

March 2017

NASA/CR-2017-219594

ATM Technology Demonstration-1 Phase II
Boeing Configurable Graphical Display (CGD)
Software Design Description

George F. Wilber
Boeing, Seattle, Washington

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NNL13AA03B, NNL15AB46T

March 2017

NASA/CR-2017-219594

ATM Technology Demonstration-1 Phase II
Boeing Configurable Graphical Display (CGD)
Software Design Description

George F. Wilber
Boeing, Seattle, Washington

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500

BOEING is a trademark of Boeing Management Company

ATM Technology Demonstration-1 (ATD) Phase II
Boeing Configurable Graphical Display (CGD)

Software Design Description

Prepared for: Denise Scearce
NASA Langley Research Center

Hampton VA, 23681-2199

DOCUMENT NUMBER: RELEASE/REVISION: RELEASE/REVISION DATE:

D780-10409-1 Rev A December 6, 2016

CONTENT OWNER:

Boeing (Airspace Operational Efficiency)

All revisions to this document must be approved by the content owner before release.

Page ii of 59 D780-10409-1 Rev A

Document Information
Original Release Date
April 1, 2016

Contract or CDRL Number (if required)
NNL13AA03B-NNL15AB46T

Limitations

Authorization for Release

AUTHOR: Signature on File 9M-PW-ERCS 4/1/16

 George F. (Rick) Wilber Org. Number Date

APPROVAL: Signature on File 9M-PW-ERCS 4/1/16

 Karl Rein-Weston Org. Number Date

DOCUMENT RELEASE: Signature on File 9M-PW-ERCS 4/1/16

 Barbara L. Withers Org. Number Date

Rev A D780-10409-1 Page iii of 59

Table of Contents
List of Figures ..v	

List of Tables ...v	
1.	 Scope ..6	

1.1	 Purpose ...6	
1.2	 System Overview ...6	

2.	 References ..8	
3.	 Design Overview ...9	

3.1	 CGD Display Overview ...9	
3.2	 CGD Organization ..10	
3.3	 CGD Software Implementation ..11	

4.	 Architecture ..12	
4.1	 CGD System Architecture ..12	
4.2	 CGD Software Architecture ...13	

4.2.1	 Non-Normal Operations ..15	
4.3	 Interface Design ...16	

5.	 Components ...18	
5.1	 CGDServer.js ...18	

5.1.1	 Interface Function ..18	
5.1.2	 Message Processing Function ...19	

5.2	 Cgd.html ...20	
5.2.1	 HMI Design & Layout ..21	
5.2.2	 HTML Document ..29	
5.2.3	 Javascript Computation ...30	

5.3	 FIMio.js ..34	

Appendix A: FIM IO to CGD Server Interface Definition (ICD)35	
A.1 Fast-Slow Indicator Fields ..35	
A.2 Progress Indicator Fields ...36	
A.3 Commanded Speed Fields ...37	
A.4 FIM Mode Fields ..37	
A.5 FIM Status Message Field...38	
A.6 Fully Populated Example ..38	

Appendix B: CGD Server to CGD Display Interface Definition (ICD)39	
B.1 Commanded Speed Fields ...40	
B.2 Keep Alive Field ...40	
B.3 Connection Lost Field ...40	
B.4 Bad Data Field ...41	
B.5 Full Data Field ...41	

Page iv of 59 D780-10409-1 Rev A

Appendix C: Boeing CGD Software Test Plan (STP) ..42	
C.1 Approach ...42	
C1.1 Boeing-Honeywell Testing ...44	
C.2 CGD System Level Verification ...44	
C.3 Planned Verification Tests ..44	

C.3.1 Display Computation & Drawing Tests (DT)45	
C.3.2 Connectivity and Link Management Tests (CT)46	
C.3.3 Performance Tests (PT) ..47	
C.3.4 Non-normal Operations Tests (AT) ...48	

C.4 Requirements to Verification Mapping ...49	

Revision Record ...59	

Rev A D780-10409-1 Page v of 59

List of Figures
Figure 1 - Boeing CGD System Scope ..7	
Figure 2 - CGD System Design ...9	
Figure 3 - CGD Display Design ...10	
Figure 4 - CGD System Architecture ...13	
Figure 5 - CGD Software Architecture ..14	
Figure 6 - CGD Display Areas ...22	
Figure 7 - Non-Normal Operations Display ..23	
Figure 8 - Normal Non-FIM Operations ..23	
Figure 9 - FIM Operations Beyond 30 NMs ..23	
Figure 10 - FIM Operations Inside 30 NMs ..24	
Figure 11 - Fast Slow Indicator ...25	
Figure 12 - Fast-Slow Display Modes ...25	
Figure 13 - Progress Indicator ..26	
Figure 14 - Progress Indicator Display Modes ..27	
Figure 15 - Commanded Speed Display Modes ..28	
Figure 16 - FIM Mode Display Modes ..28	
Figure 17 - Status Message Display Modes ...29	

List of Tables
Table 1 Referenced Documents ..8	
Table 2 – CGD Requirements Testing Matrix ...50	

Page 6 of 59 D780-10409-1 Rev A

1. Scope
This Software Description Document (SDD) captures the design for developing the
Flight Interval Management (FIM) system Configurable Graphics Display (CGD)
software. Specifically this SDD describes aspects of the Boeing CGD software and
the surrounding context and interfaces. It does not describe the Honeywell
components of the CGD system.

The SDD provides the system overview, architectural design, and detailed design
with all the necessary information to implement the Boeing components of the CGD
software and integrate them into the CGD subsystem within the larger FIM system.

Overall system and CGD system-level requirements are derived from the CGD SRS
(in turn derived from the Boeing System Requirements Design Document (SRDD)).
Display and look-and-feel requirements are derived from Human Machine Interface
(HMI) design documents and working group recommendations. This Boeing CGD
SDD is required to support the upcoming Critical Design Review (CDR).

1.1 Purpose
The purpose of this Software Design Description (SDD) is to capture the architecture
of the CGD System and the design of the Boeing CGD software subsystem and
components.

This single document captures all aspects of the Boeing FIM CGD software design. It
describes the display features, allocated requirements, architecture of CGD system
and Boeing CGD subsystem. It contains the interfaces and protocol descriptions
between all Boeing software components and external FIM system components.

The CGD display is to be used by the FIM equipped aircraft’s crews to follow speed
commands and status information that will cause the aircraft to move to the intended
clearance location within the Interval Management (IM) arrival stream under
Instrument Meteorological Conditions (IMC). All display information is provided via
the EFB and no crew input is required on the CGD during IM operations.

1.2 System Overview
Figure 1 captures in graphical format the scope of the Boeing CGD subsystem and
thus Boeing CGD software within the FIM display system (which includes both the
CGD subsystem and the Cockpit Display of Traffic Information (CDTI) subsystem
on the EFB) and the full FIM system. It illustrates that software will be hosted across
multiple physical devices (the Master EFB and the CGD Display hardware. This is
further addressed in follow-on architecture figures including the CGD functional
architecture (i.e., Figure 2).

The scope of this SDD lies within the hashed circle in Figure 1, and includes the
CGD Server that is hosted by the EFB and purpose built software executing CGD

Rev A D780-10409-1 Page 7 of 59

displays on the CGD display devices. The CGD SDD scope is narrower than the
MOPS CDTI requirements (which includes both EFB CDTI displays and primary
field of view (PFOV) displays). In the MOPS, interface G requirements apply to both
the CGD SDD and the EFB CDTI avionics SDD (i.e., Honeywell HMI/IO SDD).

Figure 1 depicts the scope of the FIM system, which includes the system
requirements of both hardware and software which have been allocated to the Boeing
CGD subsystem. The scope of this SDD only includes software components. It only
includes the Boeing components of the CGD system.

Figure 1 - Boeing CGD System Scope

Electronic	Flight	Bag	-	Captain	
(EFB)

Configurable	Graphical	Display	
(CGD)	–	F/O	iPod

Configurable	Graphical	Display	
(CGD)	–	Captain	iPod

Browser
B.	Settings

Browser
B.	Settings

Na
v	

DB

CGD	
Server

FIM	
Application

FIM	
Input/Output	(I/O)

Boeing	Flight	Interval	Management	(FIM)	CGD	
Software	Requirements	Specification	(SRS)	Scope

MOPS	Interface	F	
(EFB	FIM	Application	Output)

Other	Avionics

CDTI	
EFB	ProcessingCDTI	

Processing	by	EFB	

MOPS	Interface	G
(EFB	CDTI	Output)

MOPS	Interface	G
(CGD	CDTI	Output)

Page 8 of 59 D780-10409-1 Rev A

2. References
Table 1 Referenced Documents

Document Title Revision Date Organization

Boeing Air Traffic Management
Technology Demonstration – 1 (ATD-
1) Phase II, System Requirements
Definition Document,

Rev A 10/30/2015 Boeing AOE

ATM Technology Demonstration-1 (ATD)
Phase II Configurable Graphical Display
(CGD) Software Requirements
Specification

NEW 3/7/2016 Boeing AOE

The Honeywell and Boeing CGD HMI
Interim Design Power Point Slides (i.e.,
wireframes)

V9 1/22/2016 Boeing AOE

Rev A D780-10409-1 Page 9 of 59

3. Design Overview
The following figure shows a notional FIM system level functional design. It depicts
two EFB’s (captain and first officer) and two CGD displays (captain and first officer).
Further it depicts wireless or wired connectivity between the Master EFB and CGD
displays. Wireless is the baseline system design, but the software is designed to be
agnostic to the physical network running over any TCP/IP network.

For flight Test PC will be executing a CGD display connected by Ethernet in cabin,
while flight crew uses iPhone SE devices wirelessly. Flight test PC CGD display will
support troubleshooting any non-normal behavior.

Figure 2 shows that the CGD Server is hosted on the Master EFB connected to the
FIM IO. It is also connected to two CGD Display devices and the Test PC. Each CGD
display executes the same application on the same data in a parallel, synchronous
manner. The CGD Display software is hosted in the CGD Display hardware browser.

Figure 2 - CGD System Design

3.1 CGD Display Overview
The purpose of the CGD system is to display critical FIM information to the flight
crew in their PFOV. The CGD displays must therefore perform display functions in a
manner to ensure only valid information is provided and misleading and hazardous
information is not displayed in the PFOV. Information shall be displayed on the CGD
according to the layout illustrated in Figure 3. The CGD information required is
shown in the example layout in Figure 3:

Configurable	Graphical	
Display	(CGD)	–	F/O

Configurable	Graphical	Display	
(CGD)	–	Captain

Browser

Browser	Settings:
• 	Wi-Fi	SSID
• 	iP	of	Web	page

Browser

Electronic			Flight	Bag	
–	Captain			(EFB)

Crew	
Data	Entry

Na
v	

DB

	

Electronic	Flight	Bag		
–	F/O	(EFB)	

Ehternet

Na
v	

DB

CGD	
Server

CGD	
Server

FIM	I/OFIM	I/O

Off

Wi-Fi
Wi-Fi

Test	PC
Aircraft	Interface	Device	(AID)

Ethernet

Ethernet Ethernet

Ethernet

SSIDEthernetSSID

EthernetSSIDEthernetSSID

Browser	Settings:
• 	Wi-Fi	SSID
• 	iP	of	Web	page

Ethernet Ethernet	

Ethernet

Ethernet

Page 10 of 59 D780-10409-1 Rev A

Figure 3 - CGD Display Design

1. FAST/SLOW indicator
2. Progress Indicator
3. FIM commanded speed
4. FIM mode
5. FIM alert message (s)

3.2 CGD Organization
The operational goal for the CGD is to display aircraft speed guidance and deviation
indications in the flight crew’s PFOV. The CGD provides the crew with the
necessary information to safely conduct airborne IM spacing:

• Display IM commanded speeds within the crew’s PFOV
• Display IM state changes and speed changes in the PFOV
• Monitor EFB outputs and alert the crew to keep them fully aware of changes
• Display information consistent with the EFB IM pages
• Auto-populate information when received from the EFB with no perceivable

EFB-CGD latency
• Display data consistent with the EFB data and formats.

To achieve this a very simple design with simple data flows and minimum logic
processing on the CGD displays has been developed. The FIM application on the
Master EFB generates the detailed EFB content and displays. This application makes
all of the display decisions and passes the already processed information to the CGD
system. The FIM application passes only the subset of data needed for display
processing to the FIM IO function. The FIM IO function then sends only the specific
CGD display commands and associated information to the Boeing CGD subsystem.
In parallel the FIM IO passes consistent display information to both EFB displays.
FIM IO does not filter CGD specific data but sends all of the data each cycle.

All possible CGD logic processing is done on the EFB computer by CGD server,
leaving only display commands and drawing constructs required on the CGD Display
device. In fact, no resident software is hosted or executed on the CGD display

Rev A D780-10409-1 Page 11 of 59

hardware. The only operational CGD software executed directly on the CGD display
is the commercial HTTP Browser. The HTTP browser uses the latest HTML-5
display capabilities to render the CGD display. This minimizes the latency, ensures
same information is displayed on both CGD display devices at the same time and
reduces display drawing complexity, latency and jitter.

The EFB is a hardened Microsoft Windows device allowing development and
deployment on common operating system architecture. The CGD device is an iPhone
SE IOS based device. Further the design leverages existing and emerging network
and communication designs based on Ethernet, IP, and Wi-Fi built into the host
devices using standard software interfaces, protocols and device drivers.

3.3 CGD Software Implementation

CGD Software is written in Javascript and HTML-5. CGD display software consists
of a single HTML document using latest HTML-5 constructs for document
management, screen layout, drawing and animation. Computing software and logic
on both CGD display and EFB are written in Javascript. Javascript is interpreted
natively and is not compiled.

The Javascript embedded in the HTML document on CGD display is executed by the
browser in browser context as part of the document (DOM). The browser is fully
HTML-5 compliant.

The Javascript executed on the EFB is executed by a small but powerful, advanced
runtime executable called “node.js”. Node.js is built on Chrome’s V8 Javascript
engine. Node.js uses an event-driven, non-blocking IO model that makes it
lightweight and efficient. Node.js’ package ecosystem, is the largest ecosystem of
open source libraries in the world, according to their writing. The executable is under
10 MB and self-contained with all required features. This is important due to EFB
hardware and resource constraints.

Node.js supports three basic networking capabilities used for component interfaces.
(1) TCP/IP for socket-to-socket communications, (2) HTTP communications, and (3)
Web Socket interfaces and services. No code is directly written to develop these
interfaces and services. All that is required is library inclusion and configurations.
This allows common communication software between CGD components whether on
same device or on separate IP devices connected by either hardwired IP/Ethernet or
IP/Wi-Fi.

Page 12 of 59 D780-10409-1 Rev A

4. Architecture
The CGD architecture fits into the overall FIM architecture as depicted in Figure 4.
That is the CGD system communicates with the FIM applications on EFB. This
communication is via FIM IO function in Honeywell FIM application. The FIM
applications provides display commands and messages to the overall display system
(CGD and CTDI) as shown in Figure 4. The FIM application ensures consistent and
timely display management for both EFB displays and CGD displays. The interface
between the FIM application and FIM IO is external to CGD design and is defined by
Honeywell. It is defined in Honeywell SDD and is out of scope for this Boeing CGD
SDD document.

While there are two EFB’s, each hosting a copy of EFB FIM and CGD EFB software;
and one Wi-Fi source (dedicated Wi-Fi switch/router), the overall design is that only
one EFB will provide FIM guidance at time and only one Wi-Fi will transmit at any
time. This allows simplified flight crew management of the CGD display device
settings. The Master EFB will provide FIM guidance for both EFB displays and for
all CGD displays. That EFB is declared the Master EFB. The Master EFB will
command the CGD functions on that device to execute. The CGD functions on the
Slave EFB will be dormant. Upon certain failure modes a switch over to backup EFB
may be required. If so, a full reset is assumed, which will switch the slave EFB to the
Master state.

4.1 CGD System Architecture
CGD system architecture consists of components developed by Boeing and by
Honeywell. All CGD components, except for the FIM IO are developed by Boeing
and documented in this SDD. The FIM IO is documented in the Honeywell FIM
application SDD. However, the interface between the FIM IO and the Boeing CGD
software components is defined in this document, in Appendix A.

CGD System Architecture consists of a central dual server based solution. The dual
server concept is where a single CGD component, the “CGD Server” executes on the
Master EFB as a server to both the EFB FIM IO function to accept data from FIM
application and as CGD display server for the CGD display devices. The FIM IO
becomes a TCP/IP client on the same device. The CGD displays become HTTP and
Web Socket clients on different devices.

Application data flows primarily in one direction. Given that TCP/IP is being used for
both CGD Server interfaces, there is low-level bi-directional communication.
Application layer information flows only in one direction between FIM IO and CGD
Server and from CGD Server to CGD Displays. This is true for the CGD Server to
CGD Display with one exception. The exception is that a non-acknowledgement
(“NAK”) message is returned from CGD Display to CGD Server over Web Socket in
the even an error in the incoming data is detected. When an incoming error is detected
all ICD defined data (vs. deltas only) will be sent on the next display update cycle to

Rev A D780-10409-1 Page 13 of 59

ensure consistent and accurate data is displayed. Also full (non-delta) JSON data will
be commanded (via NAK) right after initial cgd.html initialization and after any
“CONNECTION LOST” condition.

The CGD design is based on using non-real time computing and networking
resources. However, there are some tight time based requirements in SRS. To that end
the EFB FIM application (via FIM IO) will send data to the CGD system at precisely
a two hertz rate. This data rate will be the main timing element used by normal
operations for drawing and animating the CGD displays. Also, the display hardware
selected is capable of game player animation performance.

See Figure 4 for CGD system architecture in context of the overall FIM system and
components. It also shows the Boeing CGD subsystem architecture and system level
connectivity.

4.2 CGD Software Architecture
The CGD software architecture is depicted in Figure 5 below. Yellow items are
Boeing CGD components and cream are Honeywell components. CGD Software
Architecture consists of:

1. FIM IO – on EFB (Honeywell), component called “FIMio”

2. CGD Server – on EFB (Boeing), component named “CGDServer.js”

Figure 4 - CGD System Architecture

Page 14 of 59 D780-10409-1 Rev A

3. CDG Displays – on CGD display hardware (Boeing), component named
“cgd.html”.

The architecture and design is such that FIM IO (FIMio) data is passed as text strings
in JSON format to the CGDServer over TCP/IP using socket interface. The
CGDServer is the TCP server and the FIMio is the TCP client. Therefore, the
CGDServer must be started first and listen for the FIMio to connect. The CGDServer
is persistent and continues to run even if the FIMio connects, disconnects and
reconnects to the TCP socket.

The CGDServer sends text strings in JSON format to all connected CGD displays
over a HTTP and Web Socket protocols where the CGDServer is the server and the
CGD display browsers are Web Socket and HTTP clients. The browser links to the
Master EFB and requests the cgd.html page. The Web Socket is a protocol and
service that allows connection oriented communications between HTTP server and
HTTP clients. This allows an HTTP server to continually send updates REST-fully to
the HTTP clients. This is in contrast to typical web-based HTTP services where client
security is paramount and server-to-client pushed communications are tightly
controlled. The CGDServer provides the Web Socket over HTTP services, which are
built into the HTML-5 and node.js systems. Further, the HTTP service is layered on
TCP/IP over either wired Ethernet or Wi-Fi.

Again the CGDServer is persistent and listens for CGD display connections. Multiple
CGD displays may connect, disconnect and reconnect at will. CGDServer manages
all these connections and protocol layers.

The execution of the CGD system is defined in a sequential manner with minimum
latency to allow all data being displayed on the CTDI and CGD PFOV displays as
consistently and timely as possible. For the main data path (normal operation) the
data flow and control flow are the same. The incoming FIMio data drives CGDServer
and CGD display execution (event driven). There is only a single thread for all
normal data and control flow (beyond background threads managing communications

Figure 5 - CGD Software Architecture

Rev A D780-10409-1 Page 15 of 59

services and protocols). While the devices are not real-time, the processing system is
designed to minimize latency and appear as near real time as possible. This is doable
using fast computing and networking designed for animation and gaming.

All possible logic processing happens either in or before the FIMio or in the
CGDServer. This minimizes downstream latency and jitter and makes graphics and
drawing quick and simple on the CGD display devices. Every effort is made to
minimize the amount of drawing and redrawing by only requiring drawing of changed
display items.

Note that while goal is to keep CGD Server and cgd.html from computing
complex logic, various charts are added to determine and log errors encountered
from FIM IO or by bad data in transit. This includes checking numeric values,
value ranges and defaults.

4.2.1 Non-Normal Operations

There are system requirements that state that the information displayed to the flight
crew must be timely and not provide hazardous information. To accomplish this with
one-way communications, watchdog timers are implemented in minor threads in both
the CGDServer and CGD display software design.

Honeywell’s FIMio ensures the data exiting its interface is timely and display
information correct. Then a certain time is allocated to Boeing CGD subsystem to
process and render the display commands from FIMio socket interface to CGD
display for crew viewing. The CGD system has no way to determine if the data
incoming is correct, so some portion of the system level CGD requirements have been
allocated to aspects of the FIM application and FIMio processing. The CGD system
however, handles timeliness of the data within its domain and ensures the flight crew
is alerted if normal operations are not functioning properly. That is, when data is not
being received at the prescribed rate, when current data becomes stale, or connectivity
is lost.

Non-normal operations that result in loss of connectivity provide a single message to
the flight crew (on all active CGD displays) stating “CONNECTION LOST” and an
error reason. The following may cause this condition.

1. CGDServer lost connection to FIMio “LOST FIM CONNECTION”.

2. CGDServer has not received good data from a connected FIMio for too long
“FIM IO TIMEOUT”.

3. CGD display has no initial connection to FIMio “NO INITIAL FIM
CONNECTION”.

4. CGD display has lost connection to CGDServer “LOST CGD SERVER
CONNECTION”.

Page 16 of 59 D780-10409-1 Rev A

5. CGD display has not received good data from a connected CGDServer for too
long “CGD SERVER TIMEOUT”.

The CGDServer sets a watchdog timer and monitors connection to FIMio over TCP/IP. It
sends appropriate message to CGD display when it discovers non-normal (too long
between messages or lost connection) operation and data flow. The CGD display
software sets a watchdog timer and monitors connection errors on Web Socket, and
HTTP connection as well as looking for long delays between messages. When the
connection is lost and not re-established in a timely manner, or when data is not received
from CGDServer in a timely manner even when a connection is established; the system
declares non-normal operation.

Any time non-normal connectivity is detected the current display information in all
display areas is removed from the display and the “CONNECTION LOST” message is
displayed.

Another non-normal operation is receiving corrupted or lost data. This is a transient
problem that is reset on the next one half second cycle and should not be visible or
require operator action.

1. Missing or corrupted data in a FIM IO message will cause a JSON parsing error.
This will cause corrupted data update to be delayed for this one half second cycle.
FIM IO automatically sends all updated data on the next cycle.

2. Missing or corrupted data in a CGD Server message will cause a JSON parsing
error. This will cause corrupted data to be delayed for this one half second cycle.
The CGD Display will send a NAK message to CGD Server over Web Socket,
which will trigger a full update of all data (to all CGD Displays) on the next
display cycle.

4.3 Interface Design
There are two interfaces in the CGD system.

1. FIMio to CGDServer

2. CGDServer to CGD display

Each uses a slightly different low-level protocol but uses same data and message
format structure and mostly identical message formats. The messages are defined in
Javascript object notation or “JSON”. JSON messages are text based and have a
simple syntax. For this effort the key elements of the JSON message are the container
“{ JSON data }” in curly brackets and the data elements. Each data element has a
defined name and is followed by a data value (or values), separated by a colon. Each
message field is comma separated. See Appendix A and Appendix B for details.

The Javascript engine provides a built in feature to parse, analyze and process JSON
fields. Fields are then requested by name and a value or “Undefined” is returned. The

Rev A D780-10409-1 Page 17 of 59

overall JSON message is contained in a single “{}” enclosed text string with first and
last characters being “{“ and “}” respectively.

Note that each field in JSON message is comma separated by a “,”. Spaces are
optional.

It is required that JSON data be properly formatted. JSON error formats will cause
the entire message to be ignored and discarded in operation.

Appendix A contains the FIM IO to CGD Server interface definition between
Honeywell and Boeing software. And Appendix B contains the CGD Server to CGD
Display interface.

Page 18 of 59 D780-10409-1 Rev A

5. Components
5.1 CGDServer.js
CGDServer.js is the software that executes on the Master EFB and performs the CGD
display server functions. It sets up, listens for and accepts TCP connections from
FIMio client. It sets up, listens to and accepts HTTP and Web Socket connections
from CDG displays. After establishing TCP connectivity to FIMio, it accepts JSON
based message data at 2 hertz rate. It processes all fields in the message and sends
updated JSON message data to all connected CGD displays over Web Sockets.

The CGDServer is persistent and continues execution even when some or all CGD
displays and/or FIMio becomes disconnected. It awaits reconnection. If FIMio
connection is lost it is in non-normal operational mode.

CGDServer.js execution is controlled by the EFB FIM application or similar EFB
executive. CGDServer does not monitor its own execution. It must be started, stopped
and restarted by an outside (non-Boeing) developed component.

CGDServer is a single Javascript program. It may be kicked off by batch file or in a
MS DOS command window. It is executed as “node CGDServer”. There are several
command line options for CGServer.js. (1) a “-l” for logging, (2) “-s” for show output
on console. It may be entered such as “-sl”. The “-s” flag indicates to show command
line output of the processed message. The “-l” flag indicates to capture CGD
messages in log files for debugging, testing and playback. When logs are turned on,
three files are captured. First, the raw incoming FIMio JSON messages. Second, the
outgoing CGD Server processed JSON messages. Third, connection and error log. All
three logs capture each line with a Unix timestamp (end of line or on next line as
separate JSON message).

Major CGDServer computation involves managing the connectivity interfaces and
protocols, and processing messages for incoming and outgoing transmission.

One data flow change added during CGD integration and testing is a CGD Server
timer. The timer is set to time out prior to five seconds minimum for stale data. The
timer goes off if FIM IO does not send timely JSON message to CGD Server. This
allows CGD Server to tell CGD display that is has a FIM IO time out situation. Also
added are some warning messages if FIM IO timing is delayed.

5.1.1 Interface Function

The CGDServer creates a TCP socket connection and listens for FIMio to connect. It
acts as a TCP server. When the FIMio connects it waits to receive incoming messages
on the IP socket. When an incoming message is received, it is processed and handled
accordingly. If the FIMio connection is lost, non-normal messaging is invoked and
the CGDServer waits for the FIMio to reconnect.

Rev A D780-10409-1 Page 19 of 59

The CGDServer also implements a simple HTTP server function and serves HTTP
protocol. This HTTP server opens a Web Socket interface and listens for Web Socket
connections. Multiple Web Socket connections are allowed. Web Sockets are allowed
to come and go as they please. CGDServer is continually listening for new CGD
display clients to join. All outgoing data is broadcast to all connected CGD display
clients over their assigned Web Socket port.

Connection errors on either end are caught and ignored. The CGDServer simply
returns to listening mode and continues operation as if nothing happened (other than
possibly entering non-normal mode after a specified wait period).

CGDServer also accepts incoming NAK messages from CGD display clients when
any one receives corrupted data and processes the request.

5.1.2 Message Processing Function

The primary function of the CGDServer is to accept incoming JSON messages from
FIMio, process and store them, and send any changed parameters to the connected
CGD displays. To keep CGD display processing simple, as much logic processing as
possible is completed by the FIM application, FIMio or CGDServer. All incoming
JSON messages are fully populated with all potential fields. This allows simple logic
for FIMio.

The CGDServer accepts and stores all incoming data. It notes each field that is
changed and ensures the changes are stored and forwarded to CGD displays. It only
sends changed parameters. This reduces computation and drawing on the CGD
display devices. Exceptions are when any new CGD display joins the connectivity
group or any CGD display has received corrupted JSON data, then a fully populated
message is sent from CGDServer to all CGD displays. This ensures instant
synchronization and display of same information to both crew members.

All incoming messages are JSON parsed. If the incoming message is corrupted, i.e.
JSON parsing returns an error, the entire message is ignored. A warning message may
be recorded (depending on command line parameters) and processing will continue
with the next incoming JSON message. If any JSON message field is missing, the
field is ignored and other fields are sent. No consistency check is made. No JSON
typos or errors should exist in operation. If so, they are ignored and all are handled
normally on the next incoming message cycle.

Progress Indicator and Fast-Slow Indicator constrained values are checked for valid
values and ranges. If the values are not valid, then the old value remains for the next
display cycle. This is true for enabling, value and scale fields in Progress Indicator
and the enabling and VAC in Fast-Slow Indicator.

Invalid JSON field values are displayed on the console log and in action log file.

Page 20 of 59 D780-10409-1 Rev A

5.1.2.1 Command Speed Computations

The CGDServer accepts commanded speed color from FIMio. The commanded speed
color may be a normal mode (white) or be commanded to get the flight crew’s
attention via alert (reverse video color) or blinking by alternating reverse video and
normal video at one hertz rate. The CGDServer controls the blinking and rate. It sets
the “actual” right now colors (drawing and background) for each cycle. Therefore, the
CGDServer modifies the FIMio commanded speed color as needed and creates an
“actual” commanded speed color and a background field color. The background color
is normally black, but goes to white in reverse video and alternates between white and
black during every other blinking cycle. Internally the CGD computes a “commanded
speed display mode” of normal, alert or reverse video, along with a blinking
component of on-or-off that alternates each cycle. Commanded speed incoming value
is checked for validity, if not valid, then new value is not updated.

5.1.2.2 Keep Alive Field

CGDServer adds an “alive” field to each outgoing message. Technically this message
is only required when no other data changes, however, in practice this message field
is attached to each outgoing JSON message. There is no effect unless it is the only
message field contained in the entire JSON message during the cycle.

5.1.2.3 Array Computations

CGDServer performs some computations and processing for the fields that are arrays.
Arrays are more complicated than single valued fields as both the number of entries
and values in the arrays may change. These must be handled to ensure display
continuity and ensure no exceptions are raised when array length or data entries vary.

5.2 Cgd.html
The file “cgd.html” is the software component executed on the CGD display. It draws
the CGD display on the CGD display hardware device. The CGD hardware device is
defined as a mobile device (iPhone SE) running either IOS operating system. It hosts
a native HTML-5 compatible browser designed for at least minimal animation. No
native code is developed for the CGD display hardware. Only the HTM-5 browser is
required to be resident on the device.

The only software executing CGD specific functions is the “cgd.html” file. This file
is downloaded each time the browser is directed to the “cgd.html” file at the IP
address of the Master EFB and Web Socket port the CGDServer is listening on. This
is a standard HTTP client-server architecture and design with Web Socket application
layer data exchange on top.

Once the code is downloaded, the display fields will be updated via Web Socket
interface over JSON formatted messages between the CGDServer and cgd.html, now
temporally resident on the CGD display hardware inside the HTML-5 browser

Rev A D780-10409-1 Page 21 of 59

document object domain (DOM). The browser automatically redraws the display
areas and elements using HTML-5 and internal Javascript constructs and callback
mechanisms.

When processing incoming data and a JSON parsing failure is detected, a NAK
message is sent to the CGDServer to ensure a full update on the next display cycle.

There are three major design criteria for the CGD display software.

1. HMI design and layout.

2. HTML document design.

3. Javascript computation and drawing design.

5.2.1 HMI Design & Layout

The current CDG display design is based on an iPhone SE for the measurements and
numbers below. However, the design is NOT required to be hosted on this specific
device or fixed to the current dimensions. It is easily mapped to other sizes and
layouts and hosted on other HTML-5 capable mobile devices.

Note: the numbers and references to specific device below are for design clarity.
And later changes to other devices with same design will not obviate this version
of this SDD. Tweaking dimensions slightly between the five display areas is
considered implementation not design.

One major task then is to ensure the principles and design constraints defined by the
HMI Working Group (WG) are implemented in the CGD display design. In the end
the HMI WG will have final say on whether or not the CGD HMI design meets the
utility and look-and-feel requirements. Specifically they determine that the text and
graphics are readable and acceptable. The current display is defined to be provided in
landscape mode with 1136 pixels width and 640 pixels in height.

Note: While there is an attempt to keep the EFB HMI and CGD HMI same,
differences are designed in. Not always are colors same, (all CGD data is
displayed in white) not all EFB data is displayed on CGD. CGD status messages
are a subset of EFB status messages, a blank CGD display is not good as pilot
could confuse it with powered off CGD device.

Five fields are defined in the CDG display. Figure 6 depicts a typical CGD display
and denotes the five areas. Two of the five areas require graphics drawing and three
require text only processing, although one requires text animation. The layout shows
three columns with the right hand column separated into three rows. All of the five
areas are designed as HTML-5 drawing canvases.

Page 22 of 59 D780-10409-1 Rev A

The five graphic areas contain:

1. Fast/slow indicator

2. Progress indicator

3. Commanded speed

4. Current FIM mode

5. Status messages

The FIM application (via FIMio) commands values and display graphics in the five
areas. Any or all of which may be blank. However, the HMI WG has determined that
a fully blank screen is not acceptable (appears same as if powered off) and the
minimum normal display should contain at the very least the FAST-SLOW and
EARLY-LATE labels. Further if non-normal operations are encountered, all
information is pulled from the screen and the “CONNECTION LOST” message is
displayed in the first line of the status message area as shown in Figure 7 below.

In addition to the “CONNECTION LOST” message, a sub-message below (and in
smaller font) provides a reason for the error. This information is used by flight
engineer to debug the error. Error reasons include: “NO INITIAL CONNECTION”,
“LOST FIM IO”, “LOST CGD SERVER CONNECTION”, “LOST CGD SERVER
TIMEOUT”, or “BAD DATA”.

Figure 6 - CGD Display Areas

Rev A D780-10409-1 Page 23 of 59

Figure 7 - Non-Normal Operations Display

In normal operations when not performing FIM operations but when the system is set
up and running normally, the display will contain the FAST-SLOW and EARLY-
LATE labels only as depicted below in Figure 8. These labels are displayed to ensure
a blank CGD screen is not a normal operationally display, which is what will appear
if the CGD device loses power. It is possible for a FIM status message “IM SYS
FAIL” to be displayed during non-procedural operations.

Figure 8 - Normal Non-FIM Operations

During normal FIM operations outside 30 NM from target the following display will
be seen with no Progress Indicator displayed as shown in Figure 9.

Page 24 of 59 D780-10409-1 Rev A

During FIM operations within 30 NMs a fully populated display will normally be
shown as depicted in Figure 10, perhaps with additional Fast-slow and Progress
indicator graphics.

The following sections describe normal display graphics for each of the five CGD
display areas.

Note: it is possible for the CGD to display only labels and the “IM SYS FAIL”
status message. While not earlier envisioned by HMI WG this has been added as
a useful PFOV display element. Pilot will look to EFB for details of cause.

5.2.1.1 Fast-Slow Indicator Display Area

The Fast-Slow indicator display area is on the left of the screen and encompasses all
vertical pixels. It contains top and bottom labels and a vertical bar and tick mark
representing the FIM commanded ESP (Estimated Speed)). VAC (Velocity aircraft)
is displayed as a white triangle along the left side of the vertical bar. Positive and
negative speed deltas may also be shown (operationally only one at a time) as shown
in Figure 11.

Figure 10 - FIM Operations Inside 30 NMs

Rev A D780-10409-1 Page 25 of 59

The Fast-Slow indicator may be displayed in any of the following display modes, all
controlled by the FIMio. Not all modes are planned for operational usage. They are
however, potential results of FIMio inputs. See notes below for which modes should
not be encountered in operation.

Note: the Fast/Slow OFF mode should never be commanded by FIM IO.

The different display views for the display modes are depicted in Figure 12.

A. Off (not a normal operational mode)

Figure 11 - Fast Slow Indicator

Figure 12 - Fast-Slow Display Modes

Page 26 of 59 D780-10409-1 Rev A

B. Labels only (normal operational mode for between FIM procedures)

C. Enabled – no data (not a normal operational mode)

D. Enabled with VAC

E. Enabled with VAC & speed differentials

5.2.1.2 Progress Indicator Display Area

The Progress indicator display area is just to the right of the Fast-Slow indicator and
encompasses all vertical pixels. It contains top and bottom labels and a vertical bar
and tick marks. Progress indicator is displayed as a white caliper along the right side
of the vertical bar. Caliper size depends on the scale which may be large or small as
shown in Figure 13.

The Progress indicator may be displayed in any of the following display modes, all
controlled by the FIMio. Not all modes are planned for operational usage. They are
however, potential results of FIMio inputs.

Progress indicator has modes for time-based operations (with EARLY-LATE labels)
and distance-based operations (with NEAR-FAR labels). Progress indicator supports
two scales, with difference size calipers and different tick marks. See notes below for
which modes should not be encountered in operation.

Note: the Progress Indicator OFF mode should never be commanded by FIM IO.

Figure 13 - Progress Indicator

Rev A D780-10409-1 Page 27 of 59

The different display views for the display modes are depicted in Figure 14.

A. Off - (not a normal operational mode)

B. Time based labels only

C. Distance based labels only

D. Time based enabled with caliper (shown with large caliper)

E. Distance based enabled with caliper (shown with small caliper)

5.2.1.3 Commanded Speed Display Area

The commanded speed display area is to the right of the Fast-Slow indicator and
encompasses top third of the vertical pixels. It contains a single line of text, possibly
an empty string. The commanded speed may be drawn in white for normal display on
a black background or in black on a white background (reverse video). It may blink
by alternating between white-on-black and black-on-white at a one hertz rate to get
flight crew attention.

The following display modes are allowed and depicted in Figure 15.

A. Off or no value

B. Normal white

C. Attention – reverse video

D. Non-conformance – alternating normal & reverse video

Figure 14 - Progress Indicator Display Modes

Page 28 of 59 D780-10409-1 Rev A

5.2.1.4 FIM Mode Display Area

The FIM Mode display area is to the right of the Fast-Slow indicator and below the
commanded speed using the middle third of the vertical pixels. It contains a single
line of text, possibly an empty string. The FIM mode may be drawn in white. While
any text may be displayed the display is designed for following text values.

• UNABLE

• AVAILABLE

• ARMED

• SUSPENDED

• PAIRED

The following display modes are allowed and depicted in Figure 16. Text can be in
white or empty.

5.2.1.5 FIM Status Message Display Area

The FIM Status Message display area is to the right of the Fast-Slow indicator and
below the FIM mode using the bottom third of the vertical pixels. It contains up to
three lines of text, possibly only a single empty string. The status messages are only
drawn in white. While any text may be displayed the display is designed for a set of
text values, the longest message being “OWNSHIP OFF ROUTE”.

Figure 15 - Commanded Speed Display Modes

Figure 16 - FIM Mode Display Modes

Rev A D780-10409-1 Page 29 of 59

Note: the CGD FIM status message list is a subset of EFB FIM message list.

The following are expected FIM status messages:

1. TGT OFF ROUTE

2. OWNSHIP OFF ROUTE

3. IM SPEED LIMITED

4. IM SYS FAIL

5. TGT DATA LOST

The following display modes are allowed and depicted in Figure 17, showing zero,
one, two or three simultaneous messages. .

5.2.2 HTML Document

The HTML document has a head and a body. Only the Javascript described in the
next section exists in the head. The document definition is contained in the HTML
body.

On initialization the document creates the five graphics display areas by generating
and initializing canvases for each area. Each canvas has an “id” that is available for
the Javascript to draw into. The drawing graphics areas have multiple layered
canvases. The canvas locations and pixel sizes are defined in each canvas division
definition, along with default style for text size, color, and font. The following
canvases are created for the five display areas. The layered canvases are transparent
and overlay a dimensionally equivalent base canvas.

Figure 17 - Status Message Display Modes

Page 30 of 59 D780-10409-1 Rev A

1. Overall CGD canvas “cgdCanvas” occupying full 1136 by 640 pixels. This is
the base canvas and has a black background color. No drawing is performed in
this canvas. However, it contains all other canvases.

2. Fast-Slow base canvas “fsCanvas” occupying left 210 pixels by 640 high is
generated. It contains the labels, bar and tick mark. It has a black background.
This canvas need only be updated when the fast-slow indicator mode is
updated (very rarely).

3. Fast-Slow layer canvas “fsLayerCanvas” occupies the same area as the
fsCanvas. It has a transparent background. It contains the VAC triangle and
positive and negative difference text values. It is clipped to ensure writing
does not impinge the labels. This area is redrawn (regularly in operation) as
VAC or difference values update.

4. Progress indicator base canvas “piCanvas” occupying left 240 pixels by 640
high is generated. It contains the labels, bar and tick marks. It has a black
background. This canvas need only be updated when the progress indicator
mode is updated (very rarely).

5. Progress indicator layer canvas “piLayerCanvas” occupies the same area as
the piCanvas. It has a transparent background. It contains the progress
indicator caliper. It is clipped to ensure writing does not impinge on the labels.
This area is redrawn (regularly during operation) as progress indicator or scale
updates.

6. Commanded speed canvas “spdCanvas” occupies remaining right 660 pixels
and top 300 pixels of the cgdCanvas area. It contains a single line of text. This
canvas is updated when the commanded speed is updated (regularly during
operation).

7. FIM mode canvas “modeCanvas” occupies remaining right 660 pixels and the
middle 200 pixel right below the spdCanvas. It contains a single line of text.
This canvas is updated when the FIM mode is updated (regularly during
operation).

8. FIM Message Status canvas “statusCanvas” occupies remaining right 660
pixels below the modeCanvas with 300 vertical pixels. It contains up to three
lines of text. This canvas is updated when the status messages are updated
(regularly during operation).

5.2.3 Javascript Computation

The cgd.html Javascript is contained in the HTML head. It computes and stores all of
the computational variables. It manages the canvases and performs drawing logic. It
draws the graphics and text in the canvases and implements the limited animation. All
of the data is managed in the document DOM and accessed by the canvas’ handles.

Rev A D780-10409-1 Page 31 of 59

The document sections are located by their canvas Id’s and mapped to document and
canvas contexts.

Each time a JSON message is received, the new information is processed. Updated
text and graphics computed and then drawn in the appropriate display areas and
canvases. Only necessary drawing is accomplished to minimize graphics drawing
time and impacts on latency, delay and jitter.

5.2.3.1 Initialization

The Javascript initializes internal variables and display parameters. The initial display
is completely blank or black. All text values are empty and no labels or graphics are
drawn. Values that have defined defaults in the FIMio to CGDServer interface are set
to default values but will be overwritten on initial JSON data submittal.

The Javascript makes a Web Socket connection to the CGDServer by creating a new
Web Socket client and connecting with the CGDServer’s IP address and Web Socket
Port (at this time 9099). The Web Socket sets up callback functions for “onopen” and
“onerror” messages as well as the main callback of “onsubmit” which is defined
below in the next section.

Document contexts are built for each canvas using the canvas Ids. Default canvas
parameters such as font type, font size, font color, etc… are set for each canvas.

Both the piLayerCanvas and the fsLayerCanvas obtain clipping regions to limit the
drawing area and keep symbols away from labels and boundaries.

CGDServer is commanded for a full JSON update. Lastly a timeout is set. If the
CGDServer does not respond with new data within the timeout, a “CONNECTION
LOST” message will be generated right out of the gate. The initial timeout is longer
than the in-operation timeout as it is ok to assume there is no valid operation upon
initialization.

5.2.3.2 On Submit

The main method of the Javascript is the callback for “onsubmit”. This function is
called and passed incoming JSON message. The Web Socket function directly calls
the “drawDisplay (string)” function with the JSON message as the “string” value. The
drawDisplay function performs all of the operational display computation and
drawing.

First thing the function does is clear the incoming timeout. The last thing is does is
reset the timeout for an operational value (at this time five seconds).

Incoming string data is JSON and is parsed using JSON.parse(string) function. If an
error is discovered in parsing execution terminates for this cycle and waits for the
next cycle of JSON input. A corrupted JSON message results in a NAK message
being sent to CGD Server, and the incoming JSON data is ignored.

Page 32 of 59 D780-10409-1 Rev A

If the incoming string data is successfully parsed by the JSON parser then it returns a
response that contains the JSON text parsed and accessible as individual JSON fields.
Each JSON field is accessed using a simple command “var x = response.fieldName”
where the parsed JSON response field is requested by name is set to a value in
variable x, alternatively, the JSON field may be used directly in a logical operation.
One example is the “if (response.fieldName != undefined)” This construct is used to
determine if the field exists at all in the JSON response. It is important to handle this
situation to avoid accidental Javascript exceptions and crashing.

Processing for each specific area in CGD graphics display is defined below:

5.2.3.2.1 Fast-Slow Computations

If the Fast-slow enable message is sent then Fast-slow enable variable is set to the
incoming value. When the incoming value is set to 0 (off) or 1 (labels only) both the
fsCanvas and fsLayerCanvas are cleared. If the new mode is greater than 0 (off) then
the labels are drawn on the fsCanvas. If the new mode is 2 (enabled) then the bar and
tick marks are drawn in light gray and white.

If an incoming Fast-slow VAC message and/or Fast-slow differences message is
received then the variables are updated.

If the current Fast-slow enabled mode is 2 (enabled) then the upper layer canvas
fsLayerCanvas is cleared. And Fast-slow differences and VAC are drawn on the
upper layer canvas. The VAC vertical position is computed by taking the pixel limits
and mapping them to the ICD scale limits of +- 1000. The FIMio commands vertical
location to +-1000 with 0 in center. Javascript converts that to map the actual pixel
ratio and offset and draws the VAC triangle to the left of the bar with right point
centered on the commanded vertical pixel row. Clipping insures the top and bottom of
the triangle don’t obscure the labels. Further, no error checking is done on the
incoming values and any inputs above 1000 or below -1000 will appear as no VAC
has been commanded.

5.2.3.2.2 Progress Indicator Computations

If the Progress indicator enable message is sent then Progress enable variable is set to
the incoming value. When the incoming value is set to less than 3 (labels only) both
piCanvas and piLayerCanvas are cleared. When the indicator is changed to any value
above 0 (off) the labels are drawn on the base canvas. Value of 1 or 2 labels only.
Value of 3 or 4 indicates fully enabled indicator. When mode is set to fully-enabled
the bar and tick marks are drawn on the base canvas in light gray and white.

If an incoming progress value or progress scale message is received then the variables
are updated.

If the current indicator enabled mode is 2 or 4 (enabled) then the upper layer canvas
piLayerCanvas is cleared. The progress indicator caliper is drawn on the upper layer
canvas. The progress indicator vertical position is computed by taking the pixel limits

Rev A D780-10409-1 Page 33 of 59

and mapping them to the ICD scale limits of +- 1000. The FIMio commands vertical
location to +-1000 with 0 in center. Javascript converts that to map the actual pixel
ratio and offset and draws the caliper to the right of the bar with middle gap centered
on the commanded vertical pixel row. Clipping insures the top and bottom of the
caliper don’t obscure the labels. The scale controls the caliper size. Small scale is
small caliper and large scale is large caliper.

5.2.3.2.3 Commanded Speed Computations

If the commanded speed color message is sent then the spdCanvas text color is set to
the appropriate incoming command (0 – white, 1 – black).

If the commanded speed background color message is sent then the speed background
value is set to the appropriate incoming command (0 – black, 1 - white).

If the commanded speed value message is sent then the speed value parameter is set
to the incoming text value.

When commanded to change the speed value or color or background color the
spdCanvas is cleared the background and text color are set and the speed value is
drawn.

5.2.3.2.4 FIM Mode Computations

The FIM mode color message is ignored and text is always white.

If FIM mode value message is sent then the FIM mode value parameter is set to the
incoming text value.

When commanded to change the FIM mode value the modeCanvas is cleared the
mode value is drawn.

5.2.3.2.5 FIM Status Message Computations

If the FIM status message is sent then the status value parameter is set to the
incoming text values (array).

When commanded to change the status messages the statusCanvas is cleared and the
new text messages are drawn with the (up to) three text strings aligned left justified
above and below each other.

5.2.3.2.6 Lost Connection Computations

This message halts normal operations and calls the displayError function with “server
lost” parameter. This triggers “CONNECTION LOST” message (and reason). It
clears all other information from display until normal operations are resumed at
which time it commands a full JSON update from CGDServer.

Page 34 of 59 D780-10409-1 Rev A

5.2.3.3 Display Error

The displayError (msg) function is called anytime there is an error in processing. In
operation JSON parsing errors are logged and current cycle data processing is
discontinued. The other error messages result in connection lost messages. They
cause all of the canvases to be cleared and the “CONNECTION LOST” message to
be displayed in the status message display area/canvas with a sub-message giving
reason for the error.

5.3 FIMio.js
FIMio.js is a software package provided to simulate the actual Honeywell FIM IO
function. It is a Javascript program that runs on either the EFB or developmental
laptop and executes the interface exactly the same as the Honeywell FIMio. It is used
for development and testing. It may also function as a playback tool to playback
captured CGD FIM sessions. This may be useful for debugging, testing and software
or HMI validation or to reconstruct operational displays.

This software is included in this discussion to allow CGD system to perform
standalone execution (without FIM application and Honeywell FIMio). It is invoked
in a MS DOS command window as “node FIMio” or with any of the following
command line options. In default mode the program makes only one pass through the
“data.txt” JSON input file, delays 500 msec between messages and executes on the
“data.txt” input file.

The program accepts command line parameters, loads the input file, and opens a TCP
connection to the CGDServer. It then steps through each JSON message in order,
sending it over the TCP interface.

Command line options include the following:

1. –s to show command line output and chatter

2. –l to loop infinitely through the JSON messages in data file

3. –d xxx to set the delay to xxx msec between messages

4. –f xxx to set the input file name to xxx (i.e. data.txt).

Rev A D780-10409-1 Page 35 of 59

Appendix A: FIM IO to CGD Server Interface
Definition (ICD)

The protocol between the FIMio and the CGDServer is based on TCP/IP sockets. The
CGDServer sets up a listening socket and waits for the FIMio to connect. Javascript
Object Notation (JSON) is used as message format protocol. A set of CGD display
message (in JSON format) are defined to provide the message and data level
interface.

There are two interfaces in the CGD system.

1. FIMio to CGDServer

2. CGDServer to CGD display

Each uses a slightly different protocol but uses same data and message format
structure and mostly identical message formats. The messages are defined in
Javascript object notation or “JSON”. JSON messages are text based and have a
simple syntax. For the effort the key elements of the JSON message are the container
“{ JSON data }” in curly brackets and the data elements. Each data element has a
defined name and is followed by data value (or values), separated by a colon.
Multiple fields are comma delimited. The format is “data Name”:”data Value” or for
multi-value sets, arrays are used. Such as: “data Name”:[‘0’,’1’,’2’]. Example is
{“Pies”:[“apple”,”peach”,”banana”], “Cookies”: [“Chip”, ”Sugar”, “Oreo”], “Cost”:
“$1.00”}.

The Javascript engine provides a built in feature to parse, analyze and process JSON
fields. Fields are then requested by name and a value or “Undefined” is returned.

It is required that JSON data be properly formatted. JSON error formats will cause
the entire message to be discarded in operation, resulting in no update during this
display cycle.

The FIMio is required to send the fully populated JSON message every timed display
cycle event to CGDServer to ensure ability to quickly synchronize coming and going
CGD display devices in the one-way communications architecture. The interface is
for a single JSON message for each event cycle. Each field is described below, along
with display examples and default values. The following sections are defined as the
five elements of the CGD display layout, but are simply a single text string.

A.1 Fast-Slow Indicator Fields
JSON Fields:

• Enable fast/slow indicator “fsenable”

• Values = (1-labels only, 2-on/enabled)

Page 36 of 59 D780-10409-1 Rev A

• Purpose: on enables indicator: off – blank, labels only – “FAST &
SLOW”, on – labels, bar & ESP with difference values & VAC as
commanded

• Default = “1”

• Example: “fsenable”:”2”

• VAC value “fsvac”

• Values = range from -1000 to +1000 or “” (no white triangle to display)

• Purpose: sets vertical center of white triangle relative to top & bottom of
CGD scale when not “”

• Default = “”

• Example: “fsvac”:”500”

• Speed difference “fsdiff ”

• Values = [“positive value”, “negative value”]

• Purpose: displays positive or negative speed difference values when
exceeds defined value

• Default = []

• Examples: [“+15”,”-11”], [“+15”] or [“”,“-11”]

Note: only first or second entry should be non “”.

A.2 Progress Indicator Fields
JSON Fields:

• Enable Progress indicator “pienable”

• Values = (1- distance labels, 2-time labels only, 3-distance on, 4-time on)

• Purpose: on enables indicator: off – blank, labels only “EARLY” &
“LATE” or “NEAR” & “FAR”, on adds bar & tick marks & caliper if
commanded

• Default = “2”

• Example: “pienable”:”4”

• Progress value “pival”

Rev A D780-10409-1 Page 37 of 59

• Values = range from -1000 to +1000 or “”

• Purpose: sets vertical center of symbol relative to top & bottom of CGD
scale or (no caliper displayed)

• Default = “”

• Example: “pival”:”500”

• Scale “piscale “

• Values = 0-small, 1-large

• Purpose: set size of caliper

• Default = “0”

• Example: “piscale”:”1”

A.3 Commanded Speed Fields
JSON Fields:

• Commanded speed value “spdval”

• Values = any text string, number or “”

• Purpose: provides commanded speed in knots or mach

• Default = “”

• Example: “spdval”:”350”

• Speed color “spdcolor”

• Values = 1-white, 3-attention, 4-nonconformance

• Purpose: set commanded speed display mode

• Default = “1” (white)

• Example: “spdcolor”:”3”

A.4 FIM Mode Fields
JSON Fields:

• Commanded speed value “mode”

Page 38 of 59 D780-10409-1 Rev A

• Values = any text string including “”

• Purpose: provides FIM mode

• Default = “”

• Example: “mode”:”PAIRED”

A.5 FIM Status Message Field
JSON Fields:

• Status messages “status”

• Values = zero to three strings of text

• Purpose: provides FIM annunciations

• Default = []

• Example: “status”:["IM SPEED LIMITED",“OWNSHIP OFF ROUTE“]

A.6 Fully Populated Example
The following is an example of a fully populated JSON message from FIMio.

{
“fsenable":“2",
“fsvac”:”500”,
“fsdiff”:[”+15”,”-5”],
“pienable”:”4”,
“pival”:”500”,
“piscale”:”1”,
“spdval”:”350”,
“spdcolor”:”1”,
"mode":"PAIRED",
"status": ["IM SPEED LIMITED",””,””]
}
Sent as one entry with no linefeeds:

{“fsenable":“2",“fsvac”:”500”,“fsdiff”:[”+15”,””],“pienable”:”4”,“pival”:”500”,“pisc
ale”:”1”,“spdval”:”350”,“spdcolor”:”1”,"mode":"PAIRED", “status": ["IM SPEED
LIMITED",””,””]}

Rev A D780-10409-1 Page 39 of 59

Appendix B: CGD Server to CGD Display
Interface Definition (ICD)

The CGDServer to CGD display interface is based on communications between as
single CGDServer and multiple CGD displays. The CGD displays are not co-resident
with CGDServer (though they may be in development) and use an HTTP interface
between the CGDServer‘s HTTP server host and the CGD display’s HTTP client in
an HTML-5 compatible browser.

The concept is to use a “REST-ful” interface and allow efficient server updates to the
HTTP clients. This is not standard web practice. Security issues usually require the
HTTP client to request data. HTTP servers pushing data is usually considered risky.
However, Web Sockets have been designed to eliminate the risk and provide server-
side data push efficiently and securely. Web Sockets are layered over the HTTP
protocol on the browser. This allows a persistent connection and alleviates security
concerns about the server driving the client. The peer-per-message formats are JSON
text strings.

The CGDServer to CGD display message data is based on the same concept and
message format as the FIMio to CGDServer. In fact, almost all of the message fields
are identical. With a few changes required to allow simplified CGD display logic and
simplified FIMio interface. Below is a list of the message differences:

1. The CGDServer only sends data to CGD display that changes from previous
message (fully populated JSON not required).

2. CGDServer does send fully populated messages to newly arriving CGD
display clients to allow instant synchronization. A fully populated message is
also sent when any CGD displays reports NAK message indicating corrupted
message was received.

3. CGDServer must send a message every cycle, even if no data is changed, thus
using the keep-alive message field. The only time no message is sent is when
incoming data from FIMio is corrupted.

4. CGDServer may detect a lost connection, so we added a lost connection
message field.

5. The Commanded Speed color from FIMio contains color mode (normal,
reverse video or blinking) which is mapped to an instant commanded speed
color and instant background color. This allows normal display, reverse video
and blinking (controlled by CGDServer) without CGD display logic or
knowledge of FIM operational mode, so a Commanded speed background
color message field is transmitted when needed as well.

Page 40 of 59 D780-10409-1 Rev A

B.1 Commanded Speed Fields
JSON Fields:

• Speed color “spdcolor”

• Values = 1-white, 3-black

• Purpose: modified to actual “Now” commanded speed color (in
context of commanded speed mode and background color)

• Default = “1” (white)

• Example: “spdcolor”:”1”

• Commanded speed background color “spdbg”

• Values = 0- black or 1- white

• Purpose: reverse video or blink

• Example: “spdbg”:”1”

B.2 Keep Alive Field
When no computational data has changed (and CGDServer does not detect incoming
message error) a keep alive message field is required. In practice the keep alive
message is sent every cycle but is ignored and simply triggers update and watchdog
timer reset when it is the only field in the entire JSON message.

JSON Fields:

• Keep alive field “alive”

• Value = “”

• Purpose: continuous CGD messaging

• Example: “alive”:””

B.3 Connection Lost Field
When the CGDServer detects connection lost between CGDServer and FIMio or loss
of TCP connection, it sends the connection lost message.

JSON Fields:

• Status messages “lost”

Rev A D780-10409-1 Page 41 of 59

• Values = “timer”, “conn”

• Purpose: provides CGD display with lost connection or time out status

• Example: “lost”:”timer”

B.4 Bad Data Field
When the CGD Display detects bad data from CGDServer, it sends the bad data or
NAK message due to lost connection/CGD time out or corrupt JSON message.

JSON Fields:

• Bad data messages “nak”

• Values = “json” or “lost”

• Purpose: provides CGD server with bad data non-acknowledgement

• Example: “nak”:”json”

B.5 Full Data Field
When the CGD Server determines to send a full JSON message vs. deltas only, it
sends this data field. This allows CGD server to recognize this is a full update due to
new arriving client, too long of a time delay or response to NAK error message
request for full data.

JSON Fields:

• Full messages “full”

• Values = “”

• Purpose: provides CGD server with knowledge of full JSON update

• Example: “full”:””

Page 42 of 59 D780-10409-1 Rev A

Appendix C: Boeing CGD Software Test Plan
(STP)

The Boeing CGD Software Test Plan (STP) is captured in this section. The STP
describes the plan for testing Boeing CGD software to all of allocated CGD SRS
(SRDD and CGD SRS derived) and CGD SDD derived requirements. The test
approach taken will be as follows:

1. List all allocated requirements.

2. Describe which requirements are allocated to Boeing CGD software system or
components.

3. For requirements where only partial verification can be accomplished in the
standalone Boeing CGD system, describe what external aspect must be
verified at a higher system level or at a peer non-Boeing CGD software test.

4. Describe methods that will be used to test and verify all Boeing allocated
CGD system capabilities and requirements.

5. Define and describe a group of collected tests for accomplishing detailed
requirements and capability verification.

6. Allocate capabilities and requirements to the appropriate test group(s) for
testing.

7. Document requirements summary, test group allocation and verification level.

8. Describe the process for testing, verifying, and documenting test results.

9. Discuss built-in capabilities for future regression testing (should downstream
changes be made to the design or requirements after formal testing) and to
support peer-level software and CGD system level verification testing (not
directly part of this document’s scope).

Note: This section contains test plan. It is accurate for test approach and test
names. HOWEVER, implementation details and system test mapping will cause
minor changes. The actual tests and results are contained in the “CGD Test
Report” (along with updated matrix) and in the “CGD Systems Test Plan”.
Please refer to these documents for final and accurate information related to
software unit testing implementation.

C.1 Approach
The general approach to testing and requirements verification is based on the fact that
the primary purposes of the CGD software is (1) to display information to flight crew
correctly and in a timely manner AND (2) ensure consistency of PFOV information

Rev A D780-10409-1 Page 43 of 59

displayed on CGD with CTDI displays. The second, not being in the scope of this
Boeing CGD software but requiring CGD system contribution to complete system
level requirements.

Display oriented requirements will be tested and demonstrated using the CGD
Simulator concept. The FIMio.js simulation will be used in place of Honeywell FIM
software. It will drive the actual CGDServer and cgd.html software components
together in an integrated CGD system. Test procedures will be developed, primarily
using test scripts of JSON messages to simulate and stimulate CGDServer and
cgd.html execution, processing and rendering. The test scripts will be attached to test
procedures along with test results and log files. They will be organized into logical
testing groups to execute similar CGD display features. These tests will execute:

1. Realistic operational scenarios to verify HMI design requirements and criteria.

2. Detailed test scripts for each of the five display areas to verify computing and
graphics of each display area.

3. Detailed test scripts to verify connectivity management, timing and latency
requirements.

4. Detailed test scripts to verify non-normal operations.

5. Non-test script unit testing to exercise and validate internally complex and
non-accessible logic paths and conditions.

As many code elements will be verified by the simulation and test script approach as
possible. However, some error and timing conditions will require modification to the
non-operational driver software or even operational code for low-level functional
testing. Where possible and when not affecting operational performance, flags will be
used to alter and control the software execution and logic paths. This approach
facilitates regression testing if and when later re-verification is required. Also, it
minimizes the risk of altering code functionality by intrusive code modifications.

As much testing as possible will be performed on Windows laptop. All of the
functional software features can be tested on a generic Windows PC running a
generic HTML-5/Javascript enabled browser. HMI design and performance
verification will require testing on actual EFB and CGD display devices for actual
timing, sizing and exercising real browser in operational context. In any case all
scripted verification testing will be completed on actual hardware at least once for the
final verification effort.

Test groups defined will be basis for allocating specific test procedures to each script
to ensure all mapped requirements and capabilities are verified and executed. Test
Procedures will be documented for each test group, test script and test line item. The
test procedures will either be a script or process description. They will describe how
to perform the test. What the results for test are and where the logs are recorded. The
log files many be used as a comparison for additional future evaluation and

Page 44 of 59 D780-10409-1 Rev A

verification. For each test, the logs will be analyzed and recorded for test procedure
compliance. They will be saved and made available to team to potentially be used
later to support regression or system level testing and verification. This later sharing
and reuse applies ONLY to tests executed by non-invasive scripting techniques.

C1.1 Boeing-Honeywell Testing
It is Boeing’s intent to coordinate with Honeywell’s efforts at the CGD system and
FIM system levels. To this end Boeing will make accessible to Honeywell final test
procedures and scripts. This will allow Honeywell to drive the Boeing CGD software
in their CGD and FIM system testing environment. If and when conflicts, confusion
or errors arise they can refer to and compare results with Boeing CGD scripted tests.
This works for software verification to requirements as well as verifying HMI design
criteria.

Further, it is Boeing’s desire that Honeywell capture and provide Boeing with
operational scripts from FIM application execution that Boeing can use at the unit and
subsystem level to verify correct operation performance and HMI design. To this end
the CGDServer has a built in capture function. When turned on the CGDServer
captures a log of commands that may be used for playback of the CGD displays in the
FIM application. This will be useful for system debugging and verification in later
stages of CGD system and FIM system testing.

C.2 CGD System Level Verification
While not in the scope of the Boeing CGD STP, support is provided for CGD system
level testing and peer level Honeywell CGD unit testing (non-Boeing FIM system
components). Supporting this is important as the FIM MOPS, SRDD, SRS all capture
common display system and PFOV requirements. These requirements are allocated to
CTDI and CGD PFOV systems, very few of which are fully verifiable in any single
software unit test or Boeing CGD subsystem testing. Many PVOF requirements are
allocated and processed by several software components, systems and subsystems.
See Figure 1. Provisions for supporting non-Boeing CGD subsystem testing includes
the following:

1. Description of which requirements allocated to CGD are NOT fully verified in
this testing.

2. Description of potential system level testing support provided by purpose-
built Boeing CGD test scripts.

3. Sharing of test scripts, results and log files with Honeywell.

C.3 Planned Verification Tests
The following is a list of planned tests that will be mapped to the necessary test
scripts and alternative testing methods.

Rev A D780-10409-1 Page 45 of 59

C.3.1 Display Computation & Drawing Tests (DT)

The five drawing areas will be verified for all graphics drawing and text drawing
correctness. This includes correctly handling drawing locations, colors, text attributes,
font sized, text animations and graphics drawings and animations.

These tests use the scripted approach and verify both CGDServer and cgd.html
software simultaneously. They are used to verify HMI design and PFOV display
requirements.

1. DT 0 - Overall CGD Display Test

Overall CGD Display Test will validate, test, log and demonstrate all top-level
CGD display capabilities and requirements. When combined with DT 1
through DT 5 will validate ALL CGD display capabilities and requirements
for CGDServer and cgd.html normal display operations. This includes
processing JSON message fields, normal communications, Javascript
parameter processing (CGDServer and cgd.html), cgd.html graphics and text
drawing/rendering and logic processing and normal timing capabilities. It will
verify general HMI design criteria and operational utility along with all CGD
display requirements. It is a CGD system level script driven test for top-level
CGD capabilities.

2. DT 1 – Fast-Slow Indicator Test

Fast-slow Indicator (FSI) Test will validate, test, log and demonstrate all FSI
display capabilities and requirements. This includes processing FSI JSON
message fields, normal communications, Javascript parameter processing
(CGDServer and cgd.html), cgd.html graphics and text drawing/rendering and
logic processing and normal timing capabilities. It will verify general HMI
design criteria and operational utility along with all FSI display requirements.
It is a FSI script driven test for FSI CGD capabilities.

3. DT 2 – Progress Indicator Test

Progress Indicator (PI) Test will validate, test, log and demonstrate all PI
display capabilities and requirements. This includes processing PI JSON
message fields, normal communications, Javascript parameter processing
(CGDServer and cgd.html), cgd.html graphics and text drawing/rendering and
logic processing and normal timing capabilities. It will verify general HMI
design criteria and operational utility along with all PI display requirements. It
is a PI script driven test for PI CGD capabilities.

4. DT 3 – Commanded Speed Test

Commanded Speed (CS) Test will validate, test, log and demonstrate all CS
display capabilities and requirements. This includes processing CS JSON
message fields, normal communications, Javascript parameter processing

Page 46 of 59 D780-10409-1 Rev A

(CGDServer and cgd.html), cgd.html text drawing/rendering and logic
processing and normal timing capabilities. It will verify general HMI design
criteria and operational utility along with all CS display requirements. It is a
CS script driven test for CS CGD capabilities.

5. DT 4 – FIM Mode Test

FIM Mode (FM) Test will validate, test, log and demonstrate all FM display
capabilities and requirements. This includes processing FM JSON message
fields, normal communications, Javascript parameter processing (CGDServer
and cgd.html), cgd.html text drawing/rendering and logic processing and
normal timing capabilities. It will verify general HMI design criteria and
operational utility along with all FM display requirements. It is a FM script
driven test for FM CGD capabilities.

6. DT 5 – FIM Status Test

FIM Status (FS) Test will validate, test, log and demonstrate all FS display
capabilities and requirements. This includes processing FS JSON message
fields, normal communications, Javascript parameter processing (CGDServer
and cgd.html), cgd.html text drawing/rendering and logic processing and
normal timing capabilities. It will verify general HMI design criteria and
operational utility along with all FS display requirements. It is a FS script
driven test for FS CGD capabilities.

7. DT 6 – Operational HMI Test

Operational HMI (OH) Test will validate, test, log and demonstrate all CGD
HMI display capabilities and requirements for one or more operationally
oriented demonstrations. This includes demonstrating cgd.html drawing,
rendering and animations for both static HMI design acceptance and dynamic
HMI sequential operations. This test is different than the other tests in that it
will NOT attempt to execute logic paths to test code points. It is designed
instead to demonstrate natural (though perhaps sped up) sequence of CGD
displays and HMI sequences to allow HMI evaluations and perhaps training
and orientation of operators. It will verify general HMI design criteria and
operational utility. It is an OH script driven test for OH CGD HMI
capabilities.

C.3.2 Connectivity and Link Management Tests (CT)

The different normal and failure modes relative to connectivity management of TCP,
HTTP and Web Socket connections are verified by the tests below. The major
concerns are to create, manage and effectively handle anticipated failure conditions of
the communications protocols and services between the FIMio and the CGD display.

Rev A D780-10409-1 Page 47 of 59

These tests use the scripted approach and verify both CGDServer and cgd.html
software simultaneously. They are used to verify HMI design for lost connections and
PFOV display requirements, along with unit level derived requirements.

Where possible corrupted test scripts will be used to test failure modes. Alternatively,
flags will be sent to non-operational driver code (FIMio.js). In some cases external
triggers will be implemented to induce failure conditions (interrupt FIMio.js
messaging, break FIMio-CGDServer TCP connection, interrupt CGDServer
functional processing, break HTTP and/or Web Socket connection, restart or kill
browser session, break Ethernet connection, etc…). Any tests that require code
manipulation will be captured in the non-normal test subsection C.3.4 below.

1. CT 1 – Normal Operations Connectivity Test

Normal Operations Connectivity (NOC) Test will validate, test, log and
demonstrate all normal communications setup, management and service
operations capabilities and requirements. This includes CGDServer
connecting with FIMio over TCP/IP and CGD Displays over HTTP & Web
Sockets. It also includes cgd.html connectivity to CGDServer. It is a NOC
script driven test for NOC CGD communications capabilities.

2. CT 2 – Failure Modes Connectivity Test

Failure Modes Operations Connectivity (FMC) Test will validate, test, log and
demonstrate all non-normal communications setup, management and service
operations capabilities and requirements. This includes CGDServer listening
for and re-connecting with FIMio over TCP/IP and CGD Displays over HTTP
& Web Sockets. It includes meeting and missing timeout schedules, and
handling starts and restarts. It also includes cgd.html re-connectivity to
CGDServer. It is a FMC script driven test for FMC CGD communications
capabilities.

C.3.3 Performance Tests (PT)

The latency and performance requirements are verified by analysis using metrics
collected using non-real time methods. These tests will be conducted using both the
scripted approach and software driver (FIMio.js delay) manipulation. That is it will
exercise temporally long computationally loaded test scripts. The FIMio.js simulator
will be commanded to execute with a very short delay. Execution will be timed.
Output will be capture to log files and analyzed to ensure no data is lost in display
processing. Estimated time per cycle will be calculated and checked again timing
requirements. The tests will verify typical, loaded and anticipated worst case
performance for latency and timing.

Note: there will be no attempt to verify or measure actual timing performance of
each time step, processing cycle or message processing.

Page 48 of 59 D780-10409-1 Rev A

These tests will be conducted on the actual hardware devices using one CGDServer in
EFB platform and two CGD display devices.

Example: a test script may be developed for a loaded condition over 1000 seconds of
data (at 2 hertz, 2000 JSON message cycles). The FIMio.js will be configured for a
100 msec delay. A stopwatch will be used to determine total computation time. The
result will be divided by the number of steps to compute average latency and
execution time. The result should be well less than the requirement to allow some
statistical variation.

1. PT 1 – Typical Performance Load Test

Typical Performance Load (TPL) Test will validate, test, log and demonstrate
near-real time execution of Boeing CGD system (CGDServer TCP input to
final CGD display rendering) capabilities and requirements. It is a TPL script
driven test for TPL CGD communications capabilities. The TPL script is
typical operational performance loaded.

2. PT 2 – Heavy Performance Load Test

Heavy Performance Load (HPL) Test will validate, test, log and demonstrate
near-real time execution of Boeing CGD system (CGDServer TCP input to
final CGD display rendering) capabilities and requirements. It is a HPL script
driven test for HPL CGD communications capabilities. The HPL script is
heavily operational performance loaded (at least 200% of typical operational
CGD graphics load).

3. PT 3 – Worst Case Performance Load Test

Worst Case Performance Load (WCPL) Test will validate, test, log and
demonstrate near-real time execution of Boeing CGD system (CGDServer
TCP input to final CGD display rendering) capabilities and requirements. It is
a WCPL script driven test for WCPL CGD communications capabilities. The
WCPL script is heavily operational performance loaded (as close to possible
worst case operational CGD graphics load).

C.3.4 Non-normal Operations Tests (AT)

There are a number of software unit test conditions that must execute either non-
normal operational conditions or execute complex logic paths that are never executed
in normal operational or even typical failure conditions. These tests require
fabricating either broken data messages (missing fields, unparsable JSON messages),
or modifying operational or driver software to command non-operationally accessible
alternative software execution paths between internal functions within the two
software components. These are classified as non-normal operations tests.

Where possible corrupted test scripts will be used to drive non-normal behavior. First
fallback will be modifying non-operational test driver (FIMio.js) code or input

Rev A D780-10409-1 Page 49 of 59

parameters. Lastly, non-operational code breaks will be introduced for testing,
documented then removed from the operational code after verification. Typical non-
operationally connectivity tests are described above in the connectivity test subsection
and not repeated here.

1. AT 1 – Bad Message Test

Bad Message (BM) Test will validate, test, log and demonstrate Boeing CGD
system resiliency features when bad or corrupted FIMio to CGDServer or
CGDServer to cgd.html messages are processed, detected and handled. The
objective is to ignore the bad data and continue normal operations (unless
timeout occurs) and handle (recover from) all potential software stopping
exceptions. The BM script contains a variety of corrupted JSON messages and
JSON messages with potential errors (bad values, missing fields, misspelled
values, etc...).

2. AT 2 - CGDServer Non-normal Logic Test

CGDServer Non-normal Logic (CAL) Test will validate, test, log and
demonstrate CGDServer resiliency features when non-normal logic paths are
executed in the CGDServer.js code. These tests are defined bottom up from
potential error conditions and complex logic flows defined in the software
component design. The CAL script contains a variety of corrupted JSON
messages and JSON messages with potential errors or unexpected capabilities.
Further, this test will require procedures that are beyond just scripting
capabilities to test and are limited to testing just this component. For example,
this may require changing the code in or between several Javascript methods
to execute all of the code in the Javascript method.

3. AT 3 – cgd.html Non-normal Logic Test

The cgd.html Non-normal Logic (CHAL) Test will validate, test, log and
demonstrate cgd.html resiliency features when non-normal logic paths are
executed in the cgd.html code. These tests are defined bottom up from
potential error conditions and complex logic flows defined in the software
component design. The CHAL script contains a variety of corrupted JSON
messages and JSON messages with potential errors or unexpected capabilities.
Further, this test will require procedures that are beyond just scripting
capabilities to test and are limited to testing just this component. For example,
this may require changing the code in or between several Javascript methods
to execute all of the code in the Javascript method.

C.4 Requirements to Verification Mapping
The following table (Table 2) lists all requirements to be verified as part of the
Boeing CGD software testing scope. The table briefly describes each requirement and
provides a summary of what aspects are tested in this scope and what are expected to

Page 50 of 59 D780-10409-1 Rev A

be tested outside this scope of testing. Further, it maps the requirement to one of the
defined test groups listed in the previous section. See CGD SRS for full requirement
description and access to requirement allocated in SRS to CGD but not allocated to
Boeing CGD software per table below.

Verification column key:

 NA – verification not applicable.

 NO – no, planned verification by Boeing CGD software tests.

 PB – verification partially in compliance by Boeing CGD software tests but
requires Honeywell unit and/or FIM systems tests to complete full requirement
verification. Most common reason is requirement specifies drawing value by Boeing
CGD and determining value and/or resolution by Honeywell FIM.

 YC – yes, verification completed by Boeing CGD software tests.

Table 2 – CGD Requirements Testing Matrix

	 ID	 Requirement	Synopsis	 Verification	Notes	 Ver	 Test	
R-
BOE-
SRDD-
95	

General	ASA	System	latency	
requirements	and	related	guidance.			

Not	Allocated	to	Boeing	CGD	Software	 NA	 	

R-
BOE-
SRDD-
685	

Progress	Indicator:	The	spacing	
deviation	shall	be	indicated	on	the	
progress	indicator	on	a	time	scale	
with	the	center	of	the	scale	
representing	zero	spacing	error	

PI	as	defined	in	SDD	with	progress	
indication	in	time	mode	&	
commanded	by	FIM	

PB	 DT	2	

R-
BOE-
SRDD-
686	

Progress	Indicator:	The	time	scale	
range	shall	change	to	accommodate	
varying	spacing	deviation	
magnitudes.	

PI	as	defined	in	SDD	with	PI	scale	&	
commanded	by	FIM.	

PB	 DT	2	

R-
BOE-
SRDD-
1224	

The	requirements	in	the	ASA	MOPS	
DO-317B	/	ED-194A	§2.3.3,	and	its	
sub-sections	apply	to	these	MOPS,	
as	applicable	to	the	AIRB	
application.			

General	requirement	NOT	verified.	
	
This	requirement	is	met	by	all	lower	
level	display	design	requirements.	

NO	 	

R-
BOE-
SRDD-
1228	

The	HMI/CDTI	Display	Elements	
Requirements	defined	in	DO-317B	/	
ED-194A,	§2.3.4	apply.		This	section	
lists	the	additional	HMI/CDTI	
Display	Elements	specific	to	IM,	
called	IM	Information	Elements.	

General	requirement	NOT	verified.		
	
This	requirement	is	met	by	all	lower	
level	display	design	requirements.	

NO	 	

Rev A D780-10409-1 Page 51 of 59

R-
BOE-
SRDD-
1504	

When	the	Distance-based	
resolution	of	0.1	NM	

Not	allocated	to	Boeing	CGD	software	
as	it	is	controlled	by	Honeywell	FIM	

NA	 	

R-
BOE-
SRDD-
1507	

When	the	Time-based	ASG	is	
between	0	and	999	seconds,	it	shall	
be	displayed	to	the	Flight	Crew	in	
seconds,	with	a	resolution	of	one	
(1)	second.			

PI	as	defined	in	SDD	&	commanded	by	
FIM	with	fine	resolution	vertical	scale.	
In	distance	based	mode.	
	
Resolution	accuracy	allocated	to	non-
Boeing	CGD	software	

PB	 DT	2	

R-
BOE-
SRDD-
1544	

The	HMI/CDTI	shall	provide	the	IM	
Speed	Change	Visual	Advisory	to	
the	Flight	Crew	when	IM	Speed	has	
changed.			

Commanded	speed	design	in	SDD	&	
commanded	by	FIM	to	change.	

PB	 DT	3	

R-
BOE-
SRDD-
1551	

IM	Speed	resolution	in	Knots	 Not	allocated	to	Boeing	CGD	software	
as	it	is	controlled	by	Honeywell	FIM	

NA	 	

R-
BOE-
SRDD-
1554	

IM	Speed	resolution	in	Mach	 Not	allocated	to	Boeing	CGD	software	
as	it	is	controlled	by	Honeywell	FIM	

NA	 	

R-
BOE-
SRDD-
1560	

In	aircraft	that	do	not	have	
automated	means	to	inform	the	
Flight	Crew	of	the	safe	maneuvering	
speed.	

Not	allocated	to	this	test	flight	due	to	
flight	test	aircraft	selection	

NA	 	

R-
BOE-
SRDD-
1564	

The	HMI/CDTI	shall	transition	to	
UNABLE	State	when	the	ASA	
Application	Status	is	set	to	
“Unavailable	–	Fault”	or	
“Unavailable	to	Run.”				

Not	allocated	to	Boeing	CGD	software	
as	it	is	controlled	by	Honeywell	FIM	

NA	 	

R-
BOE-
SRDD-
1568	

The	HMI/CDTI	shall	transition	to	
UNABLE	State	when	the	IM	Traffic	
Application	Capability	is	set	to	
“Invalid.”				

Not	allocated	to	Boeing	CGD	software	
as	it	is	controlled	by	Honeywell	FIM	

NA	 	

R-
BOE-
SRDD-
1584	

When	the	HMI/CDTI	is	in	the	
OFF/TERMINATE	State,	the	
HMI/CDTI	shall	remove	the	
displayed	IM	Speed.			

Commanded	speed	is	removed	as	
defined	in	SDD	&	commanded	by	FIM.	
	
Command	to	remove	on	condition	is	
allocated	to	non-Boeing	CGD	software	

PB	 DT	3	

Page 52 of 59 D780-10409-1 Rev A

R-
BOE-
SRDD-
1706	

When	the	HMI/CDTI	is	in	the	
SUSPENDED	States,	the	HMI/CDTI	
shall	remove	the	following	IM	
Information	Elements	from	display:			

Commanded	speed	is	removed	as	
defined	in	SDD	&	commanded	by	FIM.	
1.	Progress	Indicator	from	all	displays	
2.	IM	Speed	from	CGD	
	
Command	to	remove	on	condition	is	
allocated	to	non-Boeing	CGD	software	

PB	 DT	2	
DT	3	

R-
BOE-
SRDD-
1759	

The	PFOV	shall	display	the	following	
elements:	

Display	as	defined	in	SDD	the	
following:	
	
1.	Commanded	IM	Speed	
2.	Commanded	IM	Speed	Change	
Indication	
3.	IM	Annunciation	
		a.	IM	Speed	is	Limited	
		b.	Non-normal	IM	Termination	
		c.	IM	Equipment	Unqualified	
		d.	IFPI	conformance	indication	
		e.	IM	designated	traffic	unqualified	
			f.	Commanded	IM	Speed	
Conformance	Monitoring	Status	

YC	 	
	
	
DT	3	
	
	
DT	5	
	
	
	
	
	
DT	3	

R-
BOE-
SRDD-
1760	

•Commanded	IM	Speed	 Commanded	speed	display	per	SDD	 YC	 DT	3	

R-
BOE-
SRDD-
1761	

•Commanded	IM	Speed	Change	
Indication	

Commanded	speed	display	per	SDD	
	
Normal,	colors	and	reverse	video	

YC	 DT	3	

R-
BOE-
SRDD-
1762	

•IM	Annunciation	 FIM	status	message	display	per	SDD	
	

YC	 DT	5	

R-
BOE-
SRDD-
1763	

•IM	Speed	is	Limited	 FIM	status	message	display	per	SDD	&	
as	commanded	by	FIM.	
	

PB	 DT	5	

R-
BOE-
SRDD-
1764	

•Non-normal	IM	Termination	 FIM	status	message	display	per	SDD	&	
as	commanded	by	FIM.	
	

PB	 DT	5	

Rev A D780-10409-1 Page 53 of 59

R-
BOE-
SRDD-
1765	

•IM	Equipment	Unqualified	 FIM	status	message	display	per	SDD	&	
as	commanded	by	FIM.	
	

PB	 DT	5	

R-
BOE-
SRDD-
1766	

•IFPI	conformance	indication	 Commanded	speed	display	per	SDD	&	
as	commanded	by	FIM.	
	
Blinking	for	non-conformance	

PB	 DT	3	

R-
BOE-
SRDD-
1767	

•IM	Target	unqualified	 FIM	status	message	display	per	SDD	&	
as	commanded	by	FIM.	
	

PB	 DT	5	

R-
BOE-
SRDD-
1768	

•Commanded	IM	Speed	
Conformance	Monitoring	Status	

Commanded	speed	display	per	SDD	&	
as	commanded	by	FIM.	
	
Blinking	for	non-conformance	

PB	 DT	3	

R-
BOE-
SRDD-
1790	

When	the	Assigned	Spacing	Goal	is	
Distance-based,	and	when	the	
Designated	Traffic	reaches	the	
Planned	Termination	Point,	the	HMI	
shall	remove	the	Measured	Spacing	
Interval	or	Predicted	Spacing	
Interval	from	display.	

Information	is	removed	as	defined	in	
SDD	&	commanded	by	FIM.	
	
Command	to	remove	on	condition	is	
allocated	to	non-Boeing	CGD	software	

PB	 DT	0	
DT	1	
DT	2	
DT	3	
DT	4	
DT	5	

R-
BOE-
SRDD-
1796	

If	the	Progress	Indicator	is	displayed	
textually	Distance-based	resolution		

Not	allocated	to	Boeing	CGD	software	
as	CGD	only	displays	PI	data	
graphically	

NA	 	

R-
BOE-
SRDD-
1799	

If	the	Progress	Indicator	is	displayed	
textually	Time-based	resolution	

Not	allocated	to	Boeing	CGD	software	
as	CGD	only	displays	PI	data	
graphically	

NA	 	

R-
BOE-
SRDD-
1802	

If	the	Progress	Indicator	is	displayed	
textually	Distance-based	resolution		

Not	allocated	to	Boeing	CGD	software	
as	CGD	only	displays	PI	data	
graphically	

NA	 	

R-
BOE-
SRDD-
1805	

If	the	Progress	Indicator	is	displayed	
textually	Time-based	resolution		

Not	allocated	to	Boeing	CGD	software	
as	CGD	only	displays	PI	data	
graphically	

NA	 	

Page 54 of 59 D780-10409-1 Rev A

R-
BOE-
SRDD-
1809	

If	the	Progress	Indicator	is	displayed	
graphically,	during	the	Maintain	
Stage,	it	shall	include	ASG	and	MSI.			

PI	as	defined	in	SDD	&	commanded	by	
FIM	with	the	features	defined	in	SDD.	
	
PI	display	contents	allocated	to	non-
Boeing	CGD	software	

PB	 DT	2	

R-
BOE-
SRDD-
1812	

If	the	Progress	Indicator	is	displayed	
graphically,	during	the	Achieve	
Stage,	it	shall	include	ASG	and	PSI.	

PI	as	defined	in	SDD	&	commanded	by	
FIM	with	the	features	defined	in	SDD.	
	
PI	display	contents	allocated	to	non-
Boeing	CGD	software	

PB	 DT	2	

R-
BOE-
SRDD-
1815	

The	Progress	Indicator	shall	limit	
the	Spacing	Deviation	Indicator	
between	upper	and	lower	bounds.	

PI	as	defined	in	SDD	&	commanded	by	
FIM	with	the	features	defined	in	SDD.	
	
PI	display	contents	allocated	and	
located	to	non-Boeing	CGD	software	

PB	 DT	2	

R-
BOE-
SRDD-
2113	

The	requirements	defined	in	ASA	
MOPS	DO-317B/ED-194A	§2.3.8	for	
Flight	Deck	Integration	apply.	

Not	allocated	to	Boeing	CGD	software	 NA	 	

R-
BOE-
SRDD-
2121	

The	Total	Latency,	from	time	of	
applicability	(at	interface	F)	to	
actual	time	of	display	(at	interface	
G),	shall	be	less	than	0.5	seconds	
for	the	following	IM	information:	

0.25	seconds	of	latency	allocated	to	
Boeing	CGD	subsystem	from	
CGDServer	interface	to	flight	crew	
view	

PB	 PT	1	
PT	2	
PT	3	

R-
BOE-
SRDD-
2399	

The	requirements	defined	in	the	
ASA	MOPS	DO-317B/ED-194A	
§2.3.11	apply.	

Color	definitions	and	range	for	
graphics	and	text	as	defined	in	SDD	&	
commanded	by	FIM.	
	
Command	to	set	variable	colors	is	
allocated	to	non-Boeing	CGD	software	

PB	 DT	0	
DT	1	
DT	2	
DT	3	
DT	4	
DT	5	

R-
BOE-
SRDD-
2413	

The	requirements	in	the	ASA	MOPS	
DO-317B	/	ED-194A	§3.1	apply.			

Not	allocated	to	Boeing	CGD	software	 NA	 	

SRS
2.2.1

The CGD shall display in landscape
mode using full display capability

CGD	display		layout	is	verified	in	
combined	display	testing	

YC	 DT	0	
DT	1	
DT	2	
DT	3	
DT	4	
DT	5	

SRS	
2.2.2	

CGD design shall execute on mobile
graphics display device with
maximum latency of TBD (i.e., <
0.25) seconds.

0.25	seconds	of	latency	allocated	to	
Boeing	CGD	subsystem	from	

YC	 PT	1	
PT	2	
PT	3	

Rev A D780-10409-1 Page 55 of 59

CGDServer	interface	to	flight	crew	
view	

SRS	
2.2.3	

CGD shall execute at 2 hertz rate.

Demonstrate	running	at	2	hertz	rate	
	
CGD	rate	is	commanded	by	external	
(Honeywell)	message	rate	and	is	not	
allocated	to	Boeing	CGD	software	

YC	 PT	1	
PT	2	
PT	3	

SRS	
2.2.4	

CGD	shall	inhibit	the	display	of	stale	
information	TBD	(i.e.,	>	5)	seconds	

CGD	software	will	detect	overdue	data	
and	lost	connections	from	CGDServer	
TCP	connection	to	CGD	crew	viewing	
	
Data	age	is	managed	by	FIM	updates	
and	that	aspect	is	externally	controlled	
and	is	not	allocated	to	Boeing	CGD	
software	

YC	 CT	2	
AT	2	
AT	3	

SRS	
2.2.5	

CGD	shall	receive	information	
distributed	by	EFB	FIM	over	
network	interface	using	message	
formats	per	the	Boeing	Interface	
Control	Document	(ICD)	

Test	CGDServer	processing	data	for	
CDG	displays	

YC	 DT	0	
DT	1	
DT	2	
DT	3	
DT	4	
DT	5	

SRS	
2.2.6	

CGD	shall	display	multiple	font	sizes	
and	colors	as	needed	for	visibility	
and	to	match	similar	EFB	display	
formats	per	SAE	ARP	4102	V7.		

Color	definitions	for	graphics	and	text	
size	and	formats	are	as	defined	in	SDD	
&	commanded	by	FIM.	
	
Command	to	set	variable	colors	is	
allocated	to	non-Boeing	CGD	software	

YC	 DT	1	
DT	2	
DT	3	
DT	4	
DT	5	

SRS	
2.2.7	

CGD	shall	execute	with	minimal	
operator	control	complexity	by	
automation	and	simple	interface	for	
startup,	restart	and	reset	
operations.	

CGD	will	handle	non-normal	
operations	seamlessly.	
	
*System	level	aspects	allocated	to	CGD	
System	Hardware	

PB*	 CT	2	
AT	2	
AT	3	

SRS	
2.2.8	

CGD	shall	display	the	following	five	
elements	as	commanded	by	EFB	
FIM	and	applicable	to	operational	
state	(i.e.,	when	non	EFB	FIM	
connectivity)	in	format	described	in	
the	Boeing	CGD	SDD	(SDD):	

1. Fast-Slow	indicator	
2. Progress	indicator	
3. Commanded	speed	

indicator	
4. Current	FIM	mode	indicator	

CGD	graphics	and	text	drawing	and	
animations	as	defined	in	SDD	&	
commanded	by	FIM.	
	
	

YC	 DT	0	
DT	1	
DT	2	
DT	3	
DT	4	
DT	5	

Page 56 of 59 D780-10409-1 Rev A

5. Status	messages.	
SRS	
2.2.9	

CGD	Fast-Slow	Indicator	shall	
conform	to	the	SDD	definition:	

1. Labels	(FAST	and	SLOW)	
shall	be	fixed,	static	and	
displayed	when	commanded	
by	EFB	FIM	

2. Not	displayed	when	not	
commanded.	

3. Vertical	bar	and	Expected	
Speed	Profile	(ESP)	(white	
bar)	shall	be	fixed	and	
displayed	only	when	
commanded	by	EFB	FIM		

4. Not	displayed	when	not	
commanded.	

5. The	Positive	and	Negative	
Speed	Differences	shall	be	
displayed	only	when	
commanded	by	EFB	FIM	as	
depicted	with	positive	
above	and	negative	below	
ESP	

6. Empty	string	or	blank	is	a	
normal	state	for	either	or	
both	speed	differences	

7. The	current	vehicle	airspeed	
(VAC	--	white	triangle)	shall	
be	displayed	at	a	vertical	
level	only	when	commanded	
by	EFB	FIM	at	the	
commanded	location	
relative	to	ESP	(centered)	
and	upper	and	lower	scale	
bounds	in	a	color	
commanded	by	EFB	FIM.	

Fast-slow	graphics	and	text	drawing	
and	animations	as	defined	in	SDD	&	
commanded	by	FIM.	
	
	

YC	 DT	1	
	

SRS	
2.2.10	

CGD	Progress	Indicator	shall	
conform	to	the	following	definition:	
Layout	shall	be	as	described	in	SDD.	

1. Labels	(EARLY	and	LATE)	
shall	be	displayed	above	and	
below	the	vertical	bar,	to	

Progress	indicator	graphics	and	text	
drawing	and	animations	as	defined	in	
SDD	&	commanded	by	FIM.	
	
	

YC	 DT	2	

Rev A D780-10409-1 Page 57 of 59

duplicate	the	EFB	FIM	
display	with	(EARLY	and	
LATE)	as	default	when	
commanded	by	EFB	FIM		

2. Not	displayed	when	not	
commanded.	

3. Vertical	bar	and	tick	marks	
shall	be	fixed	and	displayed	
only	when	commanded	by	
the	EFB	FIM.	

4. The	progress	symbol	
(caliper)	shall	be	displayed	
at	a	vertical	level	only	when	
commanded	by	EFB	FIM	
relative	to	center	tick	mark	
and	upper	and	lower	scale	
bounds	as	commanded	by	
EFB	FIM	with	at	least	250	
pixels	of	resolution.	

5. Progress	symbol	(caliper)	
shall	be	set	to	(BIG	or	
SMALL)	to	scale	as	
commanded	by	EFB	FIM	
with	BIG	as	the	default.	

6. The	progress	symbol	
(caliper)	shall	be	displayed	
in	a	color	commanded	by	
the	EFB	FIM	

SRS	
2.2.11	

CGD	Commanded	Speed	Indicator	
shall	conform	to	the	definition	in	
the	SDD:	

1. Commanded	speed	shall	be	
displayed	as	text	as	
commanded	by	EFB	FIM	
only	when	commanded	by	
EFB	FIM.	

2. Commanded	speed	shall	be	
displayed	in	color	as	
commanded	by	EFB	FIM	
(white).	

3. Commanded	speed	shall	be	
displayed	as	text	as	
commanded	by	EFB	FIM	as	
reverse	video	color	only	

Commanded	speed	graphics	and	text	
drawing	and	animations	as	defined	in	
SDD	&	commanded	by	FIM.	
	
	

YC	 DT	3	
	

Page 58 of 59 D780-10409-1 Rev A

when	commanded	by	EFB	
FIM	as	a	speed	change.	

4. Commanded	speed	shall	be	
displayed	as	text	as	
commanded	by	EFB	FIM	as	
alternating	normal	and	
reverse	video	at	one	hertz	
only	when	commanded	by	
EFB	FIM	for	speed	non-
conformance.	

	
SRS	
2.2.12	

CGD	Current	Mode	Indicator	shall	
conform	to	the	SDD	definition:	

1. Current	mode	shall	be	
displayed	as	text	as	
commanded	by	EFB	FIM	
only	when	commanded	by	
EFB	FIM.	

2. Current	mode	shall	be	
displayed	in	color	as	
commanded	by	EFB	FIM	
(white).		

	

FIM	mode	text	drawing	as	defined	in	
SDD	&	commanded	by	FIM.	
	
	

YC	 DT	4	
	

SRS	
2.2.13	

CGD	Status	Message	Indicator	shall	
conform	to	the	SDD		definition:	

1. Status	message	shall	be	
displayed	as	text	as	
commanded	by	EFB	FIM	
only	when	commanded	by	
EFB	FIM.	

2. Status	message	shall	display	
zero	to	three	lines	of	status	
messages	as	commanded	by	
EFB	FIM.	

	

FIM	status	messages	text	drawing	as	
defined	in	SDD	&	commanded	by	FIM.	
	
	

YC	 DT	5	
	

Rev A D780-10409-1 Page 59 of 59

Revision Record

Revision Letter A
Changes in this
Revision

Updates made throughout this document reflect design changes due to
HMI and system architecture updates throughout the development
process.

Signatures

AUTHOR: Signature on File 9M-PW-
ERCS

 12/6/16

 George F. (Rick) Wilber Org. Number Date

APPROVAL: Signature on File 9M-PW-
ERCS

 12/6/16

 Karl Rein-Weston Org. Number Date

DOCUMENT RELEASE: Signature on File 9M-PW-
ERCS

` 12/6/16

 Barbara L. Withers Org. Number Date

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

 (757) 864-9658

This Software Description Document (SDD) captures the design for developing the Flight Interval Management (FIM) system Configurable Graphics Display (CGD)
software. Specifically this SDD describes aspects of the Boeing CGD software and the surrounding context and interfaces. It does not describe the Honeywell
components of the CGD system. The SDD provides the system overview, architectural design, and detailed design with all the necessary information to implement the
Boeing components of the CGD software and integrate them into the CGD subsystem within the larger FIM system. Overall system and CGD system-level requirements
are derived from the CGD SRS (in turn derived from the Boeing System Requirements Design Document (SRDD)). Display and look-and-feel requirements are derived
from Human Machine Interface (HMI) design documents and working group recommendations. This Boeing CGD SDD is required to support the upcoming Critical
Design Review (CDR).

NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and Space Administration
Washington, DC 20546-0001

Unclassified - Unlimited
Subject Category 03
Availability: NASA STI Program (757) 864-9658

NASA-CR-2017-219594

01- 03- 2017 Contractor Report

STI Help Desk (email: help@sti.nasa.gov)

U U U UU

ATD-1; Airspace managment; Aviation; Software design description

Wilber, George

 330693.04.10.07.09

64

NASA

NNL13AA003B

Langley Technical Monitor: Denise K. Scearce

NNL15AB46T

ATD-1 Phase II: Boeing Configurable Graphical Display (CGD) SDD

