Exoplanet Biosignatures Workshop

The search for life beyond our Solar System motivates future exoplanet missions to observe for biosignatures with global, potentially detectable, impacts on a planet. Biosignatures occur in an environmental context in which geological, atmospheric, stellar processes and interactions, and evolutionary history may work to enhance, suppress or mimic these biosignatures. Thus biosignature science is inherently interdisciplinary. In order to inform the design of the next flagship missions that will obtain spectra of habitable extrasolar planets.

NASA's Nexus for Exoplanet System Science and the NASA Astrobiology Institute held a joint Exoplanet Biosignatures Workshop-Without-Walls in June-July 2016, which brought together the astrobiology, exoplanet, and mission concept communities to review, discuss, debate, and advance the science of biosignatures. A broad range of experts were engaged, ranging the interdisciplinary reaches of NExSS, the NASA, NASA's Exoplanet Exploration Program (ExEP), and international partners, such as the European Astrobiology Network Association (EANA) and Japan's Earth Life Science Institute (ELSI).

The workshop activities have culminated in five review papers on the science and technology of remote biosigatures for signs of life on exoplanets. Broad participation was solicited for these papers, which will serve as an interdisciplinary, educational, state of the art reference for use across a wide community. Community comments are invited in May 2017 at: nexss.info.

Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life

Contact: Edward Schwieterman, edward.schwieterman@ucr.edu

This paper provides an in-depth review of current understanding of potential exoplanet biosignatures including gases, clouds, and surfaces that could be detected through time-dependent observations of environmental context that reach to detail the story of O2 as a specific example of how life is a function of and modifies its planetary environment, and how we would use remote-sensing observations to search for biosignatures in the near term. In addition, we describe the current knowledge of biosignatures from process-based, multi-disciplinary perspectives; laboratory and theoretical validation outside of Earth-like conditions. We summarize the debates over these novel ideas, proposals from the community for developing them further, and consider modeling of observational discriminatory power, and set the stage for future instrument development requirements.

Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment

Contact: Victoria S. Meadows, Meadows@astro.washington.edu

O2 remains our most robust biosignature. However, possibilities for false negatives exist, as on the early Earth when accumulation of biogenic O2 in the atmosphere was delayed by at least a billion years. Possibilities for false positives also have been uncovered through computer modeling of mechanisms for abundant O2 in the absence of a biosphere. We review past and current biosignature research to detail the story of O2 as a specific example of how life is a function of and modifies its planetary environment, and how we would use remote-sensing observations to search for biosignatures in the near term. In addition, we describe the current knowledge of specific photometric, spectrophotometric and time-dependent observations of environmental context that could be made by future observatories to identify O2 as a biosignature, and discriminate it from potential false positives.

Exoplanet Biosignatures: A Framework for Their Assessment

Contact: David Catling, dcatling@uw.edu

We present a general scheme for observing potential exoplanet biosignatures and gauging and expressing confidence levels for positive detection of signs of life. An appropriate framework uses models with data (in the form of exoplanetary system properties and past or present photometric data) to find the Bayesian likelihood of those data occurring if the exoplanet has or does not have life. The latter includes the case of false positives, i.e., where abiotic sources mimic biosignatures. Prior knowledge (including all factors that influence habitability and previous exoplanet observations) would be combined with the likelihood that the probability of life existing on a given exoplanet given the observations.

Acknowledgments:
Mary Voytek, NASA Nexus for Exoplanet System Science Penny Boston, Carl Pilcher, NASA Astrobiology Institute

Nancy Y. Kiang, NASA Goddard Institute for Space Studies, Nancy.Y.Kiang@nasa.gov
Mary Nicole (“Niki”) Parenteau, NASA Ames Research Center, mary.n.parenteau@nasa.gov
Shawn Domagal-Goldman, NASA Goddard Space Flight Center, shawn.goldman@nasa.gov
http://nexss.info/community/workshops/exoplanet-biosignatures-workshop

The broad outlook which this paper presents is useful in understanding the occurrence rate of habitable environments, to be planned beyond 2030. The latter includes the case of false positives. This paper provides an in-depth review of current understanding of potential exoplanet biosignatures including gases, clouds, and surfaces that could be detected through time-dependent observations of environmental context that reach to detail the story of O2 as a specific example of how life is a function of and modifies its planetary environment, and how we would use remote-sensing observations to search for biosignatures in the near term. In addition, we describe the current knowledge of specific photometric, spectrophotometric and time-dependent observations of environmental context that could be made by future observatories to identify O2 as a biosignature, and discriminate it from potential false positives.

Exoplanet Biosignatures: Observational Prospects

Contact: Yuka Fujii, yuka.fujii.ebihara@gmail.com

We provide an overview of the observational prospects for biosignature detection and general characterization of temperate Earth-size planets. We summarize what kind of key planetary properties may become observable as the new facilities come on line, reviewing the planned space-based and ground-based projects as well as the methodologies these projects will employ. We discuss reasonable expectations for the first constraints on spectroscopic features of atmospheres (and perhaps surfaces) of transiting and non-transiting planets observable before 2038 versus more detailed sensors and/or larger surveys to address statistical questions such as the occurrence rate of habitable environments, to be planned beyond 2030. The broad outlook which this paper presents is useful in understanding the occurrence rate of habitable environments, to be planned beyond 2030. The latter includes the case of false positives. This paper provides an in-depth review of current understanding of potential exoplanet biosignatures including gases, clouds, and surfaces that could be detected through time-dependent observations of environmental context that reach to detail the story of O2 as a specific example of how life is a function of and modifies its planetary environment, and how we would use remote-sensing observations to search for biosignatures in the near term. In addition, we describe the current knowledge of specific photometric, spectrophotometric and time-dependent observations of environmental context that could be made by future observatories to identify O2 as a biosignature, and discriminate it from potential false positives.

Science
Models
Missions
Exoplanet Biosignatures: Future Directions
Contact: Sara Walker, sara.i.walker@asu.edu

We summarize novel concepts about planetary biosignatures that are just emerging in the literature, addressing the importance of environmental context and biology that may be very different from Earth. Topics include evaluating: the evolutionary trajectory of coupled systems to identify high vs. low-probability outcomes; classification of biosignatures from non-terrestrial, multi-disciplinary perspectives; laboratory and theoretical validation outside of Earth-like conditions. We summarize the debates over these novel ideas, proposals from the community for developing them further, and consider modeling of observational discriminatory power, and set the stage for future instrument development requirements.