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I. PRD	Risk	Title:	Risk	of	Bone	Fracture	due	to	
Spaceflight-induced	Changes	to	Bone	

Risk	Statement:	Given	that	spaceflight	may	induce	adverse	changes	in	bone	
ultimate	strength	with	respect	to	mechanical	loads	during	and	post-mission,	
there	is	a	possibility	a	fracture	may	occur	for	activities	otherwise	unlikely	to	
induce	fracture	prior	to	initiating	spaceflight.		

II. Context	
Declines	in	bone	mineral	density	(BMD)	occur	during	spaceflight	at	averaged	
loss	rates	between	1-1.5%	per	month	for	normally	weight-bearing	skeletal	
sites	on	Earth	(e.g.,	hip,	lumbar	spine,	lower	limbs	of	body).		These	
calculations	are	based	upon	total	loss	in	BMD,	as	measured	by	dual-energy	X-
ray	absorptiometry	(DXA)	technology,	in	astronauts	before	and	after	a	typical	
4-6	month	long-duration	mission.	Currently,	there	are	no	data	validating	a	
percentage	loss	in	BMD	as	a	predictor	of	bone	fracture	for	a	terrestrial	
population	representing	the	ages	of	astronauts	flying	on	long-duration	
missions,	but	declines	in	bone	mass	(as	captured	by	BMD)	are	clearly	a	risk	
factor	for	fracture.	It	is	unclear	whether	bone	mineral	density	will	stabilize	at	
a	lower	level,	or	continue	to	diminish	for	longer	spaceflights.	It	is	also	
unknown	if	fractional	gravity,	present	on	the	moon	and	Mars,	would	mitigate	
the	loss.	This	level	of	bone	loss	does	not	create	an	unacceptable	risk	of	
fractures	for	missions	in	microgravity	(ISS	and	asteroid),	but	missions	in	a	
fractional	gravity	environment	or	missions	greater	than	6	month	in	duration	
could	create	higher	fracture	risk.		

The	risk	of	fracture	during	a	mission	cannot	be	estimated	with	any	level	of	
certainty	until	the	probabilities	of	overloading	bones	during	the	missions	are	
understood.	If	mission-related	declines	in	bone	strength	(or	the	failure	load	of	
bone)	cannot	be	corrected	by	in-	and	post-mission	rehabilitation,	
crewmembers	could	be	at	greater	risk	of	fractures	after	return	to	Earth	or	any	
other	planetary	body.	Bone	parameters	that	contribute	to	bone	strength	and	
that	accurately	reflect	changes	in	bone	strength	due	to	microgravity	are	
necessary	to	frame	this	risk.	For	various	spaceflight	mission	scenarios,	with	
in-mission	tasks	and	post-mission	activities	and	in	the	context	of	other	risk	
factors,	the	ability	to	assess	the	probability	of	fracture	will	help	determine	
which	mitigation	strategies	are	optimal	and	how	they	should	be	employed.	

III. Executive	Summary	
Spaceflight-induced	bone	atrophy	is	targeted	to	specific	regions	of	the	skeleton.	Site-
specific	losses	occur	at	normal	(Earth)	weight-bearing	skeletal	areas,	suggesting	
that	the	regions	that	experience	larger	deficits	in	mechanical	loading	in	microgravity	
undergo	the	greater	reduction	in	bone	mass.	Collectively,	the	average	decrement	of	
pre-flight	areal	bone	mineral	density	(aBMD)	per	month	is	1-1.5%,	although	there	is	
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considerable	variation	of	loss	between	different	skeletal	sites	and	between	different	
crewmembers.	The	time	course	of	bone	mineral	loss	during	a	typical	6-month	long-
duration	mission	has	not	been	characterized,	nor	are	data	available	for	
characterization	for	mission	durations	of	over	6	months.	Consequently,	it	is	not	
known	if	and	when	the	loss	of	bone	matrix	and	bone	mineral	will	eventually	plateau,	
nor	is	it	known	if	bone	atrophy	can	be	mitigated	by	the	partial	gravity	environments	
of	the	moon	and	Mars.	As	dictated	by	terrestrial	medicine,	full	understanding	of	the	
risk	of	bone	fracture	during	a	mission	and	later	in	life	requires	that	the	effects	of	
spaceflight	be	evaluated	with	additional	measurements	that	are	beyond	DXA	aBMD.	
Consequently,	the	operating	bands	for	astronaut	health	and	performance	during	a	
mission	are	not	fully	defined	(NASA	2014).	It	is	unclear	which	additional	
measurements	of	bone	can	fully	capture	the	effect	size	of	spaceflight.	It	is	not	known	
how	the	spaceflight-induced	changes	to	bone	affects	the	strength	of	bone,	such	as	
the	load	vector	that	bone	can	resist	before	failure,	or	if	bone	strength	can	be	fully	
recovered	after	return	to	Earth.	The	complexity	of	bone	tissue	requires	a	level	of	
evidence	that	cannot	be	met	by	bioastronautics	research	due	to	the	slow	
accumulation	of	biomedical	data	and	small	number	of	long-duration	astronauts.	
With	the	lack	of	clinical	evidence	for	the	risk	and	the	aggressive	planning	for	future	
space	exploration,	research	technologies	and	analyses	may	need	to	transition	to	the	
clinical	arena	under	mission	operation	circumstances	to	facilitate	risk	definition	and	
attempt	mitigation.	Given	the	paucity	of	data,	statistical	and	computational	
modeling	may	be	useful	tools	to	understanding	how	changes	to	musculoskeletal	
physiology,	tissue	and	cellular	activities	can	influence	fracture	probability.	
	
The	Factor	of	Risk	index	for	fracture	evaluates	the	ratio	of	applied	load	to	the	failure	
load	of	bone.	Consequently,	the	risk	for	fracture	is	minimal	during	missions	in	low	
Earth	orbit	because	applied	loads	associated	with	falling,	or	with	crushing,	are	
essentially	non-existent	in	a	microgravity	environment;	those	that	do	exist	can	be	
successfully	mitigated	by	“engineering	out”	the	risk	with	human-protective	design.	
Mechanical	loads	to	bone,	however,	may	increase	in	the	gravitational	environment	
of	planetary	surfaces.		Likewise,	the	risk	increases	with	the	performance	of	mission	
activities	during	exploration	missions,	such	as	the	construction	of	habitats,	
ambulation	in	extravehicular	suits,	jumping	from	ladders	or	structures,	conducting	
vehicle	egresses,	or	off-nominal	spacecraft	landings.	Similarly,	risk	increases	after	
return	to	Earth	with	the	resumption	of	pre-flight	physical	activities	that	may	
overload	skeletal	integrity	before	it	is	fully	restored.	The	increased	risk	for	bone	
fracture	may	also	exist	in	long-term	skeletal	health	with	the	cumulative	effects	of	
aging	and	of	spaceflight-associated	remodeling.	
	
There	are	medical	requirements	to	monitor	the	skeletal	effects	of	long-duration	
spaceflight	with	measurements	of	aBMD	by	DXA	and	of	biomarkers	for	bone	
turnover.		Some	specific	types	of	fractures	have	only	recently	(e.g.	vertebral	
compression)	or	not	at	all	(e.g.	occult	stress	fractures)	been	assessed	in	astronauts	
after	return.		Structural	evaluations	of	bones	using	newer	imaging	technologies	have	
not	been	measured	longitudinally	in	the	majority	of	astronauts.	The	pattern	of	BMD	
loss	and	recovery	needs	to	be	evaluated	further	on	a	multifactorial,	cross-discipline	
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level.	In	order	to	identify,	understand,	and	define	the	risk	factors	for	bone	fracture	
occurring	during	and	after	spaceflight.	Additionally,	bone	needs	to	be	fully	evaluated	
with	specific	and	expanded	measures	beyond	BMD	to	capture	changes	to	“bone	
quality.”		This	is	highlighted	further	by	the	most	modern	definition	of	osteoporosis	
as	“…	a	skeletal	disorder	characterized	by	compromised	bone	strength	predisposing	
a	person	to	an	increased	risk	of	fracture.		Bone	strength	reflects	the	integration	of	
two	main	features:	bone	density	and	bone	quality”	(NIH	Consensus	Development	
Panel	on	Osteoporosis	Prevention,	Diagnosis,	and	Therapy	2001).	
	
To	summarize:	

• Bone	changes	occur	during	space	travel.	
• Multiple	factors	during	spaceflight	(physiological	and	environmental)	can	

influence	bone	changes	
• DXA-measured	areal	BMD	has	been	shown	to	be	an	incomplete	indicator	of	

whole	bone	strength.	
• Knowledge	characterizing	changes	in	bone	structure	and	microstructure	is	

incomplete.	
• The	relative	contribution	of	trabecular	microarchitecture	and	bone	geometry	

to	whole	bone	strength	is	not	known	but	the	literature	indicates	that	it	could	
be	substantial.	

• Due	to	the	multiple	contributors	to	bone	strength,	the	full	impact	of	
spaceflight	on	whole	bone	strength	is	unknown.	

• The	state	of	bone	loading	for	different	mission	scenarios	is	not	fully	defined.	
	
Hence,	the	risk	for	fracture	necessitates	understanding	the	biomechanical	
relationship	between	applied	loads	to	bone	and	the	strength	of	bone.	To	this	aim,	
the	research	gaps	and	tasks	associated	with	the	Risk	for	Early	Onset	Osteoporosis	
assesses	the	condition	of	bone	(including	the	technologies,	the	measurements,	the	
estimations	of	bone	strength,	and	the	interpretations),	while	the	gaps	and	tasks	
associated	with	the	Risk	for	Fracture	assesses	the	factors	that	influence	applied	
loads	exceeding	bone	strength	resulting	in	fracture.	
	

IV. Introduction	
The	probability	of	fractures	is	presumed	to	be	minimal	(<0.1%)	during	or	after	a	
mission	in	low	Earth	orbit.	This	perception	is	based	predominantly	upon	the	low	to	
no	incidence	of	fracture	in	over	five	decades	of	space	travel	of	increasing	duration,	
and	low	to	no	incidence	of	fracture	in	long-duration	astronauts.	The	ability	to	
maintain	health	and	fitness	in	astronauts	after	spaceflights	further	enforces	this	
presumption.	There	are	a	number	of	factors	that	have	contributed	to	this	
perception,	and	not	all	are	based	upon	a	strong	evidence	base.	First,	significant	
decrements	in	BMD,	beyond	DXA	measurement	error,	have	not	been	detected	for	
missions	of	less	than	90	days.	There	are	minimal	impact	forces	to	the	body	in	the	
weightless	environment	and	on	planetary	surfaces,	limiting	impact	forces	that	could	
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lead	to	fracture,	and	NASA’s	bone	health	standards	ensure	sufficient	pre-flight	bone	
mineral	density	for	hip	and	spine	to	prevent	astronauts	from	returning	below	the	
minimum	permissible	outcome	(T-score	≤-2.0)	after	spaceflight.	The	availability	of	
the	Advanced	Resistive	Exercise	Device	(ARED)	after	2009	as	well	as	adequate	
nutrition	during	flight	have	sufficiently	reduced	the	previously	observed	declines	in	
post-flight	BMD	measurements	(Smith	et	al.	2012).	Post-flight	rehabilitation	
programs	on	Earth	promote	skeletal	recovery	and	reduce	the	fall	risk,	and	fractures	
in	immediate	post-mission	and	long-term	health	periods	have	been	commonly	
attributed	to	overloading	(trauma)	or	aging-related	effects.	Finally,	reliance	upon	
astronaut	self-reporting	of	fractures	or	indicative	symptomatology	likely	leads	to	
under	estimations	of	fracture.	Thus,	it	is	entirely	possible	that	the	assumption	of	low	
fracture	risk	and	incidence	related	to	long-duration	flight	is	under	supported	and	
not	entirely	data-driven.	
	
With	exploration	class	missions	aiming	for	the	moon	and	beyond,	the	austere	and	
remote	environment,	the	“unknowns”	of	planet	exploration,	and	the	limited	point-
of-care	capabilities	may	increase	the	severity	of	even	a	low	probability	medical	
event	such	as	fracture.	The	occurrence	of	a	fracture	in	a	crewmember	would	not	
only	jeopardize	performance	of	mission	objectives	due	to	functionality	impacts,	it	
could	also	lead	to	medical	complications	which	might	result	in	significant	morbidity	
or	even	loss	of	life.		The	documented	effect	of	the	weightless	environment	on	bone	
cell	activities	could	impair	the	healing	process,	increase	the	risk	for	non-union	
fractures,	and	expose	the	crewmember	to	additional	complications	such	as	sepsis	or	
thromboembolytic	clots.	Therefore,	it	is	of	paramount	importance	to	evaluate	the	
propensity	of	a	crewmember	to	fracture	a	bone	under	the	conditions,	including	
mission	length	and	mission-critical	task	performance,	and	effects,	including	
adaptive	physiology,	of	a	spaceflight	to	ensure	appropriate	medical	capabilities	are	
available.	On-board	capabilities	may	include	in-flight	interventions	to	prevent	long-
term	health	fractures,	including	premature	fragility	fractures	associated	with	
irreversible	spaceflight-induced	alterations,	through	mitigation	of	deconditioning	or	
rehabilitation	capabilities.		
	
Evaluation	of	the	probability	of	a	bone	fracture	during	a	spaceflight	mission	requires	
an	assessment	of	the	relationship	between	two	measurable	parameters:	the	load	
vector	experienced	by	a	bone	(“Applied	Load,”	which	includes	both	magnitude	and	
direction)	and	the	ability	of	the	bone	to	resist	that	load	vector	without	fracturing	
(“Bone	Strength”).		This	relationship	determines	the	“Factor	of	Risk.”	Estimating	a	
Factor	of	Risk	for	bone	fracture	uses	the	engineering	approach,	often	used	in	
structure	design,	of	calculating	the		“Factor	of	Safety,”	where	structural	failure	likely	
occurs	when	the	ratio	of	Resisting	Force	(strength)	to	Disturbing	Force	(stress)	is	
<1.	Factor	of	Risk	is	the	inverse	ratio	of	Factor	of	Safety	(or	the	ratio	of	Applied	Load	
to	Bone	Strength)	where	fracture	likely	occurs	when	the	ratio	>1.	A	simple	and	
accurate	method	to	determining	the	Factor	of	Risk	for	a	bone	fracture	would	to	
quantify	the	load	required	to	fracture	a	bone.	Because	this	approach	is	neither	
practical	nor	ethical,	Risk	for	Bone	Fracture	integrates	the	research	gaps	and	tasks	



8	
	

within	the	Risk	for	Early	Onset	Osteoporosis	that	describe	the	condition	of	bone	and	
its	Bone	Strength.	
	
Assessments	of	Bone	Density	in	Terrestrial	Medicine	
A	widely	applied	surrogate	to	replace	the	destructive	calculation	of	a	Factor	of	Risk	
is	aBMD,	measured	by	DXA.	DXA	is	an	x-ray	based	imaging	technology	with	a	high	
level	of	clinical	utility	because	it	is	safe,	available,	and	affordable.	Because	of	its	
clinical	utility,	this	measurement	has	been	applied	to	a	multitude	of	clinical	studies	
substantiating	its	ability	to	predict	fracture,	to	detect	an	effect	size	of	intrinsic	risk	
factors	including	menopause	and	aging,	to	generate	reproducible	results,	and	to	
monitor	the	effect	of	osteoporosis	countermeasures.	Thus,	the	noteworthy	value	of	
aBMD	as	a	surrogate	for	fracture	risk	is	not	because	it	provides	an	accurate	
assessment	of	bone	density	(as	true	density	is	not	areal),	but	because	of	the	
abundance	of	epidemiological	data	correlating	aBMD	with	the	incident	fragility	
fractures	(fractures	due	to	osteoporosis)	in	population-based	studies.	
	
DXA	BMD	cutoff	of	a	T-score	of	less	than	-2.5	was	established	for	diagnosing	
osteoporosis	in	postmenopausal	women	based	upon	the	detection	of	osteoporosis	
in	~30%	of	postmenopausal	women	at	this	score	(Kanis	et	al.	1994).		Using	this	
cutoff,	physicians	can	identify	a	clinically	meaningful	number	of	women	who	would	
be	good	candidates	for	osteoporosis	therapy.	In	this	case,	aBMD	is	a	useful	index	for	
stratifying	the	relative	risk	for	fracture	amongst	postmenopausal,	Caucasian	
women;	however,	aBMD	alone	is	not	a	good	predictor	of	who	will	fracture	
(Cummings	et	al.	1995).		Reports	in	the	literature	have	highlighted	a	disconnect	
between	actual	fracture	incidence	and	calculated	relative	risk,	as	indicated	by	aBMD	
T-scores	(Riggs	et	al.	1990;	Cummings	et	al.	1998;	Gutteridge	et	al.	2002;	Schuit	et	
al.	2004;	Wainwright	et	al.	2005;	Chesnut	et	al.	2005;	Sornay-Rendu	et	al.	2005).	The	
decline	in	the	specificity	and	sensitivity	of	DXA	aBMD	for	predicting	fragility	
fractures	may	be	related	to	the	failure	of	aBMD	to	reflect	a	complete	picture	whole	
bone	strength	(NIH	Consensus	Development	Panel	on	Osteoporosis	Prevention,	
Diagnosis,	and	Therapy	2001).		
	
Given	the	necessity	to	expand	measurements	beyond	aBMD	T-scores,	significant	
work	has	been	put	into	the	development	of	more	accurate	measurement	tools.	A	
meta-analysis	of	12	cohorts,	representing	60,000	subjects	and	monitoring	over	
250,000	person-years	and	5,400	fractures,	provided	the	basis	for	the	FRAX	
calculator	(Fracture	Risk	Assessment	Tool,	University	of	Sheffield,	UK)	which	uses	
clinical	risk	factors	with	and	without	femoral	neck	BMD	to	determine	a	10-year	
probability	of	fracture	(World	Health	Organization	2004).	However,	the	FRAX	
calculator	is	not	recommended	for	use	in	humans	under	45	years	of	age	and	does	
not	include	an	important	astronaut	risk	factor:	the	prolonged	skeletal	unloading	and	
disuse	of	bone	during	microgravity	exposure.	As	a	result,	the	FRAX	calculator	has	
limited	relevance	to	assessing	fracture	probability	in	astronauts	due	to	spaceflight.	
	
The	limitation	of	aBMD	as	a	surrogate,	and	the	lack	of	a	better	alternative,	had	also	
been	expressed	in	the	previous	evidence-based	Bioastronautics	Report	(NASA	
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Human	Research	Program	2016).	Thus,	the	NASA	Human	Research	Program	(HRP)	
supports	investigations	to	supplement	the	measurement	of	spaceflight	effects	on	the	
skeleton.	Many	recent	and	ongoing	studies	include	novel	and	emerging	technology	
in	order	to	measure	indices	of	“bone	quality”	and	obtain	an	expanded	reflection	of	
skeletal	integrity	associated	with	spaceflight,	for	better	predictive	capability	of	the	
risk	of	fracture	in	long-duration,	exploration	missions.	
	
Assessment	of	Bone	Quality	for	Terrestrial	Applications	
One	limitation	of	the	DXA	technology	in	its	measurement	of	aBMD	is	that	the	index	
fails	to	account	for	the	size	and	geometry	of	a	bone.	Figure	1	depicts	how	the	
bending	and	compressive	strength	of	whole	bone	are	dependent	upon	its	size	and	
geometry,	which	cannot	be	directly	evaluated	by	DXA.	There	have	been	recent	
attempts	to	modify	the	use	of	DXA	technology	for	the	evaluation	of	volumetric	or	
structural	parameters	as	indices	of	Bone	Quality	(Prevrhal	et	al.	2004;	Beck	2007)	
but	the	failure	to	achieve	a	better	understanding	and	assessment	of	fracture	risk	
above	and	beyond	DXA	measurement	of	aBMD	(Bonnick	2007;	Boudreaux	and	
Sibonga	2015)	has	presumably	limited	their	utility	in	the	clinical	arena.				
	

	
	

Figure	1.		Mary	Bouxsein,	Ph.D.,	Bone	Geometry	and	Skeletal	Fragility.	May	2005	Bone	Quality	
Meeting	
	
	
However,	there	are	emerging	technologies	for	the	non-invasive	assessments	of	
other	skeletal	indices	besides	aBMD,	such	as	other	putative	parameters	of	Bone	
Quality	that	contribute	to	bone	strength.	In	particular,	measurements	of	true,	
volumetric	BMD	(vBMD,	measured	in	g/cm3)	of	whole	bone	and	of	bone	
compartments	can	be	obtained	by	quantitative	computed	tomography	(QCT).		QCT	
measurements	were	validated	in	a	randomized	controlled	trial	for	the	prediction	of	
hip	fracture	in	men	over	65	years	old	(Black	et	al.	2008).		While	the	measurement	of	
vBMD	only	modestly	improves	fracture	prediction	over	DXA-measured	aBMD,	QCT	
enables	additional	measurements	of	the	femoral	neck	to	increase	the	understanding	
of	spaceflight-induced	effects	on	fracture	risk	(Black	et	al.	2008);	that	is,	QCT	
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measurements	of	the	femoral	neck	(percent	cortical	bone	volume,	trabecular	vBMD,	
and	minimum	cross-sectional	area)	are	predictors	of	hip	fracture	independent	of	
areal	BMD	(Black	et	al.	2008).	This	capability	is	vital	to	understanding	fracture	risk	
in	an	understudied	astronaut	population	(generally	young,	healthy,	and	
predominantly	male)	in	which	bone	loss	is	unlike	age-related	bone	loss	(Orwoll	et	
al.	2013).	
	
Furthermore,	magnetic	resonance	imaging	(MRI)	and	high-resolution	QCT	are	
emerging	as	novel	technologies	to	assess	changes	to	trabecular	microarchitecture	of	
cancellous	bone	at	peripheral	skeletal	sites	[HR-QCT,	Scanco].	MRI-based	imaging	of	
hip	trabecular	microarchitecture	and	DXA-based	vertebral	microstructural	analyses	
are	being	developed	for	microstructural	assessments	of	the	hip	and	spine	(Hans	et	
al.	2011;	Medimaps	Group	2015;	Chang	et	al.	2015).	Such	measurements	may	be	
used	to	reflect	the	disruption	of	trabecular	connectivity	or	degradation	of	cancellous	
bone	in	the	bone	marrow	compartment	of	bone,	as	verified	against	parameters	
previously	derived	from	bone	histomorphometry	(Parfitt	et	al.	1987).	Changes	to	
microarchitecture	can	influence	the	mechanical	properties	and	distributions	of	
loads	in	cancellous	bone	(van	der	Linden	et	al.	2001).			
	
Until	recently,	the	skeletal	effects	of	spaceflight	on	bone	mass	had	only	been	
described	by	measuring	aBMD	determined	from	DXA	scans	performed	in	
crewmembers	before	and	after	the	typical	long-duration	spaceflight	mission	of	6	
months	on	the	International	Space	Station	(ISS).		Therefore,	evaluation	of	Bone	
Quality	is	still	required	to	substantiate	this	risk,	as	spaceflight	represents	a	
collection	of	novel	risk	factors	that	could	likely	affect	more	than	areal	BMD	(for	
example,	radiation	effects	on	bone	marrow).	While	there	are	multiple	indices	that	
can	influence	the	quality	of	bone	and	whole	bone	strength,	such	as	the	degree	of	
mineralization,	microcrack	accumulation,	resorption	cavities,	and	activation	
frequency,	HRP	needs	to	be	focused	on	mature	technologies	in	order	to	meet	its	
path-to-risk	reduction	for	an	exploration-class	mission.	Thus,	tasks	that	are	
considered	essential	include,	first,	the	delivery	of	technologies	and	tests	that	enable	
non-invasive	measurements	of	crewmembers,	particularly	if	such	technologies	have	
been	previously	validated	for	clinical	utility	in	terrestrial	populations;	and	second,	
provision	of	knowledge	through	modeling	and	analog	validations	that	can	be	
translated	directly	to	mission	applications.	
	
Possible	Risk	Factors	for	Falls	or	Injury	
Age	is	an	independent	risk	factor	for	fracture.	The	probability	for	fracture	in	the	
postmenopausal	woman,	for	example,	increases	exponentially	with	every	decade	
over	50	years	for	a	given	measurement	of	aBMD	(Figure	2).		Younger	persons	do	not	
have	the	metabolic	co-morbidities,	the	nutritional	issues,	or	the	cumulative	
exposure	to	bone	loss	risk	factors	that	compound	bone	fragility	in	the	elderly	
populations.	On	Earth,	younger	individuals	also	do	not	have	the	muscle	loss,	the	
postural	instability,	the	impaired	neuromuscular	control	and	poor	visual	acuity	that	
increase	the	risk	for	falling	in	aged	persons.	The	integration	of	these	clinical	risk	
factors	accounts	for	the	increased	probability	for	fracture	in	older	populations	as	
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these	latter	risk	factors	increase	the	propensity	for	falls	and,	accordingly,	the	
applied	loads	to	bone	(De	Laet	et	al.	2005).		However,	these	contributing	factors	for	
injury	may	exist	in	astronauts	deconditioned	by	prolonged	transits	beyond	low	
Earth	orbit.		
	

	
	
Figure	2.		Age	as	an	Independent	Risk	Factor	for	Osteoporotic	Fractures.	Probability	of	first	fracture	
of	hip,	distal	forearm,	proximal	humerus,	and	symptomatic	vertebral	fracture	in	women	of	Malmö,	
Sweden.		While	the	relative	risk	for	fractures	may	be	the	same	based	upon	BMD,	the	probability	of	
fracture	in	the	50	year	old	is	less	than	the	probability	for	fracture	in	the	80	year	old.		Adapted	from	
Kanis	JA	et	al.	Osteoporosis	Int.	2001.		Slide	courtesy	of	S.	Petak,	M.D.	
	
There	is	an	improved	ability	of	aBMD	to	predict	fractures	when	considered	
concurrently	with	clinical	risk	factors	predisposing	individuals	to	osteoporosis	
(Kanis	et	al.	2007).	Table	1	outlines	clinical	risk	factors	associated	with	terrestrial	
osteoporosis	(Espallargues	et	al.	2001),	which	are	rarely	observed	in	younger-aged,	
physically	healthy	persons	of	the	Astronaut	Corps	(<55	years	of	age)	prior	to	launch.		
However,	there	are	risk	factors	for	osteoporosis,	as	identified	by	Cummings	(also	
presented	in	Table	1),	that	are	more	relevant	to	crewmembers	after	the	typical	6-
month,	long-duration	mission	in	space	(Cummings	et	al.	1995);	many	of	these	
factors	are	evident	in	crewmembers	during	flight	and	during	re-adaptation	to	a	
gravitational	environment.	This	includes	the	astronaut	returning	to	their	pre-flight	
level	high	physical	activity	soon	after	return	to	Earth	with	associated	gait	instability,	
imbalance,	or	vision	impairment	that	may	increase	the	falling	risk	soon	after	landing	
(Courtine	and	Pozzo	2004;	Mulavara	et	al.	2010;	Mader	et	al.	2011).	Vitamin	D	
deficiencies	may	also	be	a	risk	in	crewmembers	on	exploration	missions	due	to	
insufficient	supplementation;	Vitamin	D	deficiencies	have	been	associated	with	an	
increased	risk	for	falling	due	to	the	vitamin’s	benefit	to	neuromuscular	coordination	
(Bischoff	et	al.	2003;	Bischoff-Ferrari	et	al.	2004).	Given	the	potential	consequences	
of	the	fracture	risk,	ranging	from	loss	of	effective	performance	to	loss	of	life,	
probability	risk	assessments	should	also	consider	the	presence	of	the	observed	risk	
factors	that	influence	the	risk	for	falling.	In	addition,	it	may	be	of	value	to	collect	
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kinematic	measures	from	motion	analysis	and	accelerometers	that	could	be	used	
estimate	fall	velocity	and	fall	orientation	while	performing	functional	tasks	in	a	
deconditioned	state	(e.g.,	Functional	Task	Testing).	
	
Table	1.		Clinical	Risk	Factors	observed	in	osteoporosis	patient	population	and	proposed	cross-
discipline	risk	factors	relevant	to	long-duration	crewmembers	(Cummings	et	al.	1995;	Espallargues	
et	al.	2001).	
	

Clinical	Risk	Factors	for	
Osteoporosis	(Espallargues	2001)	

Putative	and	Identified	Risk	Factors	Relevant	to	Long-
Duration	and	Exploration	Crewmembers	(Cummings	1995)	

Aging	(>70y)	
Low	body	weight	
Weight	loss	
Physical	inactivity	
Corticosteroids	
Anticonvulsant	drugs	
Primary	hyperparathyroidism	
Diabetes	mellitus	(Type	I)	
Gastrectomy	
Pernicious	anemia	
Anorexia	nervosa	
Prior	osteoporotic	fracture	

On	Feet	≤	4	hours	per	Day	(reduced	ground	reaction	
forces)	
Can’t	Rise	From	Chair	Without	Using	Arms	
Lowest	Quartile	Depth	Perception	
Lowest	Quartile	Contrast	Sensitivity	
Fair,	Poor	or	Very	Poor	Health	
Vitamin	D	deficiency	
Weight	Loss	to	BW	at	Age	25	
Balance	instability	
Gait	impairments	
Sarcopenia	
Low	sunlight	exposure	
Low	calcium	absorption	

	
	
An	increased	risk	for	fracture	will	be	substantiated	when	more	data	are	collected	
and	uncertainty	can	be	reduced.		This	report	will	summarize	the	current	evidence	
from	measurements	of	risk	factors	that	influence	Bone	Strength	and	will	highlight	
the	knowledge	requirements	(gaps	in	knowledge	base)	in	order	to	calculate	and	
assess	the	probability	for	fracture	during	exploration	missions	per	a	NASA-
developed	probabilistic	fracture	risk	assessment	tool,	the	Bone	Fracture	Risk	
Module	(Nelson	et	al.	2009).	

V. Evidence	
1. Data	Obtained	from	Spaceflight	Medical	Operations	
To	date,	the	DXA	measurements	conducted	pre-	and	post-flight	in	long-duration	
crewmembers	have	characterized	deficits	in	aBMD	for	weight-bearing	skeletal	sites,	
with	losses,	averaged	per	month,	that	are	greater	than	the	losses	detected	in	per	
year	in	comparable	sites	in	elderly	persons	(Orwoll	et	al.	2013)	and	exceed	the	
expected	rate	predicted	by	an	algorithm	derived	from	the	a	population	cohort,	
based	on	serial	BMD	measurements	of	150	men	and	150	women	with	ages	
comparable	(20-50	years)	to	the	astronaut	cohort	(Amin	et	al.	2010,	2011).	While	
declines	in	aBMD	are	a	risk	factor	for	bone	fragility,	the	NASA	tests	for	bone	health	
are	based	upon	BMD	T-scores	and	not	on	percentage	loss	in	BMD.	Moreover,	T-
scores	assess	a	relative	risk	for	fragility	fractures,	not	from	fractures	from	the	
biomechanical	overloading	of	bones,	a	character	of	fractures	that	are	more	typical	of	
younger-aged	persons	(Garraway	et	al.	1979;	Ng	et	al.	2012).	The	medical	testing	for	
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risk	of	fragility	fractures	(Sibonga	2017,	figure	9)	does	not	reveal	any	increased	risk	
for	fragility	fractures	in	astronauts.		A	non-clinical	BMD	(for	example,	BMD	for	hip,	
spine,	forearm)	may	“mask”	a	weakened	bone	that	may	strong	enough	to	resist	the	
mechanical	loads	with	physical	activities	performed	before	spaceflight.	

2. Data	Obtained	from	Scientific	Investigations	in	Flight	
Although	the	assessment	of	bone	integrity	is	incomplete,	there	are	data	in	the	
evidence	base	that	extend	skeletal	evaluation	beyond	DXA	aBMD.		While	these	
additional	measurements	are	not	predictors	of	fracture	per	se,	these	measures	add	
to	the	characterization	of	spaceflight	effects	that	may	help	to	define	the	risk.	The	
significance	of	these	data	is	summarized	in	sections	2.1-2.6	below.	

2.1 Quantitative	Computed	Tomography	(QCT)	
The	application	of	QCT	technology	provides	measurements	of	vBMDs	for	whole	
bone	and	for	separate	bone	compartments	(cortical	bone,	cancellous	bone,	and	
combined)	and	three-dimensional	geometry	of	whole	bone,	which	can	be	used	to	
assess	the	impact	of	spaceflight	on	whole	bone	strength	by	applying	a	finite	element	
analysis	(Keyak	et	al.	2005;	Hernandez	et	al.	2006).	The	data	from	QCT	scans	
conducted	in	long-duration	crewmembers	characterized	how	the	separate	
compartments	of	the	hip	adapt	to	space	differently.	As	described	later	in	this	report,	
these	data	were	used	to	estimate	a	Factor	of	Risk	for	hip	fracture	on	Mars,	moon,	
and	after	return	to	Earth	(Lang	2006).			

2.2 Bone	Turnover	Biomarkers	
Monitoring	the	changes	in	bone	turnover	markers	is	reported	to	be	predictive	for	
changes	in	bone	mass	and	fracture	(Garnero	et	al.	1999;	Bonnick	and	Shulman	
2006).	Biological	specimens	(urine	and	blood)	collected	before,	during,	and	after	
flight	were	evaluated	after	sample	return	to	Earth.		The	data	suggest	that	bone	
adaptation	in	space	is	driven	by	a	predominating	bone	resorption	that	is	uncoupled	
to	bone	formation	(Smith	et	al.	2005,	2015).	This	perturbed	bone	remodeling	in	
space	suggests	that	there	is	a	net	loss	in	bone	mass,	albeit	a	biomarker	for	changes	
over	the	entire	skeleton.	

2.3 Endocrine	Regulation	
The	human	skeleton	serves	as	mineral	reservoir	for	maintaining	calcium	balance,	
which	could	be	a	greater	issue	than	fractures	for	exploration	missions	exceeding	a	
year.	Studies	on	calcium-regulating	hormones	demonstrated	how	the	endocrine	
regulation	of	calcium	homeostasis	can	be	influenced	by	the	bone	atrophy	and	
demineralization	that	occurs	in	space	(Smith	et	al.	1999,	2005;	Sibonga	2017;	Smith	
et	al.	2015).		

2.4 Risk	Factors	for	Reductions	in	Bone	Strength	
Multiple	risk	factors	have	been	identified	with	regards	to	reductions	in	Bone	
Strength.	These	factors	include	the	following.	

• Reduced	aBMD	at	weight-bearing	sites,	a	net	increase	in	bone	resorption	for	
the	entire	skeleton,	geometrical	changes	in	the	proximal	femur,	and	a	rapid	
rate	of	bone	mineral	loss	collectively	suggest	that	bones	of	the	skeleton	may	
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have	decline	in	strength	(LeBlanc	et	al.	2000a;	Lang	et	al.	2004;	Smith	et	al.	
2005).	

• Reduced	cortical	thickness	and	compartment-specific	reductions	in	
volumetric	BMD	in	cortical	and	cancellous	bone	of	hip	are	associated	with	
reductions	in	compressive	and	bending	strength	(Lang	et	al.	2004)	and	are	
independent	predictors	of	hip	fracture	in	aged	males	(Black	et	al.	2008).	

• Estimations	of	load	capacity	were	assessed	by	analysis	of	models	generated	
from	QCT	hip	scans,	performed	before	and	after	spaceflight.	Significant	
reductions	were	noted	in	bone	load	capacities	(minimum	force	to	cause	
fracture)	for	applied	loading	with	one-legged	stance	and	posterolateral	falls	
(Keyak	et	al.	2009).	

• Preferential	losses	in	trabecular	bone	observed	in	crewmembers	may	disrupt	
trabecular	connectivity	or	reduce	trabecular	thickness,	both	of	which	could	
affect	biomechanical	strength	of	bone	(van	der	Linden	et	al.	2001;	Hernandez	
et	al.	2006).	

• Persistent	deficits	in	trabecular	vBMD	of	the	hip	and	of	lumbar	spine	(L1,	L2)	
in	8	ISS	crewmembers	in	whom	a	fourth	scan	was	performed	between	2-4	
years	after	return	(Dana	Carpenter	et	al.	2010)	may	add	to	age-related	
declines	and	induce	premature	fragility.	

• Deficiencies	in	vitamin	D	observed	in	long-duration	crewmembers	after	
approximately	6-month	spaceflights	may	induce	similar	impairments	in	
neuromuscular	coordination	and	increased	risk	for	falling	as	documented	in	
the	elderly	(Bischoff	et	al.	2003;	Bischoff-Ferrari	et	al.	2004)	if	in-flight	
supplementation	for	spaceflight	missions	beyond	low	Earth	orbit	cannot	be	
maintained.	

	

2.5 Probabilistic	Risk	Assessments	
Calculating	the	Factor	of	Risk	for	fracture	is	only	as	accurate	as	the	estimations	of	
bone	strength	and	of	applied	loads.	Likewise,	the	assessment	of	fracture	probability	
is	dependent	upon	the	number	of	factors	that	influence	the	probability	of	an	
overloading	event	occurring,	such	as	the	duration	of	the	mission,	the	total	number	of	
EVAs	conducted,	the	frequency	of	EVAs,	the	types	of	mechanically-loaded	event	(for	
example,	fall	impacts	with	high	energy	(such	as	a	fall	while	cycling),	or	low	energy	
(such	as	a	simple	trip	and	fall)	events).	
	
Estimations	of	applied	load	to	bone	are	clearly	not	perfect.	For	instance,	some	
reported	algorithms	to	calculate	loads	incurred	by	the	hip	on	Earth	are	based	upon	
body	weight;	height,	velocity,	and	orientation	of	falls;	and	dampening	of	force	by	fat	
padding	(Robinovitch	et	al.	1991;	Carpenter	et	al.	2005;	Riggs	et	al.	2006).		Both	QCT	
and	DXA	data	can	strengthen	the	estimations	by	including	measurements	of	soft	
tissue	thickness	over	the	hip	(Riggs	et	al.	2006;	Ellman	et	al.	2010).	In	addition,	the	
factor	of	risk	for	exploration	missions	on	a	planetary	surface	requiring	integrating	
the	effect	of	partial	gravity	on	applied	loads	in	fractional	gravity	environment.	These	
estimations	may	be	underestimated	because	of	the	difficulty	in	quantifying	the	
multi-system	deconditioning	of	the	astronauts,	including	factors	such	as	vision	
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impairment,	muscle	atrophy,	reduced	physical	fitness,	and	poor	neuromuscular	
coordination.	Even	factors	such	as	repetitive	falling	due	to	a	cumbersome	EVA	suit	
or	“loping”	to	ambulate	in	an	EVA	suit	will	increase	the	hazard	to	fractures.		Other	
challenges	may	include	fractional	gravity	influencing	a	proportional	decline	in	bone	
mass,	(Ellman	et	al.	2013;	Swift	et	al.	2013)	or	declines	in	fall	loads	because	of	
slower	velocities	and	lower	energy	of	fall	impacts.	
	
Preliminary	data,	including	estimations	of	bone	strength	from	the	analysis	of	finite	
element	models	(Keyak	et	al.	2009),	support	the	fracture	risk	and	have	been	
presented	in	a	separate	Evidence	Base	Report	on	Early	Onset	Osteoporosis	(Sibonga	
2017).	Collectively,	the	risk	for	bones	being	overloaded	in	astronauts	is	more	likely	
due	to	an	increased	probability	of	encountering	a	traumatic	load	because	of	vision	
impairment,	loss	of	neuromuscular	coordination,	muscle	atrophy,	mobility	issues	
and	possibly	reduced	cognition	or	poor	judgment.	Risk	is	similarly	elevated	with	
physical	activity	in	an	unfamiliar,	atypical	environment,	such	as	exploration	
activities	on	planetary	surfaces	with	partial	gravity,	as	well	as	a	return	to	typical	
pre-flight	physical	activities,	before	restoration	to	pre-flight	bone	strength,	after	
landing	on	Earth.	To	manage	this	risk	of	overloading	bones,	computer	modeling	is	
used	to	assess	the	probability	of	crewmembers	encountering	mechanical	loads	
during	the	length	of	an	exploration	mission	while	performing	mission	tasks	(Nelson	
et	al.	2009);	such	modeling	may	also	be	useful	for	assessing	risk	in	astronauts	after	
return	to	Earth.	

2.6 Analysis	of	Data	from	Long-Duration	Missions	(Mir	and	ISS)	
There	is	a	medical	requirement	to	perform	DXA	measurements	of	aBMD	in	the	hip,	
lumbar	spine,	whole	body,	forearm,	and	calcaneus	in	long-duration	crewmembers	to	
evaluate	the	effects	of	spaceflight.	DXA	scans	were	performed	within	45	days	prior	
to	launch	and	within	approximately	5	days	of	landing.		Recovery	of	bone	mass,	as	
indexed	by	aBMD,	takes	considerably	longer	than	the	time	to	incur	the	loss	(Vico	et	
al.	2000;	Sibonga	et	al.	2007).		Recovery	can	be	influenced	by	multiple	factors	such	
as	age,	nutritional	intake,	and	post-flight	activity,	which	may	account	for	the	
restoration	of	BMD	to	pre-flight	status	as	early	as	6	months	after	return.	Due	to	the	
complexity	of	bone	tissue	and	the	multi-factorial	nature	of	bone	loss,	there	is	
recognized	variability	in	skeletal	measurements	in	Earth-based	populations.	
Likewise,	it	is	not	unexpected	to	observe	highly	variable	responses	between	skeletal	
sites	within	one	crewmember	and	between	crewmembers.	This	variability	is	also	
evident	in	assays	of	bone	turnover	markers	which	are	performed	in	long-duration	
crewmembers	at	similar	time	points	before	and	after	spaceflight	missions.	
Biomarkers	for	bone	resorption	are	reported	to	increase	early	in	flight	where	they	
remain	elevated	until	their	restoration	to	pre-flight	levels	soon	after	return	(Smith	
et	al.	2005).		Biomarkers	for	bone	formation	are	not	as	profoundly	influenced	by	
spaceflight	and	are	either	unchanged	or	decreased	during	spaceflight;	circulating	
levels,	however,	are	increased	approximately	1	month	after	landing	(Smith	et	al.	
2005).	
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Based	upon	the	DXA	measurement	of	aBMD	and	the	World	Health	Organization	
Guidelines	for	Osteoporosis	Diagnosis	(WHO	1994),	there	are	no	data	to	indicate	a	
diagnosis	in	astronauts	after	a	long-duration	mission	(Figure	3).	In	other	words,	no	
long-duration	astronaut	has	returned	with	a	“non-permissible	outcome,”	defined	as	
a	T-score	of	≤-2.0	for	the	femoral	neck,	trochanter,	or	spine	(NASA	2014).	However,	
these	guidelines	were	developed	for	clinicians	considering	interventions	for	
perimenopausal	and	postmenopausal	women	or	men	over	the	age	of	50,	a	target	
population	considered	to	be	at	risk	for	age-related	fractures.	Although	useful,	the	
current	aBMD-based	fracture	standards	for	risk	assessment	are	probably	not	
sufficient	for	assessing	risk	in	astronauts	who	are	losing	bone	mass	by	a	different	
impact	on	bone	remodeling	(Orwoll	et	al.	2013).	
	

	
Figure	3.		T-scores	based	upon	pre-flight	and	post-flight	measurements	of	BMD	and	references	back	
to	young	white	sex-matched	population.		No	long-duration	crewmember	has	returned	from	the	
typical	6-month	mission	in	low	Earth	orbit	with	a	diagnosis	of	osteoporosis	according	to	1994	World	
Health	organization	guidelines	(WHO	1994).	
	
More	importantly,	as	reported	in	the	Evidence	Report	for	Early	Onset	Osteoporosis	
(Sibonga	2017),	the	average	monthly	BMD	loss	(LeBlanc	et	al.	2000a,	2007;	Sibonga	
2017)	in	crewmembers	is	almost	equivalent	to	the	annual	loss	of	aBMD	loss	in	
comparable	sites	of	elderly	persons	(Orwoll	et	al.	2013).	This	comparison	of	bone	
loss	rates	was	also	demonstrated	in	Table	2,	which	displays	a	comparison	between	
the	observed	losses	in	BMD	in	long-duration	astronauts	to	a	predicted	loss	by	a	
mathematical	algorithm	developed	from	the	Rochester	Bone	Health	Study	(The	
Mayo	Clinic,	Rochester).	The	BMD	decline	in	astronauts	was	predicted	by	a	formula	
derived	from	a	population	cohort	(n	~	800)	composed	of	subjects	spanning	the	age	
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of	19-97	years	(Amin	et	al.	2010).	As	mentioned	above,	changes	in	aBMD	over	time	
were	derived	from	serial	BMD	measurements,	which	included	measurements	in	150	
men	and	150	women	of	ages	that	span	the	astronaut	age	range	(20-50	years),	
perhaps	the	only	population	study	of	bone	health	that	includes	younger-aged	
subjects	(Amin	et	al.	2010,	2011).	The	greater,	calculated	monthly	rate	of	BMD	loss	
in	the	younger-aged	crewmembers	is	reminiscent	of	aggressive,	osteoclast-driven	
bone	resorption	observed	in	postmenopausal	women.	If	resorption	cavities	on	the	
surface	of	cancellous	(trabecular)	bone	are	targeted	to	sites	of	increased	stress,	then	
cancellous	bone	strength	and	stiffness	can	be	influenced	regardless	of	the	changes	in	
vBMD	in	the	cancellous	bone	compartment	(Hernandez	et	al.	2006).	The	depth	and	
location	of	resorption	cavities	cannot	be	determined	non-invasively,	but	could	be	
confirmed	with	research	into	options	such	as	in	vitro	analyses,	including	histology	
and	micro-CT,	of	bone	samples.			
	
Table	2.	Comparison	between	observed	BMD	changes	in	male	long-duration	astronauts	vs.	predicted	
changes,	immediately	and	approximately	3	years	after	return	(Amin	et	al.	2010,	2011).	
	

	
	

	
In	addition	to	the	risk	of	bone	volume	loss,	clinical	risk	factors	that	influence	the	
propensity	for	falling	have	been	observed	in	crewmembers	after	return	to	Earth	
from	long-duration	missions.	Losses	in	postural	muscle	mass	are	a	contributing	
factor	to	postural	instability,	while	assessments	of	head-trunk	coordination	suggest	
instability	during	standing	and	ambulation	(LeBlanc	et	al.	2000b,	a;	Courtine	and	
Pozzo	2004).	Actual	impairments	in	gait	(Bloomberg	and	Mulavara	2003;	Mulavara	
et	al.	2010),	jumping	(Newman	et	al.	1997),	and	decrements	in	dynamic	visual	
acuity	(Peters	et	al.	1996;	Mader	et	al.	2011)	are	evident	after	long-duration	
missions	in	space.			

3. Data	Obtained	from	Ground-Based	Studies	
There	are	no	ground-based	spaceflight	analogs	that	have	evaluated	Factor	of	Risk	
for	bone	fracture	in	human	subjects.		There	are	numerous	animal	models	(rodents,	
dogs,	non-human	primates)	that	immobilize	or	skeletally	unload	limbs	or	whole	
bodies	as	a	means	to	induce	“disuse	osteoporosis.”	These	animal	models	are	
valuable	resources	with	which	to	characterize	the	cellular	and	tissue	effects	of	
mechanical	unloading	under	well-controlled	experimental	conditions	(Turner	
2000).		These	models	can	be	further	applied	to	evaluate	the	efficacy	of	
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pharmacological	and	mechanical	countermeasures	using	mechanical	strength	
testing	(fracturing	bones	under	defined	loads)	to	quantify	bone	strength	directly.	
However,	as	previously	discussed,	there	are	multiple	physiological	and	biological	
measures	that	can	influence	whole	bone	strength	in	humans;	as	a	result,	the	human	
skeletal	effects	of	disuse	might	not	be	completely	modeled	by	any	single	species	
model.		
	
Recently,	HRP	funded	the	development	of	an	animal	model	to	study	fracture	healing	
and	to	test	a	rehabilitative	loading	protocol	to	promote	healing	in	the	hypogravity	
environment.	A	series	of	published	reports	described	an	ovine	(sheep)	model	for	
fracture	healing	that	induced	the	skeletal	effects	of	simulated	microgravity	on	the	
tissue	of	the	metatarsal	(Gadomski	et	al.	2014a)	displayed	delayed	healing	under	
simulated	microgravity	on	a	surgical	excision	(osteotomy)	of	the	metatarsal	
(Gadomski	et	al.	2014b),	and	used	finite	element	models	to	assess	the	influence	of	
localized	mechanical	loading	at	0.25G	and	1G	on	fracture	healing	(Gadomski	et	al.	
2016).		The	investigations,	conducted	at	Colorado	State	University,	were	able	to	
describe	statistically	significant	tissue	decrements	associated	with	adaptation	to	
microgravity,	including	a	loss	of	bone	mineral	density	of	29.0%,	a	reduction	in	
bending	modulus	of	25%,	and	a	decline	in	failure	load	of	28%.	There	were	also	
decrements	in	parameters	of	bone	histomorphometry	(bone	volume,	trabecular	
thickness,	trabecular	number,	formation	rates	and	osteoblast	number	all	declined	
while	osteoclast	number	increased).	Collectively,	these	data	substantiate	the	overall	
fidelity	of	the	sheep	model	to	mimic	the	skeletal	tissue	effects	of	humans	in	space	as	
well	as	demonstrating	the	utility	of	an	external	fixation	device	to	simulate	skeletal	
unloading	on	the	metatarsal	(Gadomski	et	al.	2014a).	The	same	model	was	used	to	
acquire	data	that	suggests	that	locally	reducing	mechanical	loading	by	varying	
hydrostatic	pressure	and	stain	promotes	intramembranous	bone	formation	(as	
opposed	to	endochondral	ossification),	which	could	account	for	the	delayed	healing	
and	reduced	integrity	of	healed	fractures	in	a	disuse	environment	(Gadomski	et	al.	
2016).	
	
There	is	an	aggressive	path-to-risk	reduction	for	future	manned	spaceflight;	in	this	
context,	models	for	probabilistic	risk	assessments	(PRA)	may	be	required	in	lieu	of	
data	that	directly	quantifies	fracture	outcomes.	One	NASA	PRA	tool	has	taken	a	
biomechanical	approach	to	assessing	fracture	risk	by	estimating	the	probability	of	
overloading	the	skeletal	bones	of	an	astronaut.	This	PRA	may	be	individualized	for	a	
specific	body	weight	and	height	and	for	certain	physical	activities	typical	for	the	
given	astronaut.	To	this	aim,	the	Digital	Astronaut	Project,	conducted	at	NASA	Glenn	
Research	Center,	performs	a	service	using	biomechanical	algorithms	to	estimate	the	
mechanical	loads	to	the	astronaut	during	post-mission	activities.	In	essence,	this	
modeling	could	be	used	to	predict	the	ability	of	a	deconditioned	bone	to	resist	loads	
incurred	during	performance	of	exploration	mission	objectives	or	after	return	to	
Earth’s	gravity	environment.	An	increased	fracture	risk	does	not	require	a	bone	with	
osteoporosis;	rather,	an	astronaut	may	be	predisposed	to	fracture	because	of	the	
asymptomatic	nature	of	bone	loss	and	a	sub-clinical	reduction	in	bone	integrity.	The	
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medical	test,	DXA	2d-measurement	of	aBMD	T-scores,	does	not	quantify	this	decline	
in	strength.		

VI. Computer-Based	Simulation	Information	
As	previously	discussed,	the	Factor	of	Risk	for	fracture	is	the	ratio	of	Applied	Loads	
to	Failure	Loads,	where	fracture	is	likely	to	occur	when	the	ratio	is	>1.		The	
probability	of	fracture,	on	the	other	hand,	is	dependent	upon	multiple	factors	or	
variables.		Two	approaches	have	been	used	to	calculate	the	Factor	of	Risk	for	Bone	
Fracture	in	crewmembers	during	and	after	long-duration	missions.		One	calculation	
of	Factor	of	Risk	applies	finite	element	analysis	to	finite	element	models	developed	
from	QCT	scans	of	the	hip	(Keyak	et	al.	2005).		This	approach	has	been	used	to	
determine	the	Failure	Load	of	bone	(or	Bone	Strength)	after	long-duration	
spaceflight;	for	example,	estimates	for	hip	strength	were	determined	for	two	loading	
orientations	and	determined	for	11	crewmembers	scanned	at	the	hip	by	QCT	(Keyak	
et	al.	2005;	Lang	2006).	In	recent	years,	merging	data	from	terrestrial	cohorts	of	
aging	populations	indicate	that	finite	element	model	estimates	of	hip	strength	may	
be	related	to	fracture	risk	(Orwoll	et	al.	2009;	Keaveny	et	al.	2010;	Keyak	et	al.	
2011),	especially	in	combination	with	aBMD.	Finite	element	model	estimates	of	hip	
failure	load	quantify	the	ability	of	the	hip	to	resist	fracture	for	a	specific	load	vector.	
This	index	may	be	the	single	best	existing	composite	assessment	of	bone	strength	
because	of	its	ability	to	integrate	applied	loads	with	geometry	and	distribution	of	
material	properties,	such	as	BMD,	elastic	modulus,	and	yield	strength,	in	3-D	bone	
structure	(Keyak	et	al.	2005).	While	model	estimation	of	strength	only	modestly	
predicts	fragility	fracture	over	aBMD,	the	finite	model	does	integrate	multiple	bone	
determinants	of	bone	strength	(Keyak	et	al.	2005).	This,	in	conjunction	with	the	
single	aBMD	surrogate	for	bone	strength,	may	enhance	the	assessment	of	fracture	
probability	in	each	astronaut	for	individualized	clinical	decisions.	This	
individualized	approach	is	discussed	further	in	the	Evidence	Report	for	Early	Onset	
Osteoporosis	(Sibonga	2017).	
	
The	other	approach	was	developed	as	part	of	the	Integrated	Medical	Model	(IMM),	a	
Monte	Carlo	simulation	approach	to	spaceflight	missions	that	explores	the	event	
space	for	medical	concerns	during	a	given	reference	mission.	The	IMM	was	designed	
to	be	a	probabilistic	model	system	and	database	of	supporting	medical	conditions	
used	to	provide	the	relative	risk,	including	likelihood	and	severity	of	outcomes,	for	
the	list	of	medical	conditions.	The	associated	Bone	Fracture	Risk	Module	(BFxRM)	
was	developed	at	the	NASA	Glenn	Research	Center	(Nelson	et	al.	2009),	designed	to	
estimate	bone	fracture	probability	by	integrating	the	frequency	of	events,	where	
applied	loads	exceeds	bone	strength,	with	physical	activities	of	high	or	low	energy.		
Specifically,	the	module	can	provide	a	distribution	of	loads	to	the	hip	based	upon	a	
fall	while	engaging	in	a	range	of	most	likely	performance	activities	over	the	duration	
of	a	space	mission	or	in	the	immediate	post-mission	time	period.		To	predict	the	
probability	of	fracture,	the	BFxRM	takes	into	account	the	following	parameters:	
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• Specific	crewmember	data	(for	example,	age,	height,	body	mass,	initial	bone	
mass,	joint	and	hip	fat	pad	stiffness,	and	damping	characteristics)	

• The	duration	of	low-gravity	exposure	at	any	given	time	during	the	mission,		
• The	attenuation	characteristics	of	the	EVA	suit	to	absorb	the	energy	of	

impact	(Sulkowski	et	al.	2011)	
• The	deflective	strategies	of	the	astronaut	(for	example,	arm	bracing)	to	

protect	themselves	by	energy	reduction	and	limiting	subsequent	injury	from	
a	fall	

• The	specific	mission	parameters,	including	duration	and	transit	time,	and	
mission	tasks	that	would	lead	to	high	levels	of	skeletal	loading,	

• The	number	of	times	that	a	fracture-risk	event	(such	as	a	fall	during	EVA,	
impact	with	equipment)	could	occur	during	a	mission	and	the	details	of	such	
an	event,	including	height	or	translation	velocity		

• The	change	in	bone	strength	as	a	function	of	aBMD	change	(LeBlanc	et	al.	
2000a).	

	
To	date,	BFxRM	estimates	a	distribution	of	applied	loading,	specific	to	the	hip,	per	
design	reference	missions;	however,	this	model	could	be	modified	to	assess	
overloading	probabilities	for	other	skeletal	sites.	Two	primary	variables	are	
calculated	in	this	risk	analysis,	including	the	Factor	of	Risk	for	fracture	(the	ratio	of	
Applied	Load	to	Bone	Strength)	and	the	probability	that	the	Factor	of	Risk	exceeds	1	
(in	other	words,	a	fracture	occurs)	during	a	wide	range	of	physical	activities.	To	
assess	the	probability	of	fracture,	the	frequency	of	overloading	events	and	the	
Factor	of	Risk	(>1)	are	combined	and	converted	to	a	probability	that	is	termed	the	
“Fracture	Risk	Index.”	The	frequency	and	types	of	loading	events	were	generated	by	
observing	Apollo	EVA	films	that	documented	a	range	of	physical	activities	as	well	as	
cross-referencing	astronaut	reports.	The	Factor	of	Fracture	Risk	is	converted	to	a	
probability	of	fracture	from	a	logistic	regression	of	actual	fractures	and	from	
assumptions	from	the	literature	governing	the	Factor	of	Risk	for	fracture	threshold.	
This	conversion	is	accomplished	by	selecting	random	combinations	of	the	factors	
and	attributes	described	above,	modeling	via	Monte	Carlo	simulation,	and	
generating	a	probabilistic	distribution	for	mechanical	loads	(kN)	to	the	hip	for	ISS,	
lunar,	and	Martian	missions	and	during	post-flight	activities	on	Earth	(Nelson	et	al.	
2009).	
	
In	the	IMM,	the	probabilistic	modeling	approach	provides	a	group	mean	estimate	of	
fracture	probability	to	the	wrist,	hip	and	lumbar	spine;	each	of	these	sites	was	
previously	identified	by	the	IMM	to	be	at	higher	risk	than	other	bony	locations	for	
overloading	and	risk	of	fracture	(Nelson	et	al.	2009).	Equally	important,	it	provides	
boundaries	of	the	uncertainty	in	this	PRA	by	using	data	and	prevailing	assumptions	
reported	in	the	literature.	The	model’s	metric,	the	probability	of	fracture	
occurrence,	can	be	used	in	decision-making	and	planning	for	exploration-class	
missions	and	for	comparison	across	all	the	other	risks	in	the	mission	context.	
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The	Factor	of	Risk	levels	for	male	astronauts	during	a	specific	EVA	mission	scenario	
on	Mars	and	lunar	missions	are	displayed	in	Table	3.		For	this	report	(Nelson	et	al.	
2009),	the	Factor	of	Risk	used	aBMD	data	as	the	surrogate	for	bone	strength.	
	
	
Table	3.	Mission	average	Factor	of	Risk	levels	for	several	different	mission	scenarios	for	a	male	
astronaut	on	Extravehicular	Activities	(Nelson	et	al.	2009).			
	

Activity	or	event	 Mission	
location	

Mission	
duration	

Mean	Factor	
of	Risk	 Std	

Femoral	Neck	Fracture	
Fall	to	side	 Moon	 Short	 0.09	 0.07	
Fall	to	side	 Moon	 Long	 0.10	 0.08	
Fall	to	side	 Mars	 Short	 0.23	 0.16	
Fall	to	side	 Mars	 Long	 0.28	 0.20	
Lumbar	Spine	Fracture	
45º	trunk	flexion,	
holding	a	load	 Moon		 Short		 0.12	 0.03	
90º	trunk	flexion,	
holding	a	load	 Moon	 Short	 0.08	 0.03	
Fall	from	1m,	landing	
on	two	feet	 Moon	 Short	 0.30	 0.05	
Fall	from	2m,	landing	
on	two	feet	 Moon	 Short	 0.46	 0.10	
45º	trunk	flexion,	
holding	a	load	 Moon		 Long	 0.12	 0.03	
90º	trunk	flexion,	
holding	a	load	 Moon	 Long	 0.08	 0.03	
Fall	from	1m,	landing	
on	two	feet	 Moon	 Long	 0.31	 0.06	
Fall	from	2m,	landing	
on	two	feet	 Moon	 Long	 0.48	 0.10	
45º	trunk	flexion,	
holding	a	load	 Mars	 Short		 0.29	 0.08	
90º	trunk	flexion,	
holding	a	load	 Mars	 Short	 0.20	 0.06	
Fall	from	1m,	landing	
on	two	feet	 Mars	 Short	 0.56	 0.12	
Fall	from	2m,	landing	
on	two	feet	 Mars	 Short	 0.77	 0.16	
45º	trunk	flexion,	
holding	a	load	 Mars	 Long	 0.34	 0.11	
90º	trunk	flexion,	
holding	a	load	 Mars	 Long	 0.23	 0.08	
Fall	from	1m,	landing	
on	two	feet	 Mars	 Long	 0.64	 0.17	
Fall	from	2m,	landing	
on	two	feet	 Mars	 Long	 0.88	 0.24	
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Taking	into	account	available	data	to	date,	the	Factor	of	Risk	levels	at	the	femoral	
neck	are	averaged	and	provided	for	several	different	activities	during	several	
specific	mission	scenarios.	While	no	Factor	of	Risk	for	fracture	exceeds	1	(indicating	
certain	risk	of	fracture)	for	any	single	event,	the	probability	of	fracture	will	increase	
as	the	frequency	of	an	event	increases.		
	
New	spaceflight	aBMD	data	have	become	available	since	2009	with	the	use	of	the	
ARED	exercise	countermeasure	on	the	ISS.	The	ARED	provides	weight-bearing	
exercises	with	up	to	600	pound-force	resistance	which	more	closely	simulates	the	
lifting	of	free	weights	on	Earth.		This	capability	provides	the	2-3x	body	weight	
resistance	typically	required	to	maintain	bone	mass	(Kohrt	et	al.	2004).	Previous	to	
ARED,	only	300	pound-force	was	provided	by	the	interim	Resistive	Exercise	Device	
(iRED).	Consequently,	resistance	exercise	with	ARED	reduced	the	total	change	in	
aBMD	in	ISS	astronauts	following	spaceflight.		Calculated	rates	of	BMD	loss	(n=11	
astronauts	as	of	summer	2012)	are	displayed	in	Table	4.	
	
Table	4.	Calculated	monthly	loss	in	BMD	before	(LeBlanc	et	al.	2000a)	and	after	ARED	use	on	ISS.	
	
	
Trochanter	

Rate	of	BMD	Loss	
(%/mo)	Pre-ARED	
Use	

Rate	of	BMD	Loss	
(%/mo)	With	ARED	
Use	

Mean	 -1.56	 -0.5	
Standard	Deviation	 0.99	 0.4	
Minimum	 -0.01	 -0.07	
Maximum	 -3.0	 -1.34	
	
Lumbar	Spine	

Rate	of	BMD	Loss	
(%/mo)	Pre-ARED	
Use	

Rate	of	BMD	Loss	
(%/mo)	With	ARED	
Use	

Mean	 -1.06	 -0.32	
Standard	Deviation	 0.63	 0.44	
Minimum	 0	 -0.16	
Maximum	 -2.0	 -1.35	
	
VII. Risk	in	Context	of	Exploration	Mission	Operations	
Specific	exploration	mission	scenarios	are	defined	according	to	the	duration	of	the	
time	in	space	(Table	5).	The	BFxRM	was	applied	to	each	of	these	mission	scenarios	
to	determine	the	probability	of	bone	fracture	during	the	performance	of	specific	
mission	activities	and	the	duration	of	the	specific	mission	(including	habitation	and	
transit	time).	

	
Table	5.	Definition	of	Exploration	Mission	Scenarios	by	Duration	

Duration Destination Transit Time to 
destination (days) 

Length of 
Stay (days) 

Transit Time to 
Earth (days) 

Short Moon 3 8 3 
Long Moon 5 170 5 
Short Mars 162 40 162 
Long Mars 189 540 189 
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Figure	4	provides	a	graphical	illustration	of	the	probability	of	bone	fracture	
occurrence	for	male	astronauts	during	various	activities	or	events	of	a	lunar	or	
Martian	mission.		Loading	events	include	a	fall	to	the	side,	a	45	degree	bend	from	the	
waist,	a	90	degree	bend	from	the	waist,	a	drop	jump	from	1	meter,	and	a	drop	jump	
from	2	meters.	Figure	4	shows	that	the	probability	of	fracture	is	less	(<0.2%)	during	
short-duration	missions	to	the	moon,	most	likely	due	to	decreased	exposure	time	in	
space.	It	is	presumed	that	the	severity	of	bone	loss	varies	as	a	function	of	time,	
although	it	is	unknown	if	bone	loss	is	a	linear	or	an	exponential	decline.	Given	that	
the	recovery	of	BMD	after	return	to	Earth	is	asymptotic	(Sibonga	et	al.	2007),	
speculation	is	that	the	decline	in	BMD	follows	a	similar	pattern	of	decline.	Of	the	
activities	evaluated,	the	probability	of	fracture	is	greater	for	falls	to	the	side	and	for	
drops	from	2	meters	height.	It	can	be	presumed	that	the	lower	gravitational	level	
(roughly	one-sixth	of	Earth	gravity)	on	the	moon	will	mitigate	bone	loss	likely	
proportionally	with	fractional	gravity,	as	in	a	rodent	model	for	partial	weight-
bearing	(Ellman	et	al.	2013;	Swift	et	al.	2013).	The	probability	for	fracture	increases	
as	the	missions	become	longer	(0.02%	moon	to	2.0%	Mars)	and	in	the	higher	
gravity	environment	of	the	Martian	surface	(roughly	one-third	of	Earth	gravity).	
	

	
Figure	4.	Probability	of	bone	fracture	for	male	astronauts	during	reference	missions	to	the	moon	and	
Mars	(Nelson	et	al.	2009).	
	
As	previously	mentioned,	a	Factor	of	Risk	had	been	calculated	to	address	the	impact	
of	a	Mars	mission	for	fracture	risk	after	return	to	Earth	(Sibonga	2017).	This	
estimation	was	based	upon	the	QCT	scans	of	the	hip	performed	in	ISS	crewmembers	
(Lang	2006).	The	pre-	and	post-flight	QCT	data	from	eleven	ISS	subjects	were	
analyzed	by	finite	element	modeling	to	determine	hip	fracture	loads	before	and	
after	spaceflight	(Keyak	et	al.	2009).	These	data	were	used	to	calculate	a	Factor	of	
Risk	for	fracture	at	the	time	of	launch	(pre-flight)	and	after	return	to	Earth	(post-
flight	Mars	Long	mission),	as	provided	below	in	Table	6.	These	estimations	indicated	
that	crewmembers	that	returned	back	to	Earth	from	a	Mars	mission	would	have	a	
comparable	risk	of	fracture	on	Earth	to	an	elderly	postmenopausal	female,	
particularly	for	a	loading	condition	associated	with	a	posterolateral	fall	but	not	for	
forces	associated	with	postural	stance	(Sibonga	2017).	Again,	the	elderly	are	likely	
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to	have	additional	risk	factors	and	skeletal	changes	that	are	associated	with	
advanced	age	contributing	to	their	propensity	to	fracture	over	a	younger-aged	
person.	
	
Table	6.	Estimated	Factor	of	Risks	based	upon	Finite	Element	Analysis	of	Fracture	Load	
	 Factor	of	Risk:	

Estimated	Applied	Load/Fracture	Load	Ratio*	
Astronaut	pre-flight	 0.89+0.21	
Astronaut	on	Earth	after	Mars	mission	 1.07+0.30	
Women,	70-80	years	of	age	 1.04+0.37	
Astronauts	on	Mars	(0.38	G)	 0.66+0.15	
*a	ratio	>1	indicates	that	the	applied	load	exceeds	the	fracture	load	(strength	of	the	bone)	and	
fracture	will	occur	
	
The	following	assumptions	were	made	in	these	calculations	of	Factor	of	Risk.	First,	
the	only	applied	forces	were	from	gravity	fields.	Not	only	does	this	assumption	
underestimate	fracture	risk,	but	it	also	does	not	address	a	potential	protective	effect	
of	an	exoskeleton	(EVA	suit).	The	applied	loads	on	skeleton	due	to	suit	design,	EVA	
activities,	or	tasks	performed	on	planetary	surfaces	are	not	known.	Further,	it	was	
assumed	that	there	was	a	consistent	loss	in	bone	mass	during	space	travel	to	and	
from	Mars	based	upon	an	estimated	monthly	loss	of	BMD,	which	presumes	a	
constant	loss,	for	weight-bearing	sites.	The	actual	time	course	of	bone	mineral	loss	
is	not	known.	Further,	the	model	assumes	that	no	further	bone	loss	occurs	during	
exposure	to	1/6	(lunar)	or	1/3	(Martian)	gravity.		We	do	not	currently	know	the	
extent,	if	any,	that	these	partial	gravity	fields	will	mitigate	bone	atrophy.	Rodent	
studies	in	ground-based	models	of	partial	weight-bearing	suggest	that	partial	
weight-bearing	loads	do	not	prevent	(Swift	et	al.	2013),	or	proportionally	reduce	
(Ellman	et	al.	2013)	musculoskeletal	declines.	
	
Similar	calculations	of	Factor	of	Risk	can	be	performed	for	other	mission	scenarios	
as	presented	in	Table	5.	Calculations	will	have	less	uncertainty	as	more	data	
reflecting	changes	to	additional	bone	parameters,	such	as	bone	structure,	are	better	
defined.	Bone	data	acquired	by	other	modalities	and	analyses	may	improve	the	
probabilistic	risk	assessments	for	fracture	(Cody	et	al.	1999).	
	
When	the	rate	of	BMD	loss	was	changed	within	the	BFxRM	to	reflect	the	aBMD	data	
of	crewmembers	with	access	to	ARED,	with	all	other	factors	within	the	BFxRM	
remaining	the	same,	there	was	minimal	change	in	the	probability	of	bone	fracture	
for	the	six	reference	missions.		The	reason	for	the	minimal	change	may	be	due	to	the	
following:	

• The	BFxRM	is	not	sensitive	to	changes	in	aBMD.		aBMD	by	DXA	accounts	for	
only	50-70%	of	actual	bone	strength,	so	a	small	change	in	aBMD	translates	to	
a	small	change	in	bone	strength	following	ARED	access,	even	over	the	course	
of	long	Martian	missions.	US	astronauts	have	substantial	pre-flight	bone	
mass,	with	aBMD	T-scores	greater	than	average	BMD	of	young	healthy	
persons,	and	the	loss	of	bone	mass	during	spaceflight,	though	still	evident	
even	with	resistive	exercise	on	ARED,	is	small	relative	to	the	absolute	mass.			
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• The	lower	gravitational	environments	on	moon	and	Mars	reduce	the	velocity	
of	a	fall	and,	subsequently,	applied	loads	to	the	hip	during	a	fall	on	a	
planetary	surface.			

• There	is	much	variability	with	rates	of	aBMD	loss	rendering	the	BRxFM	
insensitive	to	changes	in	aBMD	induced	by	bisphosphonates	or	ARED	
exercise.	The	most	sensitive	parameter	within	the	BFxRM	is	“the	number	of	
times	during	a	mission	that	an	event	occurs	that	could	result	in	a	fracture.”		
However,	it	is	challenging	to	estimate	how	many	times	an	astronaut	might	
accidently	fall.	

	
In	addition,	the	probability	of	wrist	fracture	remains	unchanged	from	pre-ARED	
implementation	because	the	change	in	BMD	at	the	wrist	during	the	mission	is	zero	
and	was	not	altered	by	use	of	the	ARED.	Therefore,	with	all	other	factors	remaining	
the	same,	the	change	in	bone	loss	rate	after	ARED	became	available	on-orbit	had	
very	little	effect	on	the	calculated,	overall	bone	fracture	probability.		This	suggests	
that	the	BRxFM	using	aBMD	for	bone	strength	may	not	be	useful	as	a	tool	because	it	
cannot	evaluate	the	effect	of	a	countermeasure.	To	this	aim,	finite	element	modeling	
to	estimate	changes	in	Bone	Strength	will	be	investigated	in	the	BFxRM	to	improve	
our	ability	to	estimate	fracture	probability.	

VIII. Gaps	
At	the	time	of	writing,	3	research	knowledge	gaps	have	been	identified	that	are	
directly	related	to	the	Risk	of	Bone	Fracture.	These	are:	

• Fracture	1:	We	don’t	understand	how	the	space	flight	environment	affects	
bone	fracture	healing	in-flight.		

• Fracture	2:	We	need	to	characterize	the	loads	applied	to	bone	for	standard	
in-mission	activities.		

• Fracture	3:	We	need	a	validated	method	to	estimate	the	Risk	of	Fracture	by	
evaluating	the	ratio	of	applied	loads	to	bone	fracture	loads	for	expected	
mechanically	loaded	activities	during	a	mission.		

IX. Conclusions	
A	high	risk	for	fracture	is	a	characteristic	of	osteoporosis,	which	is	a	consequence	of	
the	losses	in	bone	mass	and	in	structural	deterioration.	The	distinction	between	the	
increased	bone	fracture	risk	in	persons	with	osteoporosis	and	the	increased	risk	for	
fractures	during	a	spaceflight	mission	is	based	upon	a	Factor	of	Risk.	Osteoporotic	
persons	fracture	under	scenarios	of	minimal	or	no	loading	due	to	the	fragility	of	
bone	itself.	Fragility	fractures	are	characteristic	of	fractures	occurring	under	the	
loading	of	normal	activities	(for	example,	standing,	coughing,	rolling	over	in	bed)	or	
with	falls	from	a	standing	height.	To	the	best	of	our	data-mining	capabilities,	there	is	
no	evidence	for	increased	risk	of	fragility	fractures	in	long-duration	crewmembers,	
nor	is	there	a	diagnosis	of	osteoporosis	in	these	crewmembers	by	clinically	accepted	
guidelines.	However,	the	current	T-score	based	criteria	for	risk	assessment,	
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originally	developed	for	older	women,	are	probably	not	sufficient	for	assessing	risk	
in	a	low	number	of	astronauts	who	are	predominantly	young,	healthy	males	
exposed	to	skeletal	assault	that	is	unlike	age-related	bone	loss.		
	
Parameters	of	bone	micro-	and	macrostructure	contribute	to	the	strength	of	bone	
and	can	be	quantified	by	non-invasive	technologies.	Uncertainty	related	to	
spaceflight	effects	on	bone	morphology	and	on	bone	strength	exist	because	
technologies,	including	QCT	scanning	and	FEA,	to	assess	such	changes	have	
currently	been	assessed	only	on	a	low	number	of	volunteers.	Changes	to	the	human	
skeleton	when	exposed	to	a	microgravity	or	fractional	gravity	environment	remain	
unknown.	Low	subject	numbers	and	delayed	accumulation	of	data	are	large	
constraints	to	assessing	fracture	probability	for	decision-making	and	mission	
planning.		
	
With	an	increased	understanding	of	spaceflight	effects	and	improved	measurement	
capabilities	beyond	DXA	aBMD,	we	may	be	able	to	provide	a	better	assessment	of	
fracture	risk	to	future	crew.	Additional	data	could	include	the	temporal	pattern	of	
bone	loss	for	missions	greater	than	6	months	and	the	morphological	changes	that	
accompany	skeletal	adaptation	to	space,	including	both	microgravity	and	partial	
gravity	environments.	Documented	reductions	in	bone	mass	and	structural	changes	
suggest	declines	in	whole	bone	strength	such	that	a	deconditioned	person	with	bone	
atrophy	is	susceptible	to	fracture	at	loads	that	may	have	been	tolerable	before	
spaceflight.	A	multifactorial	analysis	of	cross-disciplinary	risk	factors	for	fracture	is	
also	warranted.	Finally,	modeling	the	Factor	of	Risk	for	fracture	during	a	spaceflight	
mission	requires	a	full	understanding	of	the	changes	in	bone	mass	and	in	bone	
quality	at	specific	sites	as	well	as	how	these	sites	will	be	mechanically	loaded	by	
activities	during	a	spaceflight	mission.	
	
	 	



27	
	

X. References	
Amin	S,	Achenbach	SJ,	Atkinson	E,	et	al	(2010)	Bone	Bone	Density	Following	Long-

Duration	Spaceflight	and	Recovery.		

Amin	S,	Achenbach	SJ,	Atkinson	E,	Sibonga	J	(2011)	Bone	Density	Following	Three	
Years	of	Recovery	from	Long-Duration	Space	Flight.		

Beck	TJ	(2007)	Extending	DXA	beyond	bone	mineral	density:	understanding	hip	
structure	analysis.	Curr	Osteoporos	Rep	5:49–55.	

Bischoff	HA,	Stähelin	HB,	Dick	W,	et	al	(2003)	Effects	of	vitamin	D	and	calcium	
supplementation	on	falls:	a	randomized	controlled	trial.	J	Bone	Miner	Res	Off	
J	Am	Soc	Bone	Miner	Res	18:343–351.	doi:	10.1359/jbmr.2003.18.2.343	

Bischoff-Ferrari	HA,	Dawson-Hughes	B,	Willett	WC,	et	al	(2004)	Effect	of	Vitamin	D	
on	falls:	a	meta-analysis.	JAMA	291:1999–2006.	doi:	
10.1001/jama.291.16.1999	

Black	DM,	Bouxsein	ML,	Marshall	LM,	et	al	(2008)	Proximal	Femoral	Structure	and	
the	Prediction	of	Hip	Fracture	in	Men:	A	Large	Prospective	Study	Using	QCT.	J	
Bone	Miner	Res	23:1326–1333.	doi:	10.1359/jbmr.080316	

Bloomberg	JJ,	Mulavara	AP	(2003)	Changes	in	walking	strategies	after	spaceflight.	
IEEE	Eng	Med	Biol	Mag	Q	Mag	Eng	Med	Biol	Soc	22:58–62.	

Bonnick	SL	(2007)	HSA:	beyond	BMD	with	DXA.	Bone	41:S9-12.	doi:	
10.1016/j.bone.2007.03.007	

Bonnick	SL,	Shulman	L	(2006)	Monitoring	osteoporosis	therapy:	bone	mineral	
density,	bone	turnover	markers,	or	both?	Am	J	Med	119:S25-31.	doi:	
10.1016/j.amjmed.2005.12.020	

Boudreaux	R,	Sibonga	JD	(2015)	Simple	Geometric	Measurements	Predict	Hip	
Fracture	Beyond	Bone	Mineral	Density.	Tex	Orthop	J	1:109–122.	

Carpenter	RD,	Beaupré	GS,	Lang	TF,	et	al	(2005)	New	QCT	analysis	approach	shows	
the	importance	of	fall	orientation	on	femoral	neck	strength.	J	Bone	Miner	Res	
Off	J	Am	Soc	Bone	Miner	Res	20:1533–1542.	doi:	10.1359/JBMR.050510	

Chang	G,	Honig	S,	Liu	Y,	et	al	(2015)	7	Tesla	MRI	of	bone	microarchitecture	
discriminates	between	women	without	and	with	fragility	fractures	who	do	
not	differ	by	bone	mineral	density.	J	Bone	Miner	Metab	33:285–293.	doi:	
10.1007/s00774-014-0588-4	

	
	



28	
	

Chesnut	CH,	Majumdar	S,	Newitt	DC,	et	al	(2005)	Effects	of	salmon	calcitonin	on	
trabecular	microarchitecture	as	determined	by	magnetic	resonance	imaging:	
results	from	the	QUEST	study.	J	Bone	Miner	Res	Off	J	Am	Soc	Bone	Miner	Res	
20:1548–1561.	doi:	10.1359/JBMR.050411	

Cody	DD,	Gross	GJ,	Hou	FJ,	et	al	(1999)	Femoral	strength	is	better	predicted	by	finite	
element	models	than	QCT	and	DXA.	J	Biomech	32:1013–1020.	

Courtine	G,	Pozzo	T	(2004)	Recovery	of	the	locomotor	function	after	prolonged	
microgravity	exposure.	I.	Head-trunk	movement	and	locomotor	equilibrium	
during	various	tasks.	Exp	Brain	Res	158:86–99.	doi:	10.1007/s00221-004-
1877-2	

Cummings	SR,	Black	DM,	Thompson	DE,	et	al	(1998)	Effect	of	alendronate	on	risk	of	
fracture	in	women	with	low	bone	density	but	without	vertebral	fractures:	
results	from	the	Fracture	Intervention	Trial.	JAMA	280:2077–2082.	

Cummings	SR,	Nevitt	MC,	Browner	WS,	et	al	(1995)	Risk	factors	for	hip	fracture	in	
white	women.	Study	of	Osteoporotic	Fractures	Research	Group.	N	Engl	J	Med	
332:767–773.	doi:	10.1056/NEJM199503233321202	

Dana	Carpenter	R,	LeBlanc	AD,	Evans	H,	et	al	(2010)	Long-term	changes	in	the	
density	and	structure	of	the	human	hip	and	spine	after	long-duration	
spaceflight.	Acta	Astronaut	67:71–81.	doi:	10.1016/j.actaastro.2010.01.022	

De	Laet	C,	Odén	A,	Johansson	H,	et	al	(2005)	The	impact	of	the	use	of	multiple	risk	
indicators	for	fracture	on	case-finding	strategies:	a	mathematical	approach.	
Osteoporos	Int	J	Establ	Result	Coop	Eur	Found	Osteoporos	Natl	Osteoporos	
Found	USA	16:313–318.	doi:	10.1007/s00198-004-1689-z	

Ellman	R,	Sibonga	J,	Bouxsein	M	(2010)	Male	astronauts	have	greater	bone	loss	and	
risk	of	hip	fracture	following	long	duration	spaceflights	than	females.	
[Abstract	1142]		Podium	presentation	at	the	American	Society	of	Bone	and	
Mineral	Research	Annual	Meeting;	Toronto,	Ontario,	Canada,	October	2010.		

Ellman	R,	Spatz	J,	Cloutier	A,	et	al	(2013)	Partial	reductions	in	mechanical	loading	
yield	proportional	changes	in	bone	density,	bone	architecture,	and	muscle	
mass.	J	Bone	Miner	Res	Off	J	Am	Soc	Bone	Miner	Res	28:875–885.	doi:	
10.1002/jbmr.1814	

Espallargues	M,	Sampietro-Colom	L,	Estrada	MD,	et	al	(2001)	Identifying	bone-
mass-related	risk	factors	for	fracture	to	guide	bone	densitometry	
measurements:	a	systematic	review	of	the	literature.	Osteoporos	Int	J	Establ	
Result	Coop	Eur	Found	Osteoporos	Natl	Osteoporos	Found	USA	12:811–822.	
doi:	10.1007/s001980170031	



29	
	

Gadomski	BC,	Lerner	ZF,	Browning	RC,	et	al	(2016)	Computational	characterization	
of	fracture	healing	under	reduced	gravity	loading	conditions.	J	Orthop	Res	Off	
Publ	Orthop	Res	Soc	34:1206–1215.	doi:	10.1002/jor.23143	

Gadomski	BC,	McGilvray	KC,	Easley	JT,	et	al	(2014a)	An	in	vivo	ovine	model	of	bone	
tissue	alterations	in	simulated	microgravity	conditions.	J	Biomech	Eng	
136:21020.	doi:	10.1115/1.4025854	

Gadomski	BC,	McGilvray	KC,	Easley	JT,	et	al	(2014b)	Partial	gravity	unloading	
inhibits	bone	healing	responses	in	a	large	animal	model.	J	Biomech	47:2836–
2842.	doi:	10.1016/j.jbiomech.2014.07.031	

Garnero	P,	Sornay-Rendu	E,	Duboeuf	F,	Delmas	PD	(1999)	Markers	of	bone	turnover	
predict	postmenopausal	forearm	bone	loss	over	4	years:	the	OFELY	study.	J	
Bone	Miner	Res	Off	J	Am	Soc	Bone	Miner	Res	14:1614–1621.	doi:	
10.1359/jbmr.1999.14.9.1614	

Garraway	WM,	Stauffer	RN,	Kurland	LT,	O’Fallon	WM	(1979)	Limb	fractures	in	a	
defined	population.	I.	Frequency	and	distribution.	Mayo	Clin	Proc	54:701–
707.	

Gutteridge	DH,	Stewart	GO,	Prince	RL,	et	al	(2002)	A	randomized	trial	of	sodium	
fluoride	(60	mg)	+/-	estrogen	in	postmenopausal	osteoporotic	vertebral	
fractures:	increased	vertebral	fractures	and	peripheral	bone	loss	with	
sodium	fluoride;	concurrent	estrogen	prevents	peripheral	loss,	but	not	
vertebral	fractures.	Osteoporos	Int	J	Establ	Result	Coop	Eur	Found	
Osteoporos	Natl	Osteoporos	Found	USA	13:158–170.	doi:	
10.1007/s001980200008	

Hans	D,	Barthe	N,	Boutroy	S,	et	al	(2011)	Correlations	Between	Trabecular	Bone	
Score,	Measured	Using	Anteroposterior	Dual-Energy	X-Ray	Absorptiometry	
Acquisition,	and	3-Dimensional	Parameters	of	Bone	Microarchitecture:	An	
Experimental	Study	on	Human	Cadaver	Vertebrae.	J	Clin	Densitom	14:302–
312.	doi:	10.1016/j.jocd.2011.05.005	

Hernandez	CJ,	Gupta	A,	Keaveny	TM	(2006)	A	biomechanical	analysis	of	the	effects	
of	resorption	cavities	on	cancellous	bone	strength.	J	Bone	Miner	Res	Off	J	Am	
Soc	Bone	Miner	Res	21:1248–1255.	doi:	10.1359/jbmr.060514	

Kanis	JA,	Melton	LJ,	Christiansen	C,	et	al	(1994)	The	diagnosis	of	osteoporosis.	J	
Bone	Miner	Res	Off	J	Am	Soc	Bone	Miner	Res	9:1137–1141.	doi:	
10.1002/jbmr.5650090802	

	
	
	



30	
	

Kanis	JA,	Oden	A,	Johnell	O,	et	al	(2007)	The	use	of	clinical	risk	factors	enhances	the	
performance	of	BMD	in	the	prediction	of	hip	and	osteoporotic	fractures	in	
men	and	women.	Osteoporos	Int	J	Establ	Result	Coop	Eur	Found	Osteoporos	
Natl	Osteoporos	Found	USA	18:1033–1046.	doi:	10.1007/s00198-007-0343-
y	

Keaveny	TM,	Kopperdahl	DL,	Melton	LJ,	et	al	(2010)	Age-dependence	of	femoral	
strength	in	white	women	and	men.	J	Bone	Miner	Res	Off	J	Am	Soc	Bone	Miner	
Res	25:994–1001.	doi:	10.1359/jbmr.091033	

Keyak	JH,	Kaneko	TS,	Tehranzadeh	J,	Skinner	HB	(2005)	Predicting	proximal	
femoral	strength	using	structural	engineering	models.	Clin	Orthop	219–228.	

Keyak	JH,	Koyama	AK,	LeBlanc	A,	et	al	(2009)	Reduction	in	proximal	femoral	
strength	due	to	long-duration	spaceflight.	Bone	44:449–453.	doi:	
10.1016/j.bone.2008.11.014	

Keyak	JH,	Sigurdsson	S,	Karlsdottir	G,	et	al	(2011)	Male-female	differences	in	the	
association	between	incident	hip	fracture	and	proximal	femoral	strength:	a	
finite	element	analysis	study.	Bone	48:1239–1245.	doi:	
10.1016/j.bone.2011.03.682	

Kohrt	WM,	Bloomfield	SA,	Little	KD,	et	al	(2004)	American	College	of	Sports	
Medicine	Position	Stand:	physical	activity	and	bone	health.	Med	Sci	Sports	
Exerc	36:1985–1996.	

Lang	T,	LeBlanc	A,	Evans	H,	et	al	(2004)	Cortical	and	Trabecular	Bone	Mineral	Loss	
From	the	Spine	and	Hip	in	Long-Duration	Spaceflight.	J	Bone	Miner	Res	
19:1006–1012.	doi:	10.1359/JBMR.040307	

Lang	TF	(2006)	What	do	we	know	about	fracture	risk	in	long-duration	spaceflight?	J	
Musculoskelet	Neuronal	Interact	6:319–321.	

LeBlanc	A,	Lin	C,	Shackelford	L,	et	al	(2000a)	Muscle	volume,	MRI	relaxation	times	
(T2),	and	body	composition	after	spaceflight.	J	Appl	Physiol	Bethesda	Md	
1985	89:2158–2164.	

LeBlanc	A,	Schneider	V,	Shackelford	L,	et	al	(2000b)	Bone	mineral	and	lean	tissue	
loss	after	long	duration	space	flight.	J	Musculoskelet	Neuronal	Interact	
1:157–60.	

LeBlanc	AD,	Spector	ER,	Evans	HJ,	Sibonga	JD	(2007)	Skeletal	responses	to	space	
flight	and	the	bed	rest	analog:	a	review.	J	Musculoskelet	Neuronal	Interact	
7:33–47.	

	



31	
	

Mader	TH,	Gibson	CR,	Pass	AF,	et	al	(2011)	Optic	disc	edema,	globe	flattening,	
choroidal	folds,	and	hyperopic	shifts	observed	in	astronauts	after	long-
duration	space	flight.	Ophthalmology	118:2058–2069.	doi:	
10.1016/j.ophtha.2011.06.021	

Medimaps	Group	(2015)	Advanced	DXA	Using	TBS	iNsight.		

Mulavara	AP,	Feiveson	AH,	Fiedler	J,	et	al	(2010)	Locomotor	function	after	long-
duration	space	flight:	effects	and	motor	learning	during	recovery.	Exp	Brain	
Res	202:649–659.	doi:	10.1007/s00221-010-2171-0	

NASA	(2014)	NASA	Spaceflight	Human	System	Standards	-	NASA	Standard	3001.	
National	Aeronautics	and	Space	Administration,	NASA	Johnson	Space	Center	

NASA	Human	Research	Program	(2016)	Human	Research	Program	Roadmap.	
https://humanresearchroadmap.nasa.gov.		

Nelson	ES,	Lewandowski	B,	Licata	A,	Myers	JG	(2009)	Development	and	validation	
of	a	predictive	bone	fracture	risk	model	for	astronauts.	Ann	Biomed	Eng	
37:2337–2359.	doi:	10.1007/s10439-009-9779-x	

Newman	DJ,	Jackson	DK,	Bloomberg	JJ	(1997)	Altered	astronaut	lower	limb	and	
mass	center	kinematics	in	downward	jumping	following	space	flight.	Exp	
Brain	Res	117:30–42.	

Ng	AC,	Drake	MT,	Clarke	BL,	et	al	(2012)	Trends	in	subtrochanteric,	diaphyseal,	and	
distal	femur	fractures,	1984-2007.	Osteoporos	Int	J	Establ	Result	Coop	Eur	
Found	Osteoporos	Natl	Osteoporos	Found	USA	23:1721–1726.	doi:	
10.1007/s00198-011-1777-9	

NIH	Consensus	Development	Panel	on	Osteoporosis	Prevention,	Diagnosis,	and	
Therapy	(2001)	Osteoporosis	prevention,	diagnosis,	and	therapy.	JAMA	
285:785–795.	

Orwoll	ES,	Adler	RA,	Amin	S,	et	al	(2013)	Skeletal	health	in	long-duration	
astronauts:	nature,	assessment,	and	management	recommendations	from	the	
NASA	Bone	Summit.	J	Bone	Miner	Res	Off	J	Am	Soc	Bone	Miner	Res	28:1243–
1255.	doi:	10.1002/jbmr.1948	

Orwoll	ES,	Marshall	LM,	Nielson	CM,	et	al	(2009)	Finite	element	analysis	of	the	
proximal	femur	and	hip	fracture	risk	in	older	men.	J	Bone	Miner	Res	Off	J	Am	
Soc	Bone	Miner	Res	24:475–483.	doi:	10.1359/jbmr.081201	

Parfitt	AM,	Drezner	MK,	Glorieux	FH,	et	al	(1987)	Bone	histomorphometry:	
standardization	of	nomenclature,	symbols,	and	units.	Report	of	the	ASBMR	
Histomorphometry	Nomenclature	Committee.	J	Bone	Miner	Res	Off	J	Am	Soc	
Bone	Miner	Res	2:595–610.	doi:	10.1002/jbmr.5650020617	



32	
	

Peters	B,	Bloomberg	J,	Layne	C,	et	al	(1996)	Eye,	head,	and	trunk	phase	relationships	
during	treadmill	locomotion	while	viewing	visual	targets	at	different	
distances.		Soc.	Neurosci.	Abstr.	1996			22(3):	1848.	Soc	Neurosci	Abstr	
22:1848.	

Prevrhal	S,	Meta	M,	Genant	HK	(2004)	Two	new	regions	of	interest	to	evaluate	
separately	cortical	and	trabecular	BMD	in	the	proximal	femur	using	DXA.	
Osteoporos	Int	J	Establ	Result	Coop	Eur	Found	Osteoporos	Natl	Osteoporos	
Found	USA	15:12–19.	doi:	10.1007/s00198-003-1500-6	

Riggs	BL,	Hodgson	SF,	O’Fallon	WM,	et	al	(1990)	Effect	of	fluoride	treatment	on	the	
fracture	rate	in	postmenopausal	women	with	osteoporosis.	N	Engl	J	Med	
322:802–809.	doi:	10.1056/NEJM199003223221203	

Riggs	BL,	Melton	LJ,	Robb	RA,	et	al	(2006)	Population-based	analysis	of	the	
relationship	of	whole	bone	strength	indices	and	fall-related	loads	to	age-	and	
sex-specific	patterns	of	hip	and	wrist	fractures.	J	Bone	Miner	Res	Off	J	Am	Soc	
Bone	Miner	Res	21:315–323.	doi:	10.1359/JBMR.051022	

Robinovitch	SN,	Hayes	WC,	McMahon	TA	(1991)	Prediction	of	femoral	impact	forces	
in	falls	on	the	hip.	J	Biomech	Eng	113:366–374.	

Schuit	SCE,	van	der	Klift	M,	Weel	AEAM,	et	al	(2004)	Fracture	incidence	and	
association	with	bone	mineral	density	in	elderly	men	and	women:	the	
Rotterdam	Study.	Bone	34:195–202.	doi:	10.1016/j.bone.2003.10.001	

Sibonga	J	(2017)	Risk	of	Accelerated	Osteoporosis.	National	Aeronautics	and	Space	
Administration,	NASA	Johnson	Space	Center.	Human	Research	Program	
Evidence	Report	May	9,	2017,	available	at:	
https://humanresearchroadmap.nasa.gov/Evidence/	

Sibonga	JD,	Evans	HJ,	Sung	HG,	et	al	(2007)	Recovery	of	spaceflight-induced	bone	
loss:	bone	mineral	density	after	long-duration	missions	as	fitted	with	an	
exponential	function.	Bone	41:973–978.	doi:	10.1016/j.bone.2007.08.022	

Smith	SM,	Heer	M,	Shackelford	LC,	et	al	(2015)	Bone	metabolism	and	renal	stone	
risk	during	International	Space	Station	missions.	Bone	81:712–720.	doi:	
10.1016/j.bone.2015.10.002	

Smith	SM,	Heer	MA,	Shackelford	LC,	et	al	(2012)	Benefits	for	bone	from	resistance	
exercise	and	nutrition	in	long-duration	spaceflight:	Evidence	from	
biochemistry	and	densitometry.	J	Bone	Miner	Res	Off	J	Am	Soc	Bone	Miner	
Res	27:1896–1906.	doi:	10.1002/jbmr.1647	

Smith	SM,	Wastney	ME,	Morukov	BV,	et	al	(1999)	Calcium	metabolism	before,	
during,	and	after	a	3-mo	spaceflight:	kinetic	and	biochemical	changes.	Am	J	
Physiol	277:R1-10.	



33	
	

Smith	SM,	Wastney	ME,	O’Brien	KO,	et	al	(2005)	Bone	markers,	calcium	metabolism,	
and	calcium	kinetics	during	extended-duration	space	flight	on	the	mir	space	
station.	J	Bone	Miner	Res	Off	J	Am	Soc	Bone	Miner	Res	20:208–218.	doi:	
10.1359/JBMR.041105	

Sornay-Rendu	E,	Munoz	F,	Garnero	P,	et	al	(2005)	Identification	of	Osteopenic	
Women	at	High	Risk	of	Fracture:	The	OFELY	Study.	J	Bone	Miner	Res	
20:1813–1819.	doi:	10.1359/JBMR.050609	

Sulkowski	CM,	Gilkey	KM,	Lewandowski	BE,	et	al	(2011)	An	extravehicular	suit	
impact	load	attenuation	study	to	improve	astronaut	bone	fracture	prediction.	
Aviat	Space	Environ	Med	82:455–462.	

Swift	JM,	Lima	F,	Macias	BR,	et	al	(2013)	Partial	weight	bearing	does	not	prevent	
musculoskeletal	losses	associated	with	disuse.	Med	Sci	Sports	Exerc	
45:2052–2060.	doi:	10.1249/MSS.0b013e318299c614	

Turner	RT	(2000)	Invited	review:	what	do	we	know	about	the	effects	of	spaceflight	
on	bone?	J	Appl	Physiol	Bethesda	Md	1985	89:840–847.	

van	der	Linden	JC,	Homminga	J,	Verhaar	JA,	Weinans	H	(2001)	Mechanical	
consequences	of	bone	loss	in	cancellous	bone.	J	Bone	Miner	Res	Off	J	Am	Soc	
Bone	Miner	Res	16:457–465.	doi:	10.1359/jbmr.2001.16.3.457	

Vico	L,	Collet	P,	Guignandon	A,	et	al	(2000)	Effects	of	long-term	microgravity	
exposure	on	cancellous	and	cortical	weight-bearing	bones	of	cosmonauts.	
Lancet	Lond	Engl	355:1607–1611.	

Wainwright	SA,	Marshall	LM,	Ensrud	KE,	et	al	(2005)	Hip	Fracture	in	Women	
without	Osteoporosis.	J	Clin	Endocrinol	Metab	90:2787–2793.	doi:	
10.1210/jc.2004-1568	

World	Health	Organization	(2004)	WHO	Scientific	Group	on	the	Assessment	of	
Osteoporosis	at	Primary	Health	Care	Level.	Summary	Meeting	Report.		
Brussels,	Belgium,	May	5-7,	2004.	World	Health	Organization,	Brussels,	
Belgium	

World	Health	Organization	(1994)	Assessment	of	fracture	risk	and	its	application	to	
screening	for	postmenopausal	osteoporosis.	Report	of	a	WHO	Study	Group.	
World	Health	Organ	Tech	Rep	Ser	843:1–129.	

	 	



34	
	

XI. Team	
NASA	Johnson	Space	Center,	Houston,	TX	
Jean	Sibonga,	Ph.D.			
Harlan	J.	Evans,	Ph.D.	
Elisabeth	Spector,	B.S.	
Scott	A.	Smith,	M.S.,	(CBDT)	
Greg	Yardley,	M.S.	
	
NASA	Glenn	Research	Center,	Cleveland,	OH	
Jerry	G.	Myers,	Ph.D.	
Beth	E.	Lewandowski,	Ph.D.	
	

XII. List	of	Acronyms	
	
aBMD:	areal	bone	mineral	density	
BFxRM:	Bone	Fracture	Risk	Model	
BMD:	Bone	mineral	density	
DXA:	dual-energy	X-ray	absorptiometry	
EVA:	Extravehicular	activity	
HRP:	Human	Research	Program	
IMM:	Integrated	Medical	Model	
iRED:	interim	resistive	exercise	device	
ISS:	International	Space	Station	
MRI:	magnetic	resonance	imaging	
PRA:	probabilistic	risk	assessment	
QCT:	quantitative	computed	tomography	
vBMD:	volumetric	bone	mineral	density	
	


