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ABSTRACT 

The Suomi-NPP VIIRS thermal emissive bands (TEB) are radiometrically calibrated on-orbit with reference to an 

onboard blackbody (BB) regularly operated at approximately 292.5 K. The calibration stability at other temperature 

ranges can be evaluated based on the observations of remote targets with stable thermal properties, such as the Moon. 

VIIRS has scheduled viewings of the Moon on a nearly monthly basis at a phase angle of nearly -51 degrees. In this 

study, the brightness temperatures (BT) of the lunar surface retrieved using the detector gain coefficients calibrated with 

the BB are trended to monitor the calibration stability of VIIRS TEB. Since the Lunar surface temperatures are spatially 

non-uniform and vary greatly with the photometric geometry, the BT trending must be based on the same regions of the 

Moon under the same solar illumination condition. Also, the TEB lunar images are always partially saturated because the 

highest lunar surface temperatures are beyond the dynamic range of all VIIRS TEB detectors. Therefore, a temporally 

invariant dynamic mask is designed to clip a fraction of the lunar images corresponding to the regions of the Moon that 

may saturate the detector at any lunar event. The BT of the remaining hottest pixels are then trended. Results show that, 

since the launch of VIIRS to mid-2016, the radiometric calibration of all TEB detectors has been stable within ±0.4 K at 

the BT range of as high as 350 K.  
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1. INTRODUCTION 

The Visible Infrared Imaging Radiometer Suite (VIIRS) is a passive whisk-broom scanning imaging spectroradiometer 

aboard Suomi National Polar-orbiting Partnership (NPP) satellite that was launched on October, 28th, 20111. It operates 

on a Sun-synchronous polar orbit and provides high quality radiometric calibrated data globally. VIIRS has a rotating 

telescope assembly (RTA) that can image a swath of 3000 km in the along-scan direction (cross-track) and 12 km in the 

along-track direction at nadir in each scan. A subsequent double-sided half angle mirror (HAM) rotates at half the speed 

of the RTA to de-rotate the image.  

VIIRS has 22 spectral bands including 14 reflective solar bands (RSB), 1 panchromatic day/night band and 7 thermal 

emissive bands (TEB). Covering a spectral range from 3.7 to 12.2 µmthese TEBs measure the thermal emission day 

and night at a nominal 375 m nadir resolution for the imaging (or ‘I’) bands I4-I5 and 750 m for the moderate resolution 

(or ‘M’) bands M12-M16, The key design specifications of the TEBs are listed in Table 1. Among the TEB, band M13 is 

a dual gain (DG) band that uses two detector gain stages to cover wider dynamic range. Other TEBs have single gain 

(SG) setting. According to their center wavelengths, the VIIRS spectral bands are located on three separate focal plane 

assemblies (FPA): visible/near-infrared (VIS/NIR), short-wave and mid-wave infrared (S/MWIR), and long-wave 

infrared (LWIR). These spectral bands are spread in the along-scan direction while the detectors within a band are 

assembled in the along-track direction. All the TEBs are located on the S/MWIR and LWIR FPAs, which are often 

referred to as the cold focal plane assemblies (CFPA) because these two FPAs are cryogenically cooled by a passive 

radiative cooler to operate at a nominal temperature of ~82.5 K.  

Similar to its predecessor the MODerate resolution Imaging Spectroradiometer (MODIS) currently operating aboard 

NASA’s Terra and Aqua satellites, the VIIRS instrument is radiometrically calibrated by a set of onboard calibrators 

(OBC) including a solar diffuser, a solar diffuser stability monitor and a blackbody (BB)2. The BB is the primary source 

for TEB calibration. During its regular operation, the BB temperature is well controlled at a nominal temperature of 

292.5 K monitored by 6 embedded thermistors. The radiance from BB can be calculated based on Planck’s equation. The 

detector responses when viewing deep space through the space view (SV) port provides the background signal. After 



 

 
 

 

compensating for the background emission, the radiance at detector ΔLdet and the background corrected detector 

response in digital number dn are known for the BB view. A quadratic algorithm is used to relate dn to ΔLdet
3,4 
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where c0, c1 and c2 are the detector gain coefficients calibrated pre-launch. The F-factor F is the gain correction factor. 

For each pixel, the radiance is calculated and then the brightness temperature (BT) is retrieved from the radiance, after 

the correction of background radiance, through Planck’s equation. The primary on-orbit radiometric calibration task for 

TEB is to determine the F-factor on a scan-by-scan basis at regular operation. The BB warm-up cool-down (WUCD) 

operation is executed every quarter to evaluate the non-linear coefficients c0 and c2. During the operation, the BB 

temperature is heated to 315 K first and then cooled down to the ambient temperature of ~ 267 K. The ΔLdet and the dn at 

different temperatures are quadratically fitted to derive c0, c1 and c2 using Eqn. (1). The results are evaluated by 

comparing with the pre-launch values. Since launch, c0, c1 and c2 have been stable and have not been updated5. 

Table 1.  VIIRS TEB design specification1. 

Band CW (µm) Gain Stage Sampling Interval (m) Ttyp (K) Tmax (K) NEdT (K) 

M12 3.700 Single 0.742X0.776 270 353 0.396 

M13 4.050 High/Low 0.742X0.259 300/380* 343/634* 0.107/0.423* 

M14 8.550 Single 0.742X0.776 270 336 0.091 

M15 10.763 Single 0.742X0.776 300 343 0.07 

M16 12.013 Single 0.742X0.776 300 340 0.072 

I4 3.740 Single 0.371X0.387 270 353 2.5 

I5 11.450 Single 0.371X0.387 210 340 1.5 

*: M13 has high-gain and low-gain stages with different Ttyp, Tmax and NEdT (noise equivalent temperature) 

Although the on-orbit calibration of the TEB primarily relies on the on-board BB, observations over well-characterized 

remote targets have been used by VIIRS Characterization Support Team (VCST) analysts for post-launch validation 

purpose. Among these targets, the Moon has become a more and more important target because of its spatial, spectral, 

and radiometric stability in the long-run6. It has been used by MODIS Characterization Support Team (MCST) to assess 

the calibration accuracy of MODIS TEB7. This paper summarizes our recent efforts to study the long-term stability of 

the TEB using lunar surfaces as the reference. Following the TEB calibration overview, Section 2 will briefly introduce 

the VIIRS lunar observation and the radiometric property of lunar surfaces. Section 3 will provide the methodologies 

used in our study. The results and further discussion are given in Section 4. Section 5 is the summary. 

2. LUNAR OBSERVATION OF VIIRS THERMAL EMISSIVE BANDS 

2.1 VIIRS Lunar observation 

The Moon has been widely accepted as a stable source for on-orbit calibration of remote sensing instruments. Regular 

VIIRS lunar observations are scheduled on a nearly monthly basis at a phase angle of nearly -51 degrees (waxing 

gibbous)8. The lunar irradiance strongly depends on the photometric factors such as lunar phase particularly.  To 

minimize the brightness variation of the Moon among events to reduce the calibration uncertainty, the lunar phases at the 

time of calibration are mostly limited within a small range of ± 0.5 degrees. The criterion was loosened to allow a lunar 

phase angle beyond this range for only a few events or the observation cannot be made for those months. 

VIIRS observes the Moon through its space view (SV) port at an elevation angle of 24.325 degrees below the instrument 

X-Y plane. Limited by the orbit of the satellite and the Moon, a satellite roll maneuver around its X axis, or the moving 

direction, is usually required to ensure the Moon passes the center of the field of view of the SV port. One lunar 

calibration event takes less than five minutes to complete. The VIIRS HAM scans at a period of 1.78 seconds, so 

multiple scans of lunar images can be acquired during one calibration event. For one event, the Moon enters the field-of-

view (FOV) of the FPA from the top (+X direction in VIIRS coordinate), then moves downward across the detector 

array and exits the FOV at the bottom (-X direction). Electric sector rotation is applied during the lunar calibration so the 

Moon image captured by the SV port is read out from the Earth view data sector.  



 

 
 

 

The diurnal period of the Moon is equal to the synodic period, so observers at the Earth almost always view the same 

side of the Moon, subject to the libration effect. The lunar images acquired by VIIRS during different scheduled lunar 

calibrations have similar shapes since the lunar phases are also similar. A few examples are shown in Fig. 1: the lunar 

images of VIIRS band I1 at 0.64 µm and two thermal bands I4 and M12, acquired at a scan during four separate events 

in 2013. In the plot, the horizontal direction is the along-scan direction and the vertical direction is the along-track 

direction. I-band images are composed 32 rows of detectors/pixels and 32 columns of image frames/pixels. M-band 

images are composed of 16 rows of detectors/pixels and 16 columns of image frames/pixels.  

 

Figure 1. Lunar images of a few VIIRS bands captured at the middle of various lunar calibration events. 

By design, the images of different bands are spatially co-registered to cover the same scene. The orientation of the lunar 

images vary among events, depending on the moving direction of the satellite in reference to the moving track of the 

Moon. This, together with the fact that the distance between the Moon and the satellite varies, means that the lunar 

images of different events are not spatially co-registered. The orientations of the rotation can be quantified by the 

illumination angle of the Sun in reference to the SV pointing direction9. Similar to MODIS, the ground instantaneous 

FOV (IFOV) of VIIRS detectors on the Moon is rather large (173 km × 173 km for I bands and 346 km × 346 km for M 

bands). The spatial variation of the lunar surface within a pixel is rather significant. This implies that even if the images 

from various events can be projected into selenographic coordinates, the pixels of different events will not be properly 

co-registered due to rotation.  

2.2 Thermal properties of the lunar surfaces 

The Moon has no internal heat source so the heating comes almost entirely from the incident solar radiation. Its surface 

is made up almost entirely of rocky materials with low thermal conductivity and relatively low heat capacity. As a result, 

the surface temperature quickly reaches equilibrium with incoming solar radiation during the lunar daytime. The Stefan-

Boltzmann law can be used to estimate the planet surface temperature at thermal equilibrium 
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where I is the radiated energy per unit area, which equals to the absorbed solar energy per unit area. T is the absolute 

surface temperature in units of Kelvin, ε is the emissivity, and σ is Stefan’s constant. For a lunar surface with the Sun 

directly overhead, such as the horizontal region near the equator at lunar noon, I is close to the solar constant 1368 W/m2 

considering the Moon is at Earth’s neighborhood, minus the portion reflected. Since the emissivity is close to 1 minus 

the reflectance, those two terms cancel out. When the Sun is not directly overhead, the surface temperature will be lower 

due to the oblique illumination. Because the lunar spinning axis is tilted only 1.54 degrees from the ecliptic, solar angles 

at noon are always within 1.5 degrees of the lunar latitude. Therefore, the temperatures are always highest at lunar 



 

 
 

 

equator and lowest at the poles. The solar irradiance is inversely proportional to the square of the Moon-Sun distance d. 

Then, the lunar surface temperature T is related to d by 

 2
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dT . (3) 

when other illumination conditions are the same. The seasonal oscillation of the Earth-Sun distance is expected to 

introduce seasonal oscillation to the lunar surface temperature. The maximum daytime lunar surface temperature is 

roughly 390 K. Because the emissivity of the lunar surface is less than 1, the maximum measured BT will be less than 

the value. 

 

Figure 2. The simulated lunar spectral radiance components at different lunar surface temperatures.  

The Moon has insufficient mass to retain atmosphere so the radiance L from the lunar surface is observed by VIIRS 

directly without any atmospheric effect. It can be approximated as the sum of the reflected solar radiance and the thermal 

emission from the Moon10 
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where r is the lunar directional reflectivity, Ώ is the solid angle of the Sun viewed from the Earth or the Moon and ε is 

the spectral emissivity of the lunar surface. At the infrared spectral range, the solar radiance LSolar can be modeled as the 

emission of a blackbody of 5900 K. The lunar emissive radiance LMoon can be modeled as the emission of a blackbody of 

the lunar surface temperature. The surface temperature of the Moon varies considerably with location and solar 

illuminating condition. Depending on the local surface temperature, the amount of the contribution of the reflective and 

emissive lunar radiance is different. Figure 2 shows the thermal emission at different temperatures comparing with the 

reflected radiance. The emissivity of the lunar surface is less than 1, so the thermal emission of the lunar surface should 

be less than the estimation. Detailed features in the lunar spectrum such as the Christiansen feature are omitted in this 

calculation11. Even so, the result still proves that the contribution of the reflective solar radiance is negligible beyond 6 

µm when the surface temperatures are higher than 200 K. It also suggests that to track the TEB performance, it is better 

to use lunar surface regions at higher temperature where the thermal contribution is more dominant. 

Because the highest BT of the Moon still surpasses the dynamic range of all TEB detectors, the lunar images of all TEB 

detectors are partially saturated. The partial saturation of the lunar images can be clearly observed in Fig. 1. For the 

unsaturated pixels, their dn are converted to radiance L using Eqn. (1) with the detector gain coefficients calibrated on-

orbit and then their BT are calculated using Planck’s equation. 

3. METHODOLOGY 

The idea of trending the radiometric calibration stability of thermal bands using lunar image has been developed for 

MODIS TEB calibration7. At nearly identical solar illumination conditions, the lunar surface temperatures are stable 

among events, after the compensation of the impact of the Moon-Sun distance variation to the surface temperatures 

disclosed in Eqn. (3). Then the long-term stability of the TEB calibration can be monitored by tracking the BT of the 

lunar surfaces. The trending must be based on the same regions on the Moon because of the significant spatial non-

uniformity of the lunar surface BT. For VIIRS TEB, the difficulty is that all their detectors are partially saturated when 

viewing the Moon during the lunar calibration, although the saturation temperatures are band and detector dependent. 



 

 
 

 

We assume that the spatial variation of the lunar surface thermal map is the same for all these events. That is, the lunar 

pixels with BT of a certain percentile correspond to the same region of the Moon surface for all the observations. This 

assumption is supported by the histograms of the lunar surface BTs retrieved by VIIRS. As is shown in Fig. 3 for a few 

randomly selected events, the spatial distributions of the BT of the lunar surface almost repeat. Then if we track the 

hottest pixels after removing the same fraction of the lunar surfaces using an exclusion factor (defined below), the 

trended areas will be the same for all events. Here we use the same surface fraction instead of the same number of pixels 

because the size of the lunar images in pixels varies with the Moon-VIIRS distances dMoon_viirs. 

 

Figure 3. The histogram of the lunar BT retrieved using VIIRS calibration coefficients for a few randomly selected events. 

An exclusion factor (mask) is defined on a detector basis to exclude the portion of the images that is potentially saturated 

for any lunar event. The size of the mask can be determined by the maximum limit of the saturated portion of the lunar 

images of all existing events. The fraction of the Moon illuminated at phase angle of 51 degrees is approximately 0.7812. 

We can calculate the number of M-band pixels being illuminated by 
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An alternative way is to directly count the lunar pixels above a certain radiance threshold from the lunar images. Both 

numbers are plotted in Fig. 4 for band I5 as an example. Different colors in (b) represent different detectors. We can see 

that the trends from the two approaches match each other. The counted numbers are a little greater than the estimated 

numbers because the peripheral pixels outside the boundary of the Moon are also illuminated as a result of the spatial 

spreading of the IFOV of detectors. 

 

(a)                                                                                            (b) 

Figure 4. The number of lunar pixels (a) calculated from the illuminated portion of the Moon with Eqn. (5) or (b) counted 

from the lunar images based on radiance thresholds. 



 

 
 

 

The next step is to count the number of the saturated pixels Nsat based on the raw DN without background correction. 

The data are 12 bit, so the saturated pixels all have a raw DN of 4095. The number of saturated pixels is shown for band 

I5 detectors in Fig. 5 (a). The number are detector dependent because the gains are detector dependent, as is shown in 

Fig. 5 (b). All these detectors cover nearly the entire lunar surface. Therefore, if the F-factor of a detector is high, or 

equivalently its gain is low, the detector’s saturation is less significant or the number of the saturated signals during the 

lunar calibration is low. For all the single gain bands, the lunar pixels are aggregated every three pixels on-board. It is 

possible that an aggregated pixel has raw DN less than 4095 while one or two of the three un-aggregated pixels that 

compose the pixel is saturated. To identify these pixels, the data of band M13, which is not aggregated on-board, can be 

used as a bridge to approximately recover the raw DN of the un-aggregated pixels of other bands, assuming 
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for every aggregated pixel. An aggregated pixel is considered as saturated if one of its three un-aggregated components 

is saturated. 

The fraction of the saturation is then calculated for each event by 
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where fos is the oversampling factor being defined as the number of scans taken for the VIIRS swatch to move one 

detector IFOV in the along-track direction.  The exclusion mask size is then set as the upper bound of these fractions 

with a margin currently set as 0.02. Then, the number of pixels being excluded from the trending is calculated by the 

multiplication of the total pixels, the mask size and the oversampling factor. The trending of the saturation fraction, the 

size of the mask and the numbers of lunar pixels removed by the mask are plotted in Fig. 6. 

  

(a)                                                                                            (b) 

Figure 5. The trending of (a) the number of saturated lunar pixels and the F-factor (inverse of detector gains) for band I5. 

  

(a)                                                                                            (b) 

Figure 6. (a) The size of the mask (dashed line) is determined to be greater than the calculated saturation fraction (solid line) 

of all events and (b) The numbers of pixels excluded by the mask. 



 

 
 

 

 

(a)                                                                                          (b) 

 

(c)                                                                                              (d) 

Figure 7. The trending of lunar dn, radiance and BT. 

After excluding the pixels with the mask, the hottest remaining 6 pixels are trended, with the assumption that these 

pixels correspond to the same locations on the Moon. The background subtracted dn and the retrieved BT are trended in 

the Fig. 7 (a) and (b), respectively, still using band I5 as an example. The seasonal oscillation of the BT is mostly due to 

the variation of the Moon-Sun distances that actually change the surface temperatures of the Moon. This can be 

compensated by Eqn. (3). The unit of dMoon_Sun is astronomical unit (AU). Therefore, the long-term average of the 

correction factor is 1, and applying the correction does not change the long-term average of the retrieved BT. 

Another factor that impacts the trending is the dependency of the BT on the lunar phase angles, as is shown in Fig. 7 (c) 

for a few detectors. A particular outlier in the data is corresponding to one calibration event that occurred on June 27th, 

2015. Because of the constraint of the lunar orbit, the lunar phase angle at the time of observation is 54.43 degrees, 

significantly larger than others. As a result, the retrieved temperature for the event is about 2 degrees lower than the rest 

of the events. Because there is no existing lunar radiance model at thermal range similar to USGS ROLO irradiance 

model for reflective solar bands6, an empirical correction is applied by linear regression between the retrieved BT and 

the lunar phase angle. After the compensation of Moon-Sun distance and lunar phase, the lunar trending of band I5 are 

shown on a detector basis in Fig. 7 (d). 

4. RESULTS AND DISCUSSION 

4.1 Surface BT trending 

The trending results of all other TEB, after the correction of Moon-Sun distance and lunar phase dependency, are 

provided in Fig. 8 on a detector basis. Band M13 is plotted before M12 because it is the only dual-gain band and the data 

are un-aggregated, which is different from M12, M14-16. The BT trending of detector 1 of band M12 is out of family 

because its detector gain is significantly higher than other detectors and it is saturated at higher BT. The drift of the BT 

through July, 2016, averaged for each band, is calculated through the linear fitting of the data and provided in Table 2. 

The band averaged standard deviation of the data is also tabulated. The numbers show that the BT has been stable 

overall within the ±0.4 K range. The standard deviation of the data is a measure of the sensitivity of this monitoring 

approach.  

The BT of all these tracked pixels is considerably higher than the 267 - 315 K BB temperature range that is reached 

during BB WUCD calibration, as well as the BB operational temperature of 292.5 K. In most of the cases, they are 



 

 
 

 

higher than the specified maximum detectable temperature Tmax as is shown in Table 1. The results confirm that the 

detector performance after calibration is still stable at the higher end of the dynamic temperature range.  

 

Figure 8. The detector-by-detector BT trending of the lunar surface for VIIRS TEB. 

Table 2.  The change of the BT of lunar surface 2011-2016. 

Band BT Drift (K) BT STD (K) 

I4 -0.04 0.59 

I5 -0.17 0.52 

M13 -0.06 0.44 

M12 0.07 1.09 

M14 -0.21 1.41 

M15 -0.30 1.01 

M16 -0.36 1.06 

4.2 Inter-band BT comparison 

   

(a)                                                                  (b)                                                                  (c) 

Figure 9. The relationship among the retrieved BT of different TEBs. The dashed line represents a reference line x=y 



 

 
 

 

The scatter plots in Fig. 9 show the relationship among the retrieved BT of different bands for matching lunar pixels. 

The dashed line represents the reference line x = y. If these bands are perfectly registered to each other, the surface 

temperatures of the matching detectors should be identical. Therefore, the differences between the retrieved BT is 

mainly due to the emissivity difference at different wavelength since Tb = εT under Rayleigh-Jeans law. In Fig. 9 (a), the 

scattering of the data are significantly below the reference line, indicating the emissivity of band I4 at 3.74 µm is 

significantly greater than the emissivity of band I5 at 11.45 µm. In Fig. 9 (b), the emissivity of band M14 at 8.55 µm is 

also greater than the emissivity of band M15 at 10.76 µm. In Fig. 9 (c), the emissivity of band M15 and band M16 at 

12.01 µm are similar. The slope of the curve is a measure of the emissivity ratio. The deviation of the data from a 

straight line is probably because the Rayleigh-Jeans law is just an approximation of blackbody radiation below 6 µm, so 

the approximation Tb = εT is not accurate for some of the TEBs. 

 

(a)                                                                                            (b) 

Figure 10. The lunar images of (a) Terra MODIS band 27 detector 8 that is contaminated by electric crosstalk and (b) VIIRS 

band I4 detector 1 that is clear of crosstalk. 

4.3 Crosstalk Examination 

The lunar images of thermal bands are good indicator of signal contamination among bands or crosstalk13.  Fig. 10 (a) 

shows the lunar images of Terra MODIS band 27 detector 8. Because of the electric crosstalk from other bands, the lunar 

images show tails at the peripheral region of the Moon. The lunar image of VIIRS band I4 detector 1 shown in Fig. 10 

(b) has no tail and indicates the detector is clear of crosstalk. All VIIRS lunar TEB images have been constantly 

monitored. As of now, there is no indication of the existence of crosstalk. 

5. CONCLUSION 

The long-term stability of the VIIRS TEB is monitored using lunar observations. With the on-orbit BB calibrated 

coefficients, the BT of the lunar surfaces can be retrieved and trended. The results presented in the paper show that these 

bands have been radiometrically stable throughout VIIRS lifetime for al TEB detectors, within an uncertainty level of  

±0.4 K. The results also suggest that the Moon can be used for the on-orbit characterization of the TEB for remote 

sensing instruments with regular lunar observation capability. The monitoring will be performed continuously, as part of 

the on-orbit calibration effort. Further improvement of the methodology may reference temperature map generated by 

other lunar exploration sensors such as diviner aboard NASA’s lunar reconnaissance orbiter.  
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