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2-D Monte Carlo Computational Model
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Arriving Atomic Oxygen Characteristics

 Energy

Angle and position of attack

Averages over each orbit

Fluence
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Atomic Oxygen Energy
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Atomic Oxygen Flux vs Angle from Ram
at 400 km orbit and 28.5° inclination and 1000K thermosphere
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Flux relative to ram

Atomic Oxygen Flux vs Angle from Ram
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Atomic Oxygen Arrival Direction

at 400 km circular orbit
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ALTITUDE (km)
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Atomic Oxygen Energy Versus Altitude

at 400 km circular orbit, 28.5° inclination
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Atomic Oxygen Number Density Versus Altitude
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Atomic Oxygen Flux Versus Altitude

Averaged over a solar cycle for a 96 degree inclined circular orbit
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Atomic Oxygen Interaction Characteristics

 Initial impact
— Reactive surface
« React and remove a cell
« Scatter away from the impacted cell
* Recombine to form O,
 Partially thermally accommodate

— Non-reactive surface
* Recombine to form O,
« Scatter away from the impacted cell
 Partially thermally accommodate
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Upon Initial Atomic Oxygen Impact
for a 2D model

« Randomly select location and direction of impact
- Fixed direction
- Sweeping direction

 Reaction probability dependence upon angle of impact
P- = (cos )"
Where 6 = the angle between the arriving atomic oxygen

direction and the local surface normal
n = cosine exponent = 0.5 based on optimization
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Upon Initial Atomic Oxygen Impact
for a 2D model

 Off reactive surfaces

 Energy dependent reaction probability

_EA
Pr = ce /

Where ¢ =3.178 x 1024
E, = activation energy = 0.26 eV based on optimization

E = atomic oxygen impact energy, eV = 4.5 eV
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Scattering of Atomic Oxygen
for a 2D model

Off Reactive Off Non-Reactive

Scattering Description Surfaces Surfaces
Fractional recombination 0.3 0.33
Degree of specular as 0.0 05
opposed to diffuse ejection ' '
Fractional energy loss upon 0.4 0.05

ejection
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Other Monte Carlo Computational Assumptions

Temperature for thermally accommodated atomic oxygen

atoms, K 300

Limit of how many bounces the atomic oxygen atoms are
allowed to make before an estimate of the probability of o5
reaction is assigned

Thermally accommodated energy/actual atom energy for 0.9
atoms assumed to be thermally accommodated

Initial atomic oxygen energy, eV 4.5

Thermospheric atomic oxygen temperature, K 1000

Atomic oxygen arrival plane relative to Earth for a
Maxwell-Boltzmann atomic oxygen temperature
distribution and an orbital inclination of 28.5°

Horizontal
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Monte Carlo Modeling of 2D Crack in Al on LDEF
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" Ram Atomic raanxygen Attack at Crack Defect Site in @/
Kapton H Polyimide (200,000 atoms entered)
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Interaction parameter Value
Atomic oxygen initial impact reaction probability 0.062
Activation energy, E,, in eV for energy dependent reaction
. 0.26
probability
Atomic oxygen reaction probability dependence exponent
upon angle of impact, n, where the reaction probability =
Pee(cos )" where g is the angle between the arrival 05
direction and the local surface normal and P¢ is the energy '
dependent reaction probability at normal incidence
Probability of atomic oxygen recombination upon impact
. . . 0.33
with protective coating
Probability of atomic oxygen recombination upon impact 0.3
with polymer '

Www.nasa.gov s



National Aeronautics and Space Administration

Fractional energy loss, f, upon impact with polymer 04

Fractional energy loss upon impact with protective

coating 0.05

Degree of specularity as opposed to diffuse scattering of
atomic oxygen upon non-reactive impact with protective
coating where 1 = fully specular and 0 = fully diffuse| 0.2
scattering

Degree of specularity as opposed to diffuse scattering of
atomic oxygen upon non-reactive impact with polymer| 0.5
where 1 = fully specular and 0 = fully diffuse scattering
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Temperature for thermally accommodated atomic oxygen
atoms, K 300

Limit of how many bounces the atomic oxygen atoms are
allowed to make before an estimate of the probability of o5
reaction is assigned

Thermally accommodated energy/actual atom energy for 0.9
atoms assumed to be thermally accommodated

Initial atomic oxygen energy, eV 4.5

Thermospheric atomic oxygen temperature, K 1000

Atomic oxygen arrival plane relative to Earth for a Maxwell-
Boltzmann atomic oxygen temperature distribution and an

o Horizontal
orbital inclination of 28.5°
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Monte Carlo Modeling Showing Development of
Textured Surfaces

2 PN — Original smooth surface

\ Textured surface

LDEF atomic oxygen textured surface Monte Carlo model textured
surface using 2 million simulated
oxygen atoms
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International Space Station Solar Array Blanket
Box Covers After One Year In Orbit
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Computational Predictions
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Atomic Oxygen Erosion of Single & Multiple
Layer Polymer Films

AR RT

Erosion yield, 3 x 10% 3.25 x 10%
cm3/atom
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Ocean Color Instrument
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Conclusions

* Monte Carlo computational modeling of atomic
oxygen interactions can be made to replicate
observed in-space erosion of polymers.

« The interaction characteristics can be used to predict
oxygen fluxes and potential interactions within
telescopes and other low Earth orbital structures.

* Potential exists to determine durability issues
representing a variety of polymers and structures.
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