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NASA Turbine Environmental Barrier Coatings for CMC-

EBC Systems
« Emphasize temperature capability, performance and durability for next generation
turbine engine systems
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Environmental Barrier Coating and SiC/SiC System
Development: Testing Challenges

* High Temperatures: 2700 to 3000°F (1500-1650°C) along with higher
interface temperatures

« Exposure to water vapor and combustion products

 High Cyclic Stresses: thermal and mechanical, creep-fatigue effect

« Combined Interactions, in-plane and through-thickness gradients

 High Velocity Gases: Mach 1 and 2

» High Pressures: ~ up to 40 to 50 atmospheres

 Long term durability: 20,000 hr design life




Outline

Advanced testing approaches for SiC/SiC and ceramic coating

development: laser high heat flux based testing approaches
— NASA CO, laser rig development
— Thermal conductivity

— Cyclic durability and monitoring degradations of EBCs and CMCs

Laser high heat flux and mechanical tests

- Combined high heat flux - mechanical tests
- High heat flux biaxial creep/fatigue test rigs
- Sub-element testing

Summary and future directions




High Power CO, Laser Based High Heat Flux Testing for @/
SiC/SiC and Environmental Barrier Coatings Development
— Developed in 1990’s, the rig achieved turbine level high-heat-fluxes (315
W/cm?) for turbine thermal barrier coating testing
— Crucial for advanced EBC-CMC developments

Turbine: 450°F across 100 microns :
Combustor:1250°F across 400 microns

Heat flux

byl

.
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Distance from surface

Cooling — high velocity air or air-water mist
Achieved heat transfer coefficient 0.3 W/cm?2-K




High Power CO, Laser Based High Heat Flux Testing for
SiC/SiC and Environmental Barrier Coatings Development

_ ~ -Continued
— NASA high power CO, laser rig systems

— Various test rigs developed

— 7.9 micron single wavelength and 1 micron two color
wavelength pyrometers for temperature measurements

— Thermography system for temperature distribution
measurements

— Capable of programmable test mission cycles

— Capable of mechanical load cycles under high heat flux

— Environment test conditions (e.g., steam and vacuum)

—

{ 0y ), o~ o
Laser heat flux high temperature thermal gradient
combustor subelement test rig

Laser high heat flux creep rupture test rig




High Power CO, Laser Based High Heat Flux Testing for

SiC/SiC and Environmental Barrier Coatings Development s
— Continued

— Controlled beam profiles, beam size and power density were major emphases,
by using rotating ZnSe integrating lens with various focus lengths

— Uniform distribution up to 2-3” diameter beam size for various testing
— .

/

R -

Example of 1” diameter disc specimen tests and beam profile




High Power CO, Laser Based High Heat Flux Fatigue Test @
Rig
— Laser creep and fatigue testing capable of full tension and compression loading
— Uniform distribution up to 2-3” diameter beam size for various testing,
depending on the heat flux requirements o+ e nuus
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Laser heat flux Thermal HCF/LCF Rig — Overall View

Specimen under testing in tensile-compression fatigue rig




High Heat Flux Rig Testing with Water vapor Steam @

Chamber — Established in Early 2000
— High temperature and high-heat-flux testing capabilities
— “Micro-steam environment” allowing high water vapor pressure (100% steam),
relatively high velocity under very high temperature condition
— Used for 3000°F EBC-CMC developments e
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High Heat Flux Thermomechanical Testing for EBC @
Development

— High heat flux and combined thermal-mechanical loading capabilities established to allow
SIC/SIC system performance data to be obtained under simulated operating thermo-
mechamcal and enwronmental conditions

delivery optich. * ‘{d /é\h |
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3 “w temperature High heat flux flexural TMF testing: HCF,
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.

High heat flux tensile TMF and rupture testing
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Thermal Conductivity Measurement by a Laser High-Heat- @/
Flux Approach
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Thermal Gradient Cyclic Behavior of a Thermal

Environmental Barrier Coating System
— Sintering and delamination of coatings reflected by the apparent thermal

conductivity changes
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~50GPa)

Crack extension driving force (E

Environmental Barrier Coating and High Heat Flux
Induced Delaminations

5 Mullité
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Crack Extension Force G as a function of time
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Thermal conductivity, W/m-K

Thermal Gradient Cyclic Behavior of Air Plasma Sprayed
Yb,SiO; (with HfO, Composite)/Yb,Si,O,/HfO,-Si Coatings
on SIiC/SiC CMCs

Taurface ~1482-1500°C, Tierface 1350°C, T .ok surface 1225°C, heat flux 110 W/cm?
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- One specimen tested in air, air testing at 1316°C
- One specimen tested in steam, steam testing at Tgge 1316°C, Ty, at ~1200°C

Fatigue Testing using a Laser High-Heat-Flux Approach for

Environmental Barrier Coated Prepreg SiC/SiC CMCs
- Environmental Barrier Coatings Yb,SiO:/Yb,Si,O,/Si on Ml Prepreg SiC/SiC CMC substrates

-  Lower CMC failure strain observed in steam test environments
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Fatigue Testing using a Laser High-Heat-Flux Approach for EBC
Coated Prepreg SiC/SiC CMCs - Continued

- Crack and recession failure in air and steam tests

B Calc 49.07 959
BE calc 9.79 3.36
| Yb |

Si
Yb Calc 41.14 87.04

[ Total 100.00  100.00

-
LIt I B

1
47010042-1 8.0kV 13.2mm x35 SE(L) 6/9/2016 ' 1.00mm

In steam; EBC cracking and volatility
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(1426°C)

EBC Coated CMC 2650°F (1454°C) Creep Rupture

Total strain, %
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Durability Test
SiC/SiC CMC SiC/SiC CVI-MI CMC specimen

Coated with RESi and Rare Earth EBC
Test temperatures: Tege surface &t 2850-3000°F (1600 1650°C), and TCmc back at ~2600°F
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Advanced EBC-CMC Fatigue Test with CMAS: Tested 300
h Durability in High Heat Flux Fatigue Test Conditions

A turbine EB-PVD turbine airfoil EBC system with advanced HfO,-rare earth
silicate and GdYbSi (controlled oxygen activity) bond coat tested at Tegc_qyrface
1537°C+, Tyond coar 1480-1500°C, T, ek cme surface 1250-1300°C

Fatigue Stress amplitude 69 MPa, at mechanical fatigue frequencyf 3Hz, stress
ratio R=0.05

Low cycle thermal gradient fatlgue 60min hot, 3min cooling

1537°C, 69MPa (10k31) 300 h fatigue (3 Hz, R=0. 05) CVI-MI
SiC/SiC (with pre-applied CMAS, 35mg/cm?)
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Generally Observed EBC Test Failure with CMAS

- An alternating HfO,-and RE-silicate coatings (EB-PVD processing) — HfO,- layer
infiltration and rare earth silicate layer melting

sor=

Curs
Vert=305 Window 0.005 - 40.955= 18,906 cnt

202-3 P47 6.0kV 3.8mm x3.50k SE(U ,-150) 8/22{2014 10.0um

EB-PVD Processed EBCs: alternating HfO,-rich and ytterbium silicate layer systems for
CMAS and impact resistance
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Fatigue-creep strain, %

Advanced EBC-CMC Fatigue Test with CMAS and in Steam Jet:

Tested 300 h Durability in High Heat Flux Fatigue Test

Conditions

Advanced Hf-NdYDb silicate-NdYbSi bond coat EBC coatings on 3D architecture

&
s

CVI-PIP SiC-SiC CMC (EB-PVD processing)

0'5 U U T T T T T T T T T U U T T T U T T I 1 1
jTEBC:\ 1560—1600°C in steam (Wit[h CMAS; in[jtially up tol 1750°C)
| T o 1500°C in steam (with CMAS) 1
04 [ 104
03 | 103
02 |- -1 0.2
0.1 ¢ ir e
0.0 2 &P ¢ | P PR T T 0
0 50 100 150 200 250 300
Time, hours

Fatigue creep strains, %

Thermal conductivity, W/m-K
(3]

150
Time, hours

Tsurfac

Tback

— qthru

Tinterfate !

| 1600 °

m

1200

800

Temperature, °C; heat flux, W/c

| 400

20



SIC/SIC Turbine Airfoil Trailing Edge Tests

Subelement wedge testing, by applying trailing-edge element opening stresses for

simulating high pressure turbine airfoil stress conditions, aiming at understanding the CMC
and EBC degradation
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Summary and Future Plans
Advanced high heat flux creep rupture, fatigue rigs established for simulated
turbine engine EBC-CMC testing
— High temperature comprehensive environment testing capability including heat flux,
steam and CMAS, at very high temperature
— Real time coating degradation monitoring and fatigue-creep stain monitoring
— Testing capabilities incorporated into the advanced EBC-CMC developments
Long term creep rupture and fatigue behavior evaluated for Hafnium Rare Earth
silicate and Rare Earth-Silicon based EBCs-CMCs at 1482°C+ (2700°F+)
—  Crucial for advanced EBC-CMC development and validations
— Advanced EBC coated 3D architecture SiC/SiC CMCs tested at 1500°C in steam and
CMAS environments
— Compared to baseline materials
The heat flux thermomechanical testing of subelements for the EBC-CMC
subelement
— Important for durability and life modeling

Future plans

HCF high heat flux rig with additional environmental testing capabilities (steam-air mixture
environments and controlled steam or vacuum capabilities)

EBC erosion-impact capabilities also planned in combination of laser high heat flux, creep-
fatigue, high velocity steam, and CMAS integrated tests

Additional full field strain measurement experiments, in particular at high temperatures
Planned a multi-axial testing rig for CMC and EBC testing
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