Orion capsule - is much more complex than the Apollo capsule. More complexity

equals greater risk and things that could go wrong, so it is imperative and critical that we have as many layers as

needed to ensure the software works properly.

Acknowledgements
 I would like to thank all of those who worked with me during my time working in the automation group.

Jason Kapusta, our lead software architect, was very helpful in guiding and brainstorming ideas during our weekly

meetings. Terri Waldron, our project manager for automated testing, did a great job with keeping us on track for

finished results while at the same time understanding the inconsistency with set time. Kyle Besser, while no longer a

member of the automation team, assisted with various issues that arose from our automation test framework and

programming languages. I would like to thank Susan Pemble for being a lead on our team who always came up with

more efficient methods of doing our work. These were my daily technical contacts who, along with Roger Zoerner

and Mark Poff, made up the backbone of the automation team and development support in the firing room of the LCC.

I wish to thank the new interns Tom Plano, Meriel Stein, Abraham Glasser, and returning and yearlong interns

Andrew Hwang and Mark Rodriguez for their excellent coding contributions and hard work. I want to thank Jamie

Szafran who eagerly offered advice and tips whenever I asked and for always being funny yet serious in keeping us

focused. I would like to especially thank my mentor Caylyne Shelton who was always available to sort out any

technical issues with the LCS GUI and always provided great life advice. I would also like to thank our Branch Chief

Oscar Brooks for hosting the interns right beside his office and for him displaying his remarkable leadership and

experience for management in getting everything set up for us.

I am honored that I had the opportunity to contribute a part to the future mission successes at KSC by

automating software testing and verification for SCCS. Automation of test procedures will continue onward after our

group leaves and other projects may follow from what we have learned. The journey to Mars is composed of a

multitude of smaller steps, each of which contain their own problems to solve and hurdles to overcome. As NASA

comes closer to completing its most challenging goal yet, Mars appears more and more within reach. And automating

test procedures in order to ensure code integrity helps bring us that much closer to humanity's next giant leap forward

into the heavens.

References
1 Barnes, Brooks, “In Breathtaking First, NASA’s Voyager 1 Exits the Solar System.” http://www.nytimes.com/2013/09/13/

science/in-a-breathtaking-first-nasa-craft-exits-the-solar-system.html?_r=0,” 12 Sept 2013. Web. 01 Nov 2016

