

GUIDELINES AND SUGGESTIONS FOR BALLOON GONDOLA DESIGN

MAY 16-18 2017 HUGO FRANCO

DESIGN REQUIREMENTS

• STRUCTURAL INTEGRITY

- Primarily to survive termination event
 - Safety
 - Mission assurance
- Has been sufficient for landing Although not a CSBF requirement

LAUNCHABILITY

- Important to prevent damage
- Allows for less than ideal launch conditions

• STAGING/PICKUP

- Must be able to fit inside existing high bays
- Allows for hoist pickup and roll out to launch vehicle

• RECOVERY

- Some existing recovery limitations Particularly Antarctica
- Crucial to stay within limitations for critical components

STRUCTURAL REQUIREMENTS

• 10G VERTICAL – 5 G SIDE LOAD

- Based on ultimate load of the material (not yield)
- Intended to prevent freefall of components

• ROTATOR

- Critical Component
 - Single point failure
 - Watch for concentration factors

• SUSPENSION LINES (WHERE APPLICABLE)

- Great historical data for steel cables
- ➢ Have used synthetic systems before to save weight − Kevlar, Spectra
 - UV a concern, one time use perhaps

• STRUCTURAL MEMBERS

- Mostly made of Aluminum or other lite tough metals
- Have flown Carbon Fiber/metal hybrids
 - Still learning to test and approve for certifacation

LAUNCHABILITY

• PAYLOAD MUST BE ABLE TO SURVIVE LAUNCH

- > These are dynamic launches
 - Damage to antennae, solar panels or other protruding objects
 - Sensitive equipment can be damaged
 - Latching mechanisms

• MINIMUM DESIRED DISTANCES FROM LAUNCH VEHICLE

- "20 degree rule" Assures minimum desired clearance Launch Vehicle
- ➢ 6 ft. of ground clearance − Avoids contact with ground
- 5 ft. of clearance from front end of vehicle Avoids contact with front end of vehicle during launch

• OTHER OBSERVATIONS

- Width/Length of payload High MOI
- Wide sections near the boom (higher)
 - Risk of contact with boom and damage

STAGING/GONDOLA PICKUP

• FACILITIES LIMITATIONS

- Height/Width of payload
 - Allow for weighing the payload inside the building (Antarctica)
 - Allow for ease of roll in/and out of building

• CART/WHEELS

- Allows people to work underneath
- > Ideally allows for ballast hoppers and solar panels to stay attached for roll out.
 - Huge time saver
- Must be big enough for easy rollout
- Must allow rotation of payload for vehicle pickup

RECOVERY

• GONDOLA DISASSEMBLY

- Critical components to stay within a certain allowable size and weight
 - Limited by recovery vehicle
 - Helo
 - Twin Otter and Bassler (Antarctica)
 - Land Vehicles
- Easy/Quick Disassembly
 - Allows for quicker recovery Antarctica
 - Data vaults and other critical components accessible
 - Trade off between access and protection

COMMON PITFALLS AND RECOMMENDATIONS

• WAITING TOO LONG TO CONTACT CSBF

- The sooner the better on gondola design
- Pointing systems are critical and expensive components
 - The sooner we see the design the better
- Placing CSBF equipment in appropriate location
 - Thermal considerations
 - Antenna placement

• **PROVIDING ANALYSIS FOR MAXIMUM WEIGHT**

- Final weights are usually higher than predicted
 - Avoids rerunning the analysis if overweight
- PROTECTIVE CAGE FOR SIP
- NO APPROPRIATE CASTERS/TIRES
 - ➢ Hard to maneuver

