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Abstract

The abilities of two different Reynolds-Averaged Navier-Stokes codes to predict the effects
of an active flow control device are evaluated. The flow control device consists of a blowing
slot located on the upper surface of an NACA 0018 airfoil, near the leading edge. A sec-
ond blowing slot present on the airfoil near mid-chord is not evaluated here. Experimental
results from a wind tunnel test show that a slot blowing with high momentum coefficient
will increase the lift of the airfoil (compared to no blowing) and delay flow separation. A
slot with low momentum coefficient will decrease the lift and induce separation even at low
angles of attack. Two codes, CFL3D and FUN3D, are used in two-dimensional compu-
tations along with several different turbulence models. Two of these produced reasonable
results for this flow, when run fully turbulent. A more advanced transition model failed to
predict reasonable results, but warrants further study using different inputs. Including invis-
cid upper and lower tunnel walls in the simulations was found to be important in obtaining
pressure distributions and lift coefficients that best matched experimental data. A limited
number of three-dimensional computations were also performed.

1 Introduction

Blowing slots have long been pursued as a means of controlling the forces generated by
a wing, often by injecting momentum with the goal of reducing or eliminating separation.
There are numerous uses for such a technology, such as for high-lift systems or low-drag
control surfaces on aircraft. At Technion Israel Institute of Technology, Greenblatt [1]
has recently been investigating the use of an unsteady low-speed wind tunnel to explore
blowing effects for airfoils that are dynamically pitching. This type of problem represents
a challenge for CFD, both because of the highly unsteady nature of the flow as well as
because of known limitations of Reynolds-averaged Navier-Stokes (RANS) for computing
separated flows. More advanced CFD methods such as large-eddy simulation (LES) are
still considered too expensive for routine use.

The particular experiment that provided the comparison data [2] for this study was per-
formed with the intent of improving the performance of wind turbines. One major challenge
in the design of wind turbines is the harmful effect of unsteady loads on the blades. This
type of active flow control could be used to reduce these unsteady loads by increasing or
reducing the lift generated as the turbine blade cycles, as well as by reducing or eliminating
dynamic stall.

This experiment has several characteristics that often challenge CFD codes. First, the
Reynolds numbers were relatively low (less than 400,000 based on airfoil chord). Such low
Reynolds numbers means that the flow is transitional. Transitional flows generally pose
problems for standard turbulence models, which are intended for fully turbulent situations.
The experiment also experiences three-dimensional effects where the airfoil intersects the
tunnel sidewalls. Because the tunnel width-to-chord ratio is relatively low (approximately
1.75), these three-dimensional effects likely occur over a significant fraction of the model
at high angles of attack; and 2-D computations would be questionable at such conditions.
Finally, the upper and lower wind tunnel walls are only 1.44c above and below the airfoil.
The wall presence is therefore likely very influential on the flowfield near the airfoil. For
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CFD, this in and of itself is not a big problem, but it does require the generation of a new
grid for every angle of attack. And for dynamic stall investigations, an overset or deforming
grid would be required.

In this study, we investigate the effect of code, turbulence model, and grid on two cases
with blowing from the leading edge slot (in addition to the baseline case of no blowing). We
also investigate the influence of the wind tunnel walls and the relative importance of three-
dimensionality. Although the experiment was primarily concerned with dynamic stall [2,3],
here we focus the CFD study primarily on the effect of flow control (steady blowing) at
steady-state conditions and at angles of attack mostly below or near stall.

2 Geometry and Flow Characteristics

The wind tunnel experiment from which the results were obtained tested an NACA 0018
airfoil model with two blowing slots cut into the upper surface, located at 5 and 50% of the
chord (see figure 1(a)). These slots point at a 20 degree angle toward the trailing edge of
the airfoil. The airfoil model had span b = 0.610 m and chord length c = 0.347 m, and was
placed in a wind tunnel with dimensions 0.610 m wide × 1.004 m high (see figure 1(b)).
In the experiments chosen for comparison, Rec = 250, 000 and freestream M = 0.03265
(U∞ = 11.1 m/s).

There were 40 pressure taps along the upper and lower surfaces of the model to pro-
vide the experimental pressure coefficient Cp values, which were then used to calculate the
experimental values of the lift coefficient CL.

The geometry used in the CFD trials varied slightly from the experimental geometry.
The slot height of the as-designed model was originally specified as 1 mm. However, the
model, once manufactured, had a slot height of 1.2 mm. In this study, because there was
no computer-aided design (CAD) representation for the as-built slots, the original specified
slot height of 1 mm was used in the construction of all grids. However, the momentum
coefficient Cµ, defined by

Cµ =
hU2

j

(1/2)cU2
∞

(1)

which is a measure of the effect of blowing, was kept consistent between CFD and experi-
ment. Previous experiments [4] showed that when h << c, the measured results of blowing
depend only on Cµ, and are not sensitive to changes in h. In Eq. (1), h is the slot height, Uj
is the jet blowing velocity, c is the airfoil chord, and U∞ is the freestream velocity.

3 CFD Codes and Turbulence Models

Two NASA CFD codes were used in this study: CFL3D and FUN3D. Both codes solve the
RANS equations.

CFL3D [5] is a structured-grid upwind multi-zone CFD code that solves the general-
ized thin-layer or full Navier-Stokes equations. In the current study, the full viscous terms
are used for all computations. CFL3D can use point-matched, patched, or overset grids and
employs local time-step scaling, grid sequencing and multigrid to accelerate convergence
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to steady state. CFL3D is a cell-centered finite-volume method. It uses third-order upwind-
biased spatial differencing on the convective and pressure terms, and second-order differ-
encing on the viscous terms; it is globally second-order accurate. Roe’s flux difference-
splitting method [6] is used to obtain fluxes at the cell faces. The solution is advanced in
time with an implicit approximate factorization method. For each loosely coupled iteration,
the mean flow equations are advanced in time with the eddy-viscosity fixed; then the turbu-
lence model is advanced in time with the mean flow solution fixed. Several turbulence mod-
els are available in the code, including the one-equation model of Spalart-Allmaras [7] (SA),
the two-equation shear stress transport (SST) model of Menter [8], and the four-equation
γ-Reθ SST transition model of Langtry-Menter [9]. These models are not described here;
see the Turbulence Modeling Resource website [10] or the original references for complete
descriptions.

FUN3D [11, 12] is a finite-volume solver in which the flow variables are stored at the
vertices or nodes of the mesh. FUN3D solves the equations on mixed element grids, includ-
ing tetrahedra, pyramids, prisms and hexahedra. The code also has a two-dimensional path
for triangular and quadrilateral grids. At interfaces between neighboring control volumes,
the inviscid fluxes are computed using an approximate Riemann solver based on the values
on either side of the interface. Several convective flux schemes are available in FUN3D. The
most common scheme for subsonic and transonic flows is Roe’s flux difference splitting, [6]
which is used in the current study. For second-order accuracy, interface values are obtained
by extrapolation of the control volume centroidal values, based on gradients computed at the
mesh vertices using an unweighted least-squares technique. Several reconstruction limiters
are available in FUN3D, but none were used in this study. The solution at each time-step
is updated with a backwards Euler time-integration scheme. At each time step, the linear
system of equations is approximately solved with either a multi-color point-implicit pro-
cedure or an implicit-line relaxation scheme [13]. Local time-step scaling is employed to
accelerate convergence to steady state. The same turbulence models mentioned for CFL3D
(SA, SST, and γ-Reθ) are also available in FUN3D.

4 Grid Characteristics and CFD Boundary Conditions

A series of grids was used to identify the effectiveness of each code and turbulence model.
All grids were produced in Pointwise R©, a commercial grid generator capable of creating
both structured and unstructured grids.

First, a 2-D, structured, free-air grid was used with both codes (CFL3D and FUN3D) to
verify that they produced similar results. This grid was also used to perform an initial grid
sensitivity study, the results of which were consulted during the creation of other structured
and unstructured grids in the series. These initial structured grids used a sharp trailing edge
on the airfoil. The finest grid size had 687, 093 grid points (per plane), or 684, 032 grid
cells, and 1073 grid points on the airfoil surface, with minimum spacing of 2.88 × 10−6c
of the first grid point off the wall and farfield extent of 144c (chord length c was 0.347
m). Each successively coarser level was created by removing every other grid point in each
coordinate direction from the next finer grid. The minimum wall spacing of the finest grid
ensured that the ∆y+ spacing of the first grid point off the wall was less than 1 for all grid
levels. Inside the airfoil slots, the walls were treated inviscidly, so inviscid wall spacing was
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used (approximately in the range of 0.0001c − 0.001c). A view of the structured free-air
grid is shown in figure 2(a) and (b). Adiabatic no slip boundary conditions were applied
on the airfoil, except within the slots, whose side walls were treated as slip surfaces. When
blowing was used, density and velocity were specified at the lower wall of the slot’s plenum,
while pressure was extracted from the interior of the domain (density was set to freestream,
and velocity was set in an iterative fashion to achieve the correct average velocity near the
slot exit). When blowing was not used, the lower wall of the slot’s plenum was treated as
a slip surface. At the outer boundary of the grid, a farfield Riemann-invariant boundary
condition was employed.

A series of 2-D structured grids incorporating inviscid upper and lower tunnel walls
was then created to identify the effect that the walls’ presence had on the lift coefficient and
pressure distribution along the airfoil. A different grid was created for each angle of attack
investigated (see, for example, figure 2(c)). These grids also used a sharp trailing edge
on the airfoil. The grid used here was based on the finest grid level from the free-air grid
convergence study. Its size was 407, 523 grid points (per plane), with 1073 grid points on
the airfoil surface and minimum spacing of 2.88× 10−6c of the first grid point off the wall.
The tunnel walls extended from 5.76c in front of the airfoil quarter chord to 5.76c behind it.
Normal grid spacing at the tunnel walls (treated inviscidly) was approximately in the range
of 0.01c − 0.06c. Inside the airfoil slots, the walls were again treated inviscidly. For these
grids, the boundary conditions on the airfoil surface and within its slots were the same as
before. The upper and lower tunnel walls were treated as slip surfaces. At tunnel inflow, the
total pressure and total temperature were specified according to adiabatic relations using
M = 0.03265: pt/pref = 1.00075, Tt/Tref = 1.00021, and Riemann invariants were
extrapolated from the interior of the domain. At tunnel outflow, static pressure was specified
as p/pref = 1.0, and all other quantities were extrapolated from the interior.

A series of 2-D unstructured grids (with triangular elements) incorporating inviscid
upper and lower tunnel walls was also created. A different grid was created for each angle
of attack investigated (see, for example, figure 2(d)). To explore the influence of airfoil
trailing edge shape, these grids also used a blunt trailing edge on the airfoil, approximately
corresponding to the actual bluntness of the wind tunnel model (about 0.0035c thickness).
Although details are not provided in this report, the influence of the modeled trailing edge
thickness was found to be insignificant in terms of the results of interest (surface pressure
coefficients and lift coefficients) for this study. These grids contained 384, 732 grid points
(in the 2-D plane), and used 2141 grid points on the airfoil surface and minimum spacing of
2.88× 10−6c of the first grid point off the wall. Tunnel wall extent was somewhat different
from the structured tunnel grids, with the downstream end extending to 8.64c. Normal
grid spacing at the tunnel walls (treated inviscidly) was approximately 0.007c. Boundary
conditions for these grids were the same as for the structured tunnel grids, except that the
side walls inside the airfoil slots were treated viscously (the grids had finer spacing and
the boundary conditions were adiabatic no-slip). This viscous slot treatment was done to
overcome a problem running FUN3D with some of the turbulence models.

A few runs were also performed in 3-D. For these, the 2-D, structured, tunnel grid was
extruded in the spanwise (y) direction a distance of y = 0.305 m, representing the tunnel
half width. Grids spacing was clustered near y = 0, representing the tunnel side wall. See
figure 2(e).

The grids used in this study each included the contracting portion of the blowing slots
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between the slot plenums and the actual slot exit, as shown in figure 2(b). Therefore, the
boundary condition at the plenum exit was set as a subsonic inflow when the slot was
blowing. The inflow velocity at this boundary was adjusted so that the jet velocity Uj
(velocity at the slot exit line) matched the correct value for the chosen case. The target jet
velocities were found by rewriting Eq. (1) as

Uj =

√
(1/2)CµcU2

∞
h

(2)

then solving Eq. (2) for Uj using each value of Cµ included in the study. The target jet
velocity is equal to 32.693 m/s when Cµ = 5%, and 11.325 m/s when Cµ = 0.6%. When
nondimensionalized with the reference speed of sound, these two velocities are 0.096155
and 0.03331, respectively.

To ensure that the jet velocity matched the target velocities for each value of Cµ, an
iterative process was used in which the average velocity of the CFD solution across the slot
exit line was found, then adjustments were made to the plenum inflow boundary condition
until the desired average jet velocity was attained (see figure 3). The inflow boundary
condition required was approximately the same regardless of whether the interior slot walls
were treated inviscidly or viscously.

5 Results

The results include grid sensitivity studies (both grid density as well as comparison of re-
sults with structured and unstructured grids). Comparisons are made using different codes
and different turbulence models. Efforts to model or capture transitional effects are de-
scribed, and the effects of including the tunnel upper and lower walls are documented.
Most computations are 2-D, but several 3-D trials were also explored (i.e., including tunnel
side walls).

5.1 Structured Grid Sensitivity Studies

A grid sensitivity study was performed on the 2-D, structured, free-air grid. The original
“fine” grid (684, 032 cells) was coarsened by removing every other grid point to produce a
“medium” grid (171, 008 cells), then coarsened again to produce a “coarse” grid (42, 752
cells). For the purposes of the grid sensitivity study, the case was run at several angles of
attack without blowing. Lift coefficient results are plotted in figure 4. The results indicated
little influence of grid density on lift coefficients over the angle of attack range of interest,
so the medium grid was selected for use in obtaining further “free-air” results.

Notice in figure 4 that the experiment yielded an unusual lift curve shape. Rather than
an approximately linear progression of lift with angle of attack over the lower angles, the
experimental results exhibited a nonlinear increase in lift between approximately 5 and 10
degrees. This is believed to be due to the presence of a laminar bubble near the airfoil’s
upper surface leading edge, which causes additional flow acceleration around it. As will be
described further below, the CFD was not able to capture this effect.
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5.2 Code Comparison

Several test cases were run in both CFL3D and FUN3D to identify whether the two codes
would produce similar results for this case. The angles of attack used were 0, 5, 8, 10, and
12 degrees. A sample of these results can be found in figure 5. These results show that
on the same sufficiently refined grid for this case, CFL3D and FUN3D produce practically
identical solutions.

5.3 Turbulence Model Comparison

Next, three turbulence models were examined using the same test cases. The results of these
runs can be found in figures 6 and 7. The SA and SST models displayed similar behavior
of relatively linear lift curve slope (failing to predict the nonlinear change in the lift curve
slope between 5 and 10 degrees angle of attack). However, their pressure distributions were
reasonable and consistent with each other and with the experiment.

The γ-Reθ turbulence model was used to attempt to capture the nonlinear lift curve
behavior. CL results at α = 5◦ appeared to be promising. The model yielded delay of
transition to turbulence on the upper surface, resulting in a series of small recirculating re-
gions on the upper surface, which were products of a very large region of separated laminar
flow. Example plots showing the extent of these regions can be seen in figure 7(b), (d), and
(f). However, the experiment showed that laminar separation bubble reattachment occurred
prior to 0.07 m along the chord in all cases for which the forward inactive slot on the up-
per surface tripped the flow to turbulent [2]. Such large separated regions from the γ-Reθ
model indicated its failure to capture the tripping effect of this slot.

The cause of the failure of the γ-Reθ model has not been determined, but one poten-
tial cause is the natural decay of freestream turbulence intensity inherent in the model.
Turbulence intensity was specified to be 0.05%, based on information provided by the ex-
perimenters. A large portion of that intensity might have decayed over the length of the
grid, so that the level near the airfoil was too low for the model to accurately predict tran-
sition. Future efforts should focus on either adjusting the freestream turbulent boundary
conditions or disallowing their decay; also, time-accurate computations may be required
with this model to find the average of any inherent unsteadiness due to laminar separation.
However, this model was not pursued further in the current study.

5.4 Forced Transition Study

To investigate the effects that transition location might have on the flow solutions, several
test cases were run in which the transition location was specified in conjunction with the
SA model. The ultimate goal of these particular runs was to determine if transition location
could alter the solution enough to produce the behavior in the lift curve slope similar to
that seen in the experimental data. Transition effects were one of the first suspected causes
of the behavior, since CFD is generally unreliable at predicting transition characteristics at
low Reynolds numbers such as the one in this problem. Seven transition locations on the
upper surface of the airfoil were tested, ranging from approximately 5% (the location of the
blowing slot) to 25% of chord length. Results from these tests can be found in figures 8
and 9.
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There were only small changes in the lift curve as the transition location varied (figure
8). Looking at the solutions in more detail, as the laminar region increased in size, a small
region of lower pressure was observed in the solution on the upper surface (the growing
“hump” in the pressure distributions in figures 9(a) and (b)). Additionally, the flow solu-
tion developed regions of recirculation if the transition was delayed far enough. See, for
example, figure 9(d), in which the skin friction goes negative for transition locations aft
of approximately x/c = 0.07. However, these CFD trends do not appear to be matching
the experimental data very well. Also, even though the lift coefficients increased slightly
as transition location was moved aft, the CL values from CFD never approached the levels
seen in the experimental data between 5◦ < α < 10◦.

This particular 2-D test failed to identify the cause of the nonlinearity in the experimen-
tal lift curve. Therefore, the remainder of the CFD cases were run fully turbulent. Attempts
to capture the nonlinearity were abandoned in order to focus on the larger effects of the
blowing slot on the lift curve.

5.5 Two-Dimensional Structured Grid Results

The first results to display the effects of slot blowing can be found in figure 10. These results
were obtained from FUN3D runs on the 2-D, structured, free-air grid. The lift coefficient
results clearly exhibit the same trends as the experimental data, and are fairly accurate at
lower angles of attack. However, the CFD failed to capture details such as the reduced stall
angle of attack in the Cµ = 0.6% case.

The pressure distributions in figure 11 also match fairly well with the experimental data
for most cases. The main difference between CFD and experiment is that CFD tends to
predict higher pressure on the upper surface than is found in the experiment. For cases
in which massive separation is present in the flow, such as in figure 11(c), the pressure
distributions do not match well at all. This was expected, since RANS CFD generally fails
to model massively separated flows correctly.

5.6 Structured Free-Air vs. Tunnel Grid Computations

New grids were created to examine the effect that upper and lower tunnel walls have on the
flow solution. First, a structured tunnel grid was created (more details on grid construction
are found in Section 4). The results from this grid are compared to those from the free-air
grid in figures 12 and 13. This comparison shows that including the tunnel walls greatly
improved correlation between the CFD solutions and the experimental results. Both lift
coefficient results and surface pressures better match the experimental data. For this reason,
upper and lower tunnel walls were determined to be a necessary inclusion in all subsequent
computations.

5.7 Two-Dimensional Unstructured Grid Results

Unfortunately, an undiagnosed issue within FUN3D caused the SST turbulence model to
fail to produce a solution on the 2-D structured tunnel grid for all test cases. In an attempt to
remedy this problem, an unstructured tunnel grid with viscous slot walls (but with otherwise
similar characteristics as the 2-D structured tunnel grid) was created and tested. Both SA
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and SST turbulence models produced useful results with this new grid. Overall, the effects
of slot blowing were captured very well in these CFD trials, as shown in figures 14 and
15. At lower angles of attack, the changes in lift coefficient caused by the blowing were
matched extremely well. At higher angles of attack, the CFD missed absolute levels but
appeared to generally capture the trends with different blowing coefficients.

Unlike the results from the structured free-air grid shown in figure 10, these CFD trials
captured the stall behavior of the airfoil for all three momentum coefficients: stall was
delayed past the tested range of angles when Cµ = 5%, stall began around α = 15◦

when no slot blowing is used, and stall was induced early at around α = 9◦ when Cµ =
0.6%. However, despite the fact that the start of stall behavior was correctly predicted, CFD
performance deteriorated beyond stall (massive separation). As expected for these cases,
CFD typically did not converge to steady-state results. The error bars in figure 14 represent
the amplitude with which the CFD solutions oscillated about the mean values at their most
converged states. Because of this nonconvergence, time-accurate runs were required (as
described later). Comparisons of pressure coefficients (figure 15) were generally excellent
for both SA and SST, with the exception of the stalled high angle of attack case with Cµ =
0.6%, shown in figure 15(f).

Figure 16 shows typical residual and lift histories for these cases, for FUN3D using the
SA model. In the unstructured tunnel grid at α = 12.5◦, when Cµ = 5%, residuals were
driven to machine zero and lift was well converged. But when Cµ = 0 or 0.6%, the code
did not converge at this angle of attack: residuals were nonconvergent and the lift oscillated.

Prior to continuing with runs on the 2-D unstructured tunnel grids, a grid study analysis
was performed. FUN3D was run with the airfoil at α = 10◦ on several grid levels of both
the 2-D structured and unstructured tunnel grids. Lift coefficient results are plotted in figure
17. In this plot, hg represents a measure of the average overall grid spacing. An infinite
grid is approached as hg → 0. From this plot, it is clear that the solutions on unstructured
triangle grids are more grid-sensitive than solutions on the structured grid. For a given
number of unknowns, the structured grid solution yields a result that is closer to the grid-
converged result. However, both grid types approach approximately the same result, as
expected. Based on this result, the unstructured grid with hg ≈ 0.0015 appears to provide
CL results that are within about 5% of the grid converged solution. This unstructured grid
level was considered to be adequate for this study.

To further explore the nonconvergent (oscillating) solutions, all Cµ = 0.6% cases were
run again, time-accurately, in FUN3D. These cases had large amounts of separation at high
angles of attack, so they were used to identify the effects of running time-accurately on
the CFD results. Results from the time-accurate trials, presented in figure 18 alongside
the steady results, showed that the solution oscillations could be reduced dramatically with
time-accurate computations. Although the error bars, which represent the amplitude of
the solution oscillation, were much smaller for the time-accurate solutions, generally the
overall trends in the lift behavior were similar to the steady-state runs. Although not shown,
the Cp results for time-accurate runs were similar; i.e., still in reasonable agreement with
experiment except for stalled high angle of attack cases with Cµ = 0.6%.

Current results using FUN3D and the SST model are compared to independent SST re-
sults using a different CFD code (Laufer [14]) in figure 19. The two codes used independently-
generated grids, both including tunnel top and bottom walls. Laufer’s grids did not include
internal plenums, but rather imposed blowing boundary conditions at the “slot exit” loca-
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tion. Generally, the results from the two codes are in very close agreement. Note that, like
FUN3D, Laufer’s CFD results also missed the nonlinear behavior in the lift curve slopes,
believed to be caused by the presence of a laminar bubble in the experiment.

Figure 20 shows the general effect of the blowing on the trailing edge separation loca-
tion (in this case for FUN3D using the SA turbulence model). For no blowing, the airfoil at
zero degrees angle of attack has no trailing edge separation, but separation appears as the
angle of attack is increased. For example, at α = 10◦, separation occurs at approximately
x/c = 0.72. With weak blowing at Cµ = 0.6%, the trailing edge separation is more pro-
nounced (at α = 10◦, separation occurs ar approximately x/c = 0.51). On the other hand,
strong blowing at Cµ = 5.0% has a Coanda effect and delays the presence of any trailing
edge separation until beyond α = 10◦. Even as high as α = 15◦, separation is still near the
trailing edge (x/c = 0.86).

A comparison of experimental (PIV) and CFD velocity fields can be found in figure
21, for α = 15◦. Detailed flow features could not be quantitatively matched, but as can be
seen from the size of the recirculating regions, the CFD flow solutions were qualitatively
capturing the trends. Running time-accurately did not substantially improve the RANS
results.

5.8 Preliminary Three-Dimensional Computations

A limited number of 3-D trials were conducted to identify whether 3-D effects could have
had a significant impact on the experimental pressure data. The grid for these trials was
originally intended to be the 2-D unstructured grid, extruded approximately 80 times in the
spanwise direction. However, 3-D runs in FUN3D failed to produce reasonable results on
this grid (due to a bug that was discovered, diagnosed, and fixed well after the current study
was completed).

For this reason, the structured 2-D grid was selected instead as the basis for the 3-D
grid. This 2-D grid was extruded 81 times in the spanwise direction The spanwise spacing
near one side of the grid had viscous spacing (representing the wind tunnel side wall), while
the other side had coarser spacing (representing the center of the wing section). This grid
was used in both CFL3D and FUN3D.

Visualizations of the 3-D effects when the wing is at α = 12.5◦ can be found in figure
22. Here, in all blowing cases, corner effects create a large area of recirculation on the
upper surface of the airfoil. At α = 12.5◦, CFL3D results with no blowing in figure 22(a)
shows significant trailing edge separation across the entire wing span, along with a large
corner separation region near the side wall. With Cµ = 5% blowing (figure 22(b)), most of
the wing is attached, but there is still a significant region of corner separation. Finally, with
Cµ = 0.6% (figure 22(c)), the entire wing is massively separated, and isolating the effects
of trailing edge separation and corner separation is difficult.

It is known that linear turbulence models can sometimes overpredict the size or influ-
ence of corner separation [15, 16]. One known fix for this is the Quadratic Constitutive
Relation (QCR2000) of Spalart [17]. In FUN3D, 3-D cases at a low angle of attack of
α = 5◦ were run with the SA model as well as with the SA-RC-QCR2000 model (where
“RC” indicates an additional Rotation-Curvature correction [18]). Results are shown in fig-
ure 23. For this case, the corner separation was relatively small, and the inclusion of RC
and QCR2000 made little perceptible difference.
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To investigate how much these 3-D effects have an impact on the pressure distribution
along the center of the wing section, which is where the pressure taps were located during
the experiment, the pressure distributions along the wing centerline were plotted in figure
24 for the same α = 5◦ case. From this zoomed-in plot, CFL3D and FUN3D are seen to
produce similar 3-D results (as well as similar 2-D results), with the 2-D and 3-D results
showing some difference from each other. The 2-D results yielded somewhat lower Cp
levels on both the lower and upper surfaces, and tended to agree better with the experimental
data than the 3-D computations. This plot indicates that even small 3-D effects in the
solution near the wall have some influence on the “two-dimensional” region near the tunnel
center plane. This same conclusion was reached in an earlier study on a high-lift airfoil. [19]
Simply stated, there is really no such thing as a “two-dimensional” experiment: any three-
dimensionality present near side walls will affect to some degree the region of the flow that
is presumed to be nominally two dimensional.

Another interesting preliminary result from the 3-D trials can be seen in figure 25, which
plots FUN3D results at α = 12.5◦ (using the SA-RC-QCR2000 model on the structured
3-D grid, no blowing). Figure 25(a) shows surface streamlines and surface pressure coef-
ficient contours, indicating the three-dimensional nature of this solution. Nonetheless, the
Cp cuts along the span (shown in figure 25(b)) are relatively uniform, ranging from near the
wall located at y = 0 m to the center plane located at y = 0.305 m. All cuts consistently
underpredict the negative peak Cp near the nose. However, the pressure distribution im-
mediately aft of the blowing slot clearly changes across the span of the wing section. This
indicates that a separated region exists behind the slot near the tunnel center plane, but not
near the wall. The effect appears to mimic the experimental data (taken along the tunnel
centerplane). 2-D CFD solutions for this case (not shown) did not indicate separated flow
behind the slot. This 3-D solution again illustrates the highly three-dimensional nature of
this experiment, calling into question the use of 2-D CFD to try to compute this flow, for
anything other than qualitative analysis.

6 Conclusions

RANS computations of an NACA 0018 airfoil (with and without leading edge blowing)
were investigated. The independent codes CFL3D and FUN3D were confirmed to yield
very close results when run on the same structured grid. Of the three turbulence mod-
els tested, only the SA and SST models produced useful results in this study. These two
models, run fully turbulent, predicted qualitative flow characteristics consistent with those
present in the experimental data for most test cases, although neither was able to predict
the nonlinear behavior of the experimental lift curve (believed to be caused by transitional
effects). SA and SST were also fairly consistent with each other on all test cases. SA
generally predicted slightly higher values of CL than SST, and the pressure and skin fric-
tion distributions showed little difference. The γ-Reθ transition model predicted laminar
regions that were too large, and therefore failed to produce reasonable results. However,
it may yet prove to be applicable to this blowing slot problem if adjustments are made to
its freestream boundary conditions. A forced transition study was also attempted, but it
could not predict the nonlinear behavior of the experimental lift curve. With the failure of
γ-Reθ and forced transition, attempts at predicting transitional effects within this flow were
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abandoned. These failures indicate that RANS CFD in the production codes used here is
not well suited to predict transition characteristics for this type of flow.

Next, the effects of the upper and lower wind tunnel walls on the flow were examined.
By comparing results from a free-air grid to results from structured tunnel grids, the tun-
nel walls in this experiment were determinrd to have a significant impact on the pressure
distribution on the airfoil. To compare CFD results directly with the experimental data, the
inclusion of upper and lower tunnel walls in computations is recommended.

Finally, the ability of 2-D RANS CFD to model the effects of slot blowing on the flow
was evaluated. Results from this study indicate that CFD is capable of qualitatively cap-
turing the blowing effects reasonably well. Lift coefficient and pressure distribution results
from CFD matched fairly well with experimental values at low angles of attack (α < 5◦,
approximately). The lift curve nonlinear behavior was never captured, and CL values main-
tained a mostly linear relationship with angle of attack up until the stall angle for each value
of Cµ. Overall, the predicted stall angle for each Cµ was well in line with each stall angle
in the experiment.

As expected, 2-D RANS struggled to accurately model the test cases involving highly
separated flows. Flow solutions for these cases were poor, even when run time accurately.
Stalled solutions obtained with time-accurate RANS runs appeared to be more sensitive to
the choice of turbulence model, but neither model predicted surface pressure coefficients
well in comparison with experiment. Generally, 2-D RANS is not advisable for use on test
cases in which the airfoil has stalled and in which the flow exhibits massive separation.

Preliminary 3-D computations suggested the presence of noteworthy three-dimensional
effects present in this experiment, particularly at high angles of attack, suggesting that 2-D
CFD should generally be avoided for all but qualitative trend analysis. Several interesting
flow features were identified. More 3-D CFD trials are necessary to better understand the
full impact of these features on both the CFD and the experimental pressure data.

Overall, this experimental data set is a very challenging one for CFD. Many of its
features—including transitional flow, low-aspect-ratio with three-dimensionality, and un-
steady, massive separation—make 2-D steady RANS very unsuitable for its prediction, in
a quantitative sense. Although the current mostly 2-D study (as well as another indepen-
dent 2-D study referenced) was able to qualitatively capture the effects of different blowing
rates on the lift, clearly the CFD results are quantitatively inaccurate, especially at higher
angles of attack when significant separation is present. Future work should include more
attempts with transition prediction models, as well as 3-D simulations with eddy-resolving
(i.e., beyond RANS) capability. Also, the qualitative ability of RANS to capture trends for
other data from this experiment should be assessed, including unsteady pitching, unsteady
low frequency slot blowing, the combination of pitching and steady slot blowing, and the
combination of pitching and surging with unsteady slot blowing.
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(a) Airfoil with slots

(b) Experimental setup for test cases [2]

Figure 1. Problem Geometry.
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(a) 2-D, structured, free-air grid (b) 2-D, structured, free-air grid (close view)

(c) 2-D, structured, tunnel grid (d) 2-D, unstructured, tunnel grid

(e) 3-D, structured, tunnel grid

Figure 2. Examples of grids employed.
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(a) Slot geometry (b) Example slot velocity profile

Figure 3. Jet velocity was considered to be the average velocity magnitude across the slot
exit line (velocity is nondimensionalized by aref ).

Figure 4. Grid sensitivity study for 2-D, structured, free-air grids, no blowing, FUN3D with
SA model.

16



(a) α = 0◦ (b) α = 0◦

(c) α = 5◦ (d) α = 5◦

(e) α = 10◦ (f) α = 10◦

Figure 5. Results from comparison cases between CFL3D and FUN3D, 2-D, structured,
free-air grids, no blowing, with SA model.
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Figure 6. Comparison of lift coefficient results from the three different turbulence models,
2-D, structured, free-air grids, no blowing, CFL3D.
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(a) α = 0◦ (b) α = 0◦

(c) α = 5◦ (d) α = 5◦

(e) α = 10◦ (f) α = 10◦

Figure 7. Comparison of pressure and skin friction coefficient results from the three turbu-
lence models, 2-D, structured, free-air grids, no blowing, CFL3D.
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Figure 8. Lift coefficient results from the forced transition study, 2-D, structured, free-air
grids, no blowing, CFL3D with SA model.
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(a) α = 5◦ (b) α = 5◦

(c) α = 8◦ (d) α = 8◦

Figure 9. Pressure and skin friction coefficient results from the forced transition study, 2-D,
structured, free-air grids, no blowing, CFL3D with SA model.
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Figure 10. Lift coefficient results with slot blowing on a 2-D, structured, free-air grid,
FUN3D with SA model.
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(a) α = 5◦, Cµ = 0.6% (b) α = 5◦, Cµ = 5.0%

(c) α = 10◦, Cµ = 0.6% (d) α = 10◦, Cµ = 5.0%

Figure 11. Pressure distribution results with slot blowing on a 2-D, structured, free-air grid,
FUN3D with SA model.
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Figure 12. Comparison between lift coefficient results from a 2-D structured free-air grid
and a 2-D structured tunnel grid, no blowing, FUN3D with SA model.

(a) α = 5◦ (b) α = 10◦

Figure 13. Comparison between pressure distribution results from a 2-D structured free-air
grid and a 2-D structured tunnel grid, no blowing, FUN3D with SA model.
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Figure 14. Lift coefficient results with slot blowing on a 2-D unstructured tunnel grid,
FUN3D (run in steady-state mode).
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(a) α = 5◦, Cµ = 0% (b) α = 10◦, Cµ = 0%

(c) α = 5◦, Cµ = 5% (d) α = 10◦, Cµ = 5%

(e) α = 5◦, Cµ = .6% (f) α = 10◦, Cµ = .6%

Figure 15. Pressure distribution results with slot blowing on a 2-D unstructured tunnel grid,
FUN3D (run in steady-state mode); error bars represent the amplitude of oscillation in the
solution.
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(a) Density residual (b) Lift coefficient

Figure 16. Iterative convergence histories from FUN3D for α = 12.5◦ on a 2-D unstruc-
tured tunnel grid, run in steady-state mode, SA model.

Figure 17. Grid convergence study using FUN3D on two different grid types; α = 10◦ in
tunnel, SA model.
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Figure 18. Comparison of time-accurate and steady solutions for Cµ = 0.6% cases, 2-D
unstructured tunnel grid, FUN3D; error bars represent the amplitude of oscillation in the
solution.
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Figure 19. Comparison of current 2-D FUN3D SST solutions with SST solutions from
STARCCM+ in Laufer [14].
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Figure 20. Effect of blowing on trailing edge separation location, 2-D unstructured tunnel
grid, FUN3D with SA model.

30



(a) Experiment, Cµ = 0% (b) SA, Cµ = 0% (c) SST, Cµ = 0%

(d) Experiment, Cµ = 5.0% (e) SA, Cµ = 5.0% (f) SST, Cµ = 5.0%

(g) Experiment, Cµ = 0.6% (h) SA, Cµ = 0.6% (i) SST, Cµ = 0.6%

(j) Experiment, Cµ = 0.6% (k) Time-accurate SA, Cµ = 0.6% (l) Time-accurate SST, Cµ =
0.6%

Figure 21. Velocity field results from FUN3D.

31



(a) Cµ = 0% (b) Cµ = 5.0%

(c) Cµ = 0.6%

Figure 22. Initial 3-D results from CFL3D, displaying the effect that the juncture with the
wind tunnel wall has on the overall flow; α = 12.5◦, 3-D structured grid with inviscid
lower/upper walls, viscous side walls, SA model.
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(a) SA model (b) SA-RC-QCR2000

Figure 23. Comparison of 3-D results from FUN3D with the SA turbulence model
with and without Rotation/Curvature Correction (RC) and Quadratic Constitutive Relation
(QCR2000); α = 5◦, Cµ = 0%, 3-D structured grid with inviscid lower/upper walls, vis-
cous side walls.

Figure 24. Zoomed comparison of 3-D surface pressure coefficients from FUN3D and
CFL3D to 2-D results (all with tunnel walls) and experimental values, α = 5◦.
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(a) Surface streamlines (b) Surface pressure coefficients at cuts along the span

Figure 25. 3-D flow solution from FUN3D at α = 12.5◦, SA-RC-QCR2000.
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