
Mary Jo W. Shalkhauser
Glenn Research Center, Cleveland, Ohio

Programmable Logic Device (PLD) Design
Description for the Integrated Power, Avionics, and
Software (iPAS) Space Telecommunications Radio
System (STRS) Radio

NASA/TM—2017-219429

April 2017

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space science.
The NASA Scientifi c and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server—Registered
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS) thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientifi c and
technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658

• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

Mary Jo W. Shalkhauser
Glenn Research Center, Cleveland, Ohio

Programmable Logic Device (PLD) Design
Description for the Integrated Power, Avionics, and
Software (iPAS) Space Telecommunications Radio
System (STRS) Radio

NASA/TM—2017-219429

April 2017

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Available from

Level of Review: This material has been technically reviewed by technical management.

NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

NASA/TM—2017-219429 1

Programmable Logic Device (PLD) Design Description for the
Integrated Power, Avionics, and Software (iPAS) Space

Telecommunications Radio System (STRS) Radio

Mary Jo W. Shalkhauser
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Summary

The Space Telecommunications Radio System (STRS) provides a common, consistent framework for
software defined radios (SDRs) to abstract the application software from the radio platform hardware.
The STRS standard aims to reduce the cost and risk of using complex, configurable, and reprogrammable
radio systems across NASA missions. To promote the use of the STRS architecture for future NASA
advanced exploration missions, NASA Glenn Research Center developed an STRS compliant SDR on a
radio platform used by the Advanced Exploration System program at the Johnson Space Center in their
Integrated Power, Avionics, and Software (iPAS) laboratory. At the conclusion of the development, the
software and hardware description language (HDL) code was delivered to Johnson for their use in their
iPAS testbed to get hands-on experience with the STRS standard, and for development of their own STRS
waveforms on the now STRS-compliant platform.

1.0 Introduction

The Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System
(STRS) radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System
(RIACS) platform, currently being used for radio development at the NASA Johnson Space Center. The
platform consists of a Xilinx® Virtex®-6 ML605 Evaluation Kit, an Analog Devices AD–FMCOMMS1–
EBZ radiofrequency (RF) front-end board, and an Axiomtek™ eBOX620–110–FL embedded personal
computer (PC) running the Ubuntu® 12.04 LTS operating system. Figure 1 shows the RIACS platform
hardware. The result of this development is a very low cost, STRS-compliant platform that can be used
for waveform developments for multiple applications. The purpose of this document is to describe the
design of the hardware description language (HDL) code for the field-programmable gate array (FPGA)
portion of the iPAS STRS radio, particularly the design of the FPGA wrapper and the test waveform.

NASA/TM—2017-219429 2

Figure 1.—Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform

components. ADC, analog-to-digital converter; DAC, digital-to-analog converter; FPGA,
field-programmable gate array; RF, radiofrequency; Rx, receive; Tx, transmit.

2.0 Programmable Logic Device (PLD) Design Overview

This section provides an overview of the PLD design.

2.1 Purpose

The purpose of the programmable logic device (PLD) design is the implementation of the signal
processing functions of the STRS radio architecture in the iPAS RIACS platform. The PLD design
consists of two parts: the FPGA wrapper and the test waveform. The FPGA wrapper implements each of
these platform interfaces:

(1) Ethernet communication to the embedded processor for commanding and data streaming
(2) Digital-to-analog converter (DAC) and analog-to-digital converter (ADC) interface to the

radiofrequency (RF) board
(3) RF board control and configuration
(4) FPGA clocking

The test waveform does not fully implement all the signal processing functionality for a radio, but it

exercises and demonstrates each interface in the FPGA wrapper. A future user of the platform for an
STRS radio would use the FPGA wrapper and replace the test waveform with their own radio signal
processing functions.

The PLD design is required to receive and process commands and provide command control and data
to the test waveform. It must also receive (Rx) and transmit (Tx) streaming data from and to the
embedded processor. The test waveform demonstrates each FPGA wrapper interface. To test Tx-side
streaming, it can perform bit error rate (BER) testing on Tx-side pseudorandom bit sequence (PRBS)
streaming data. It can also generate PRBS streaming data packets for an Rx-side streaming data source.
The test waveform generates sine waves for the in-phase (I) and quadrature (Q) inputs to the RF

NASA/TM—2017-219429 3

transceiver. A binary phase shift keying (BPSK) modulator is included to modulate data from the PRBS
generator or from Tx-side streaming data. Captured I and Q samples from the RF transceiver can be
streamed to the embedded processor where it can be plotted (if a sine wave) or BER checked (if PRBS
data) to demonstrate proper functionality of the RF board and its interfaces. The Xilinx® ChipScope™ Pro
tool can be used on the Rx side to view the data received from the ADC.

2.2 Top-Level Design Description

Figure 2 shows how the STRS standard is implemented on the RIACS platform. The signal
processing module encompasses the PLD design, which consists of the FPGA wrapper that implements
all the interfaces to the FPGA and abstracts them from the waveform, as well as the waveform, which is
the PLD implementation of the radio signal processing functions.

2.3 Concept of Operation

The flight computer graphical user interface (GUI) simulates the STRS commands that would
originate from a typical flight computer. The general purpose module (GPM) is implemented on the
embedded PC (eBOX620–110–FL) and includes the STRS operating environment (OE) and waveform
application software. The STRS OE communicates with the waveform application through standardized
STRS application programming interfaces (APIs) to control and configure the waveform.

The signal processing module (SPM) is encompassed in the Xilinx® ML605 FPGA board. The FPGA
consists of two parts: an FPGA wrapper and a test waveform. The FPGA wrapper abstracts the hardware
interfaces from the waveform developer. The test waveform utilizes each of the hardware interfaces
within the wrapper to demonstrate that the wrapper is correctly implemented. The GPM sends commands
over an Ethernet port to the FPGA to control and configure the waveform. The GPM also streams
packetized data to the FPGA and receives packetized streaming data from the FPGA over the same
Ethernet port.

Figure 2.—Space Telecommunications Radio System (STRS) implementation on the Reconfigurable,

Intelligently-Adaptive Communication System (RIACS) platform. ADC, analog-to-digital converter; APIs, application
programming interfaces; DAC, digital-to-analog converter; FMC, FPGA Mezzanine Card; FPGA, field-
programmable gate array; GPM, general purpose module; GUI, graphical user interface; HAL, hardware abstraction
layer; PC, personal computer; RF, radiofrequency; Rx, receive; Tx, transmit; UDP, User Datagram Protocol.

NASA/TM—2017-219429 4

The RF front-end board (AD–FMCOMMS1–EBZ) contains a DAC, up-converter, down-converter,
and an ADC. The FPGA configures the RF board using the embedded Xilinx® MicroBlaze™ 32-bit
Reduced Instruction Set Computer soft processor and sends I and Q data to the DAC converter. The
FPGA also receives down-converted and sampled I and Q data from ADC on the RF board.

The test waveform will be able to demonstrate STRS commands for configuration and control of the
test waveform, Tx-side streaming data operation, RF front-end board configuration, Rx-side streaming
data, and STRS telemetry querying.

2.4 Design Decisions

The RF front-end board (AD–FMCOMMS1–EBZ) comes with a reference design to aid developers in
using the board. The reference design, implemented using the Xilinx® Embedded Development Kit
(EDK) and Software Development Kit (SDK) tools, is complex and contains functionality not necessary
for the STRS radio implementation. It was decided to use the reference design only for the configuration
of the RF board and not for the data paths. The FPGA wrapper will, therefore, be able to interface directly
to the DAC and ADC through VHSIC Hardware Development Language (VHDL) in the Xilinx®
Integrated Synthesis Environment (ISE) Project Navigator. This approach greatly simplifies the FPGA
wrapper and the insertion of new waveforms.

The test waveform includes a BPSK modulator to provide a better demonstration of the RF module
(RFM). PRBS data is modulated when data is transmitted through the RFM. The modulated data into the
DAC and out of the ADC is viewable using the Xilinx® ChipScope™ Pro tool, but the signal out of the
ADC is not demodulated in this implementation.

It was decided early in the development phase to use the single Ethernet port on the Xilinx® ML605
FPGA board for command and streaming data. This was done because it required only one interface to be
implemented. Since command packets are short and relatively infrequent, they are unlikely to interfere
with streaming data packets.

The command packet length was defined to be 49 total bytes. Command responses are 60 bytes in
length. Streaming data packets are 557 total bytes. In each case, 42 bytes are Ethernet header bytes that
consist of the media access control (MAC) header (14 bytes), Internet Protocol (IP) header (20 bytes), and
User Datagram Protocol (UDP) header (8 bytes). The total length of the packets (i.e., the payload portion
of each packet) can be changed to accommodate new designs simply by changing the appropriate
constants in STRS_Radio_Pkg.vhd.

The GPM processor (eBOX620–110–FL) transmits and receives command and response packets over
a UDP port number that is separate from the UDP port used for streaming data. Table 1 shows the port
numbers that were selected for each type of packet.

Status bits are created throughout the FPGA wrapper and test waveform to provide an indication of
problems while the FPGA is operating. These status bits include first in first out (FIFO) underflow and
overflow flags, error flags for every state machine in case any state machine navigates to an erroneous
state, bit error rate tester (BERT) sync lost and sync loss count flags, and a few other error flags. The
status bits are sent to the GPM processor in a response to a status bits query command. Details of the
status bits are contained throughout Section 4.0. The status bits are defined in Table 26 in Section 4.2.

TABLE 1.—USER DATAGRAM PROTOCOL (UDP) PORT ADDRESSES
Port definition Hex value Decimal

value
FPGAa port address for commands and response packets 0xD6D8 55,000
FPGA port address for streaming data packets 0xDAC0 56,000
Linux PCb port address for commands and response packets 0x8C35 35,893
Linux PC port address for streaming data packets 0x8CA0 36,000

aField-programmable gate array.
bPersonal computer.

NASA/TM—2017-219429 5

3.0 Programmable Logic Device (PLD) Architectural Design Description

This section provides a description of the architectural design of the PLD.

3.1 Hardware Identification

This PLD design is implemented on a Xilinx® ML605 Rev D evaluation board, which contains a
Xilinx® Virtex®-6 XC6VLX240T-1FF1156C FPGA. The AD–FMCOMMS1–EBZ RF front-end board is
used for the RF front end.

3.2 Development Tools

The development tool used for this PLD design is the Xilinx® ISE Design Suite System Edition
version 14.4, which includes EDK and SDK.

3.3 Programmable Logic Device (PLD) Overall Architecture

Figure 3 contains a high-level block diagram of the PLD design. The FPGA wrapper in an
STRS radio is platform specific, abstracts all interfaces away from the waveform, and contains any
functionality needed by all waveforms using the platform. Figure 3 shows the basic functionality in both
the wrapper and the waveform. The FPGA wrapper includes the logic and physical interfaces required for
clock generation, reset signal generation, and Ethernet control and processing. Ethernet processing
includes the following:

(1) Stripping off of Ethernet headers
(2) Routing of received command packets and Tx-side streaming data packets
(3) Creation of packets for command responses and Rx-side streaming data
(4) Control of the sequence of the transmission of command response and Rx-side streaming

data packets

The wrapper also includes the MicroBlaze™ processor implementation of the Inter-Integrated Circuit
(IIC) bus interface to the RFM for configuration purposes.

A test waveform, called waveform in Figure 3, is included in the PLD design to exercise and
demonstrate each of the FPGA wrapper interfaces. This test waveform receives command packets and
parses them to configure and control the waveform. Four data sources are included to provide data to the
RFM or for testing and demonstrating the functionality of the radio platform and the wrapper interfaces.
The waveform also includes three possible data sinks for demonstrating the platform and wrapper.

3.4 Detailed Architecture Design and Block Diagrams

Figure 4 contains a detailed block diagram of the Tx side of the PLD design. Most of the blocks in the
diagram (and subsequent block diagrams) represent HDL code modules and are labeled with the module
or instance name, so that these functions can be easily located in the code. Some blocks may contain
submodules that will be described in Section 4.0. This block diagram shows Tx-side wrapper functions,
which include clock generation, reset signal generation, and the modules to receive streaming and
command packets and remove Ethernet headers. The block diagram also shows the Tx-side waveform
functions, which include command parsing and decoding, conversion of streaming packet data into
continuous streaming data, PRBS generation, and I and Q signal generation (sine waves).

NASA/TM—2017-219429 6

Figure 3.—Programmable logic device (PLD) design. BERT, bit error rate tester; BPSK, binary phase shift key; IIC,

Inter-Integrated Circuit; MUX, multiplexer; PHY, physical layer; PRBS, pseudorandom bit sequence; Rx, receive;
Tx, transmit.

Figure 4.—Transmit-side wrapper and waveform. EMAC, Ethernet Media Access Controller; LEDs, light-emitting

diodes.

NASA/TM—2017-219429 7

Figure 5.—Receive-side wrapper and waveform. ADC, analog-to-digital converter; BERT, bit error rate tester; EMAC,

Ethernet Media Access Controller; MUX, multiplexer; PRBS, pseudorandom bit sequence; Rx, receive; Tx, transmit.

Figure 5 contains the detailed block diagram of the Rx side of the PLD design. The Rx-side
waveform performs BER testing of PRBS or streaming data. The Rx-side wrapper packetizes command
responses, Rx-side streaming data, and controls their transmission over the Ethernet port.

3.5 Ethernet Packet Structure

Figure 6 shows the definition of the Ethernet header (MAC header, IP datagram header, and
UDP header).

When packets are sent from the FPGA to the GPM processor, the packet headers must be inserted
when the packets are formed. In each case, the headers are created at design time and stored in ROMs to
be read out and inserted in the packets. The UDP checksum field is optional and is set to zero for all
packets created by the FPGA. The IP datagram header checksum must be calculated, however. This
calculation includes only bytes in the IP datagram (i.e., not the MAC header or the UDP datagram).

Here are the steps for calculating the IP datagram header checksum field:

(1) Add up the values of the 16-bit words in the IP datagram, excluding the checksum field.
(2) Any binary digits above bit 15 (the carry bits) should be added to bits 0 to 15 of the sum above.
(3) Invert the result to get the checksum.

NASA/TM—2017-219429 8

Example IP header:

4500 002E 0000 4000 4011 XXXX C0A8 0002 COA8 0001 (where XXXX is the checksum)

The sum of each word is: 0x24692

0x24692 10 | 0100 0110 1001 0010
Add the carry bits + 10

Sum 0100 0110 1001 0100
Invert 1011 1001 0110 1011 = 0xB96B = checksum

MAC header MAC destination address (6 bytes)
MAC source address (6 bytes) Ethernet type

(2 bytes)

IP datagram

Version
(4 bits)

IHL
(4 bits)

Type of
service
(8 bits)

Length (IP + UDP + payload, 2 bytes)

Identification (2 bytes) Flags (3 bits) Fragment offset
(13 bits)

Time to live
(1 byte)

Protocol
(1 byte)

IP header checksum (2 bytes)

Source IP address (4 bytes) Destination IP address (4 bytes)
UDP header Source port (2 bytes) Destination port (2 bytes)

Length (UDP + payload, 2 bytes) UDP checksum (2 bytes)

Payload Various Lengths

Figure 6.—Ethernet packet definition. IHL, Internet header length; IP, Internet Protocol; MAC, media access control;
UDP, User Datagram Protocol.

3.6 MicroBlaze™ Processor

The MicroBlaze™ processor core is used for the Xilinx® Virtex®-6 FPGA that is used in the iPAS
radio design to configure the front-end board (AD–FMCOMMS1–EBZ). Analog Devices provides a
reference design to help use their RF front-end board (AD–FMCOMMS1–EBZ) with the Xilinx® ML605
FPGA board. The reference design is available through their online Wiki at
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms1-ebz

The reference design contains functionality that was not needed for the iPAS STRS radio, so that
functionality was removed from the MicroBlaze.xmp (Xilinx® Platform Studio) portion of the reference
design, leaving only the functionality necessary to configure and provide clocking to the RF board and the
universal asynchronous receiver/transmitter (UART). This allows the waveform developer the ability to
connect to the RF Board’s DAC and ADC directly using VHDL.

The SDK portion of the reference design SDK was retained in the iPAS STRS radio. The main.c
was edited to configure the ADC sampling rate (196.608 MHz), the DAC sampling rate (196.608 MHz),
and the Rx RF gain (+10 dB). The default SDK configuration is provided in the
CompiledDefaultProgram.elf file.

The MicroBlaze™ processor uses a UART peripheral to display the configuration of the RF front-end
board (AD–FMCOMMS1–EBZ). When the MicroBlaze™ processor starts after a power-on or reset, the
UART will send the following information to a terminal—ADC and DAC sampling rates, variable-gain
amplifier (VGA) gain, and Rx and Tx RF frequency. The UART configuration necessary for the PC-
based receiver is—57,600 baud, 8-bit data, no parity bit, 1 stop bit, and no flow control. Use of the UART
requires the installation of a driver on the PC.

3.7 External Interfaces

External interfaces are described in the Hardware Interface Description (HID) iPAS STRS Radio
document (Ref. 1).

NASA/TM—2017-219429 9

4.0 Programmable Logic Device (PLD) Detailed Design

Each of the modules in the PLD is described in detail below. Note that color coding on block
diagrams is used to show each clock domain. Light orange indicates the 125 MHz clock domain and light
blue indicates the waveform clock domain. Throughout this section, VHDL signal names are always
shown in italics and file names are shown in a monospaced, typewriter style Courier font. VHDL
constants are always shown in all capital letters.

4.1 STRS_SDR_Wrapper.vhd

The STRS_SDR_Wrapper module is the top-level module in the PLD design. STRS requires that the
FPGA wrapper for an STRS radio encompass all the possible radio FPGA interfaces. The wrapper
abstracts the interfaces to the FPGA from the waveform. The wrapper can also include any other
functionality that a radio would require, like power-on resets and clock generation, which would be
common to all radios on the platform.

The STRS_SDR_Wrapper module is the FPGA wrapper, and therefore contains the clock generation
and reset creation. This wrapper also has interfaces to onboard resources like switches and light-emitting
diodes (LEDs), as well as the implementation of the interface to the Ethernet physical layer (PHY) for
receiving commands and streaming data from the GPM processor and for transmitting command responses
and streaming data to the processor. The wrapper also contains the interface to the RF front-end board.

The STRS_SDR_Wrapper module utilizes a Xilinx® LogiCORE™ IP Clocking Wizard to generate
the clocks necessary for the wrapper and the test waveform. The source input clock (200 MHz) for the
clock wizard is single-ended and is generated by the MicroBlaze™ processor from the 200 MHz
differential clock from a crystal on the Xilinx® ML605 FPGA board. The clock wizard creates the
following clocks:

 RefClk—200 MHz clock used by the Ethernet IP core.
 GtxClk—125 MHz single-ended clock which is used by the Ethernet interface.

The waveform clocks originate in the DAC device on the RFM for the Tx side and the ADC device

on the RFM for the Rx side. These DAC and ADC clocks (approximately 196.6 MHz) are used in the
wrapper to generate clock enable signals to control clocking within the waveform.

In addition to the generation of the clocks and resets, the wrapper instantiates the Ethernet Media
Access Controller (EMAC) interface (v6_emac_v1_5_example_design.vhd) and the radio test
waveform (STRS_Waveform.vhd). The wrapper also includes the modules that provide the basic
functionality to communicate in both directions to the Ethernet interface. These modules include
EthernetRx and RxPackets for receiving and parsing Tx-side streaming data packets and command
packets, as well as OutputDataMux for transmitting Rx-side streaming and command response packets.
Each of these modules are discussed in detail below.

The ErrorFlag process, in the wrapper, registers and combines the error flags generated from the
wrapper submodules into a word called StatusBits that is used as an input to the waveform module. This
allows the status bits from the wrapper to be sent in response to a status request command. Table 2 shows
the bit definition of the StatusBits signal in the STRS_SDR_Wrapper module. Table 3 shows the
STRS_SDR_Wrapper module inputs and outputs.

NASA/TM—2017-219429 10

TABLE 2.—DEFINITION OF THE StatusBits SIGNAL IN STRS_SDR_Wrapper
Bit Definition Description
0 '0'

Reserved for waveform status bits

1 '0'

2 '0'

3 '0'

4 '0'

5 '0'

6 '0'

7 '0'

8 '0'

9 '0'

10 '0'

11 EthernetRx SM StuckFlag Indicates EthernetRx SMa is stuck

12 ResponsePktFifo_Full ResponsePktFifo overflow and underflow
indicators

13 StreamingFifo_Full StreamingFifo overflow and underflow
indicators 14 StreamingFifo_Empty

15 Streaming_Data_Fifo_Full StreamingDataFifo overflow and underflow
indicators 16 Streaming_Data_Fifo_Empty

17 '0' StreamingDataFifo overflow and underflow
indicators 18 '0'

19 SMFailure_ResetGen

Flags indicating that particular SM (indicated in
name of the flag) erroneously entered “others”
state

20 SMFailure_EthernetRx

21 SMFailure_RxCommandPackets

22 SMFailure_RxStreamingPackets

23 SMFailure_RespFifoOutputSM

24 SMFailure_StreamFifoInputSM

25 SMFailure_CreatePacketSM

26 SMFailure_StreamFifoOutputSM

27 SMFailure_StrDataFifoOutputSM

28 SMFailure_OutputDataMux

29 '0'

Reserved for waveform status bits

30 '0'

31 '0'

32 '0'

33 '0'

34 '0'

35 SMFailure_RespFifoInputSM Flag indicating that RespFifoInputSM
erroneously entered “others” state

aState machine.

NASA/TM—2017-219429 11

TABLE 3.—STRS_SDR_Wrapper INPUTS AND OUTPUTS
Module inputs

CLK_N Differential FPGAa system clock (200 MHz)—negative
CLK_P Differential FPGA system clock (200 MHz)—positive
USER_CLOCK FPGA user clock (66 MHz)
GMII_RXD Ethernet receive data (8 bits, from PHYb)
GMII_RX_DV Ethernet receive data valid (from PHY)
GMII_RX_ER Ethernet receive error (from PHY)
GMII_RX_CLK Ethernet receive clock (from PHY)
RESET Reset signal from push button on FPGA board
GPIO_DIP_SW1 Dip switch 1 on FPGA board
GPIO_DIP_SW2 Dip switch 2 on FPGA board
GPIO_DIP_SW3 Dip switch 3 on FPGA board
GPIO_DIP_SW4 Dip switch 4 on FPGA board
GPIO_DIP_SW5 Dip switch 5 on FPGA board
GPIO_DIP_SW6 Dip switch 6 on FPGA board
GPIO_DIP_SW7 Dip switch 7 on FPGA board
GPIO_DIP_SW8 Dip switch 8 on FPGA board
DacClkInP 196.6 MHz clock from DACc (p)
DacClkInN 196.6 MHz clock from DAC (n)
UartRx UARTd receive data
AdcClkInP 196.6 MHz clock from ADC; synchronous with ADC data (p)
AdcClkInN 196.6 MHz clock from ADC; synchronous with ADC data (n)
AdcOrInP Differential overrange indicator, positive (not used)
AdcOrInN Differential overrange indicator, negative (not used)
AdcDataInP ADCe data in (14 bits)—positive
AdcDataInN ADC data in (14 bits)—negative

Module outputs
GMII_TXD Ethernet transmit data (8 bits, to PHY)
GMII_TX_EN Ethernet transmit enable (to PHY)
GMII_TX_ER Ethernet transmit error (to PHY)
GMII_TX_CLK Ethernet transmit clock (to PHY)
PHY_RESET Reset signal to the Ethernet PHY chip
GPIO_LED_0 LEDf 0 on FPGA board
GPIO_LED_1 LED 1 on FPGA board
GPIO_LED_2 LED 2 on FPGA board
GPIO_LED_3 LED 3 on FPGA board
GPIO_LED_4 LED 4 on FPGA board
GPIO_LED_5 LED 5 on FPGA board
GPIO_LED_6 LED 6 on FPGA board
GPIO_LED_7 LED 7 on FPGA board
DacClkOutP 196.6 MHz clock to DAC; synchronous with DAC data (p)
DacClkOutN 196.6 MHz clock to DAC; synchronous with DAC data (n)
DacFrameOutP Differential frame output (p)
DacFrameOutN Differential frame output (n)
DacDataOutP 16-bit DAC output data—positive
DacDataOutN 16-bit DAC output data—negative
RefClkP 30 MHz reference clock for RF board (positive)
RefClkN 30 MHz reference clock for RF board (negative)
UartTx UART transmit data

Module in/outs
IicSda IICg bus serial data line
IicScl IIC bus serial clock line

aField-programmable gate array.
bPhysical layer.
cDigital-to-analog converter.
dUniversal asynchronous receiver/transmitter.
eAnalog-to-digital converter.
fLight-emitting diode.
gInter-Integrated Circuit.

NASA/TM—2017-219429 12

4.1.1 ResetGen.vhd

The ResetGen module creates the SystemReset signal, which is the system reset signal for the entire
STRS radio FPGA design. The SystemReset signal will be asserted (high) when the board first powers on,
when the reset push button is pushed, and when a reset command is received (creating the signal called
SoftReset). When the FPGA board is first powered on, the phase-locked loop (PLL) in ClockWizard66 is
not locked. When the PLL locks, the Locked signal goes high, which enables the ResetGen finite state
machine. The ResetGen module is clocked by Clock66, the 66 MHz clock output from the
ClockWizard66.

A state machine in the ResetGen module controls the generation of the SystemReset signal. At startup,
the state machine first waits for the ClockWizard66 Locked signal, which is connected to the Enable input
signal, to go high. At this point the state machine goes into the WAITING state to wait for a counter to
count up to the value of WAIT_COUNT (currently 100). This wait state is to make sure the MicroBlaze™
processor has had enough time to initialize. The state machine then jumps to the POR state where the
SystemReset signal is asserted high for a count length equal to FINAL_COUNT (currently 40). The state
machine will then navigate to the READY state to await either a push button reset or a SoftReset from a
reset command, both of which will cause the state machine to jump to the POR state and issue a
SystemReset. If the Locked signal goes low while in any state, the state machine will jump to the IDLE state.

The state machine diagram for the ResetGen module is shown in Figure 7. Table 4 shows the inputs
and outputs of the ResetGen module. The outputs of the state machine are as follows:

(1) RCountEn, which is used to start the reset length counter in the POR state.
(2) WCountEn, which is used to start the wait length counter in the WAITING state.
(3) ResetO, which is reassigned to become the output signal called SystemReset.

Figure 7.—ResetGen state machine.

NASA/TM—2017-219429 13

TABLE 4.—ResetGen INPUTS AND OUTPUTS
Module inputs

Clock Module clock (125 MHz) for this application; single ended
Enable Locked signal from the Clocking Wizard; asserted high
SwitchReset Onboard reset push-button switch
SoftReset Reset created from a reset command
FlagReset Clears error flags

Module outputs
SMErrorFlag Error flag indicating that the SMa entered the “others” state
SystemReset System reset output

aState machine.

Like all state machines in this design, the ResetGen state machine outputs an error flag
(SMErrorFlag), which indicates, when high, that the “others” state in the state machine navigation case
statement was erroneously entered. This is a sticky flag that will remain high until a Request Status Bits
command is received. The FlagReset input signal is created when the response to the Request Status Bits
request command is transmitted and is used in ResetGen to clear the SMErrorFlag signal.

The test bench ResetGen_tb.vhd tests the module by starting with the Enable signal low and
then going high. After a delay, two time-separated SwitchReset signals are issued, followed by another
delay and a SoftReset signal. The wave configuration file is named ResetGen.wcfg.

4.1.2 v6_emac_v1_5_example_design.vhd

The Xilinx® ML605 FPGA board contains an onboard Marvell Alaska® Gigabit Ethernet PHY
transceiver (88E1111) for Ethernet communications. To utilize this device for packet communications
with the embedded PC (eBOX620–110–FL), the Xilinx® CORE Generator Virtex®-6 Embedded Tri-
Mode Ethernet MAC Wrapper Intellectual Property core was generated with a 1000 Mbps transmission
rate. The v6_emac_v1_5_example_design module provided with the generated core was included in this
project.

The example design instantiates the EMAC wrapper and provides a LocalLink interface, which places
Tx and Rx client FIFOs between the EMAC and the example design wrapper interface to the user. A small
address-swap module is used to loopback the LocalLink received data to the LocalLink Tx data. To use the
LocalLink interface in the STRS_Wrapper, the address-swap module was removed from the example design
and the LocalLink signals were passed up to the v6_emac_v1_5_example_design top-level module as inputs
and outputs to the STRS_Wrapper. The v6_emac_v1_5_example_design module is clocked by the
200 MHz RefClk and the 125 MHz Gtx_Clk.

The LocalLink interface timing is essentially the same for both Tx and Rx sides. The primary
LocalLink interface signals include 8-bit data (data), start-of-frame (sof_n), end-of-frame (eof_n), and
data source ready (src_rdy_n). See Figure 5-2 in the Virtex®-6 FPGA Embedded Tri-Mode Ethernet
MAC Wrapper v1.4 Getting Started Guide, for a timing diagram of the LocalLink interface signals
(Ref. 2). Table 5 shows the inputs and outputs of the v6_emac_v1_5_example_design module.

NASA/TM—2017-219429 14

TABLE 5.—v6_emac_v1_5_example_design INPUTS AND OUTPUTS
Client receiver interface

EMACCLIENTRXDVLD Output, receive data valid (not used)
EMACCLIENTRXFRAMEDROP Output, frame dropped signal (not used)
EMACCLIENTRXSTATS 6-bit output, Rxa statistics data (not used)
EMACCLIENTRXSTATSVLD Output, asserted when the Rx statistics data is valid (not used)
EMACCLIENTRXSTATSBYTEVLD Output, asserted if an Ethernet MACb frame byte is received (not used)

Client transmitter interface
CLIENTEMACTXIFGDELAY 8-bit output, configurable interframe gap adjustment
EMACCLIENTTXSTATS Output, Txc statistics data (not used) EMACCLIENTTXSTATSVLD
EMACCLIENTTXSTATSVLD Output, asserted when Tx statistics data valid (not used)
EMACCLIENTTXSTATSBYTEVLD Output, asserted if an Ethernet MAC frame byte is transmitted (not used)

MAC control interface
CLIENTEMACPAUSEREQ Input
CLIENTEMACPAUSEVAL 16-bit input

Clock signal
GTX_CLK Input, 125 MHz clock

GMIId physical interface
GMII_TXD 8-bit output, transmit data
GMII_TX_EN Output, transmit enable
GMII_TX_ER Output, transmit error
GMII_TX_CLK Output, transmit clock
GMII_RXD 8-bit input, receive data
GMII_RX_DV Input, receive data valid
GMII_RX_ER Input, receive error
GMII_RX_CLK Input, receive clock

Reference clock for IODELAYs
REFCLK Input, 200 MHz clock

Asynchronous reset
RESET Input, reset

LocalLink interface clocking signal
ll_clk_o Output, LocalLink clock (not used)

LocalLink interface transmitter connections
tx_ll_data_o 8-bit input, transmit LocalLink data
tx_ll_sof_n_o Input, transmit start-of-frame
tx_ll_eof_n_o Input, transmit end-of-frame
tx_ll_src_rdy_n_o Input, transmit source ready
tx_ll_dst_rdy_n_o Output, transmit destination ready

LocalLink interface receiver connections
rx_ll_data_o 8-bit output, receive LocalLink data
rx_ll_sof_n_o Output, receive start-of-frame
rx_ll_eof_n_o Output, receive end-of-frame
rx_ll_src_rdy_n_o Output, receive source ready
rx_ll_dst_rdy_n_o Output, receive destination ready

aReceive.
bMedia access control.
cTransmit.
dGigabit Media Independent Interface.

NASA/TM—2017-219429 15

Figure 8.—EthernetRx module.

4.1.3 EthernetRx.vhd

The EthernetRx module (Fig. 8) receives data and control signals from the EMAC and looks at the
source port value in the packet header to see if the packet is a command or streaming data. Enable signals
to RxCommandPackets (CommandEn) and to RxStreamPackets (StrDataEn) are created based upon the
source port value contained in the incoming packet.

The state machine (diagram shown in Fig. 9) in the EthernetRx module is used to determine if an
incoming packet is a command or streaming data. The source port number in the incoming packet is used
to determine the type of received packet while in states GET_SRC_ADDR1 and GET_SRC_ADDR2. If
the source port number indicates a command packet, the state machine goes to branch with state
EN_CMD_PARSE where CommandEn is set high. If the source port number indicates a streaming
packet, the state machine goes to branch with state EN_STREAM_DATA where StrDataEn is set high.
The state machine exits to IDLE at the end of the packet, when EthDataEof goes low. If the EthDataEof
signal fails to go low when expected, the state machine navigates to the ERROR state, where an error flag
is set.

The EthernetRx module is clocked by a 125 MHz clock (GtxClk).
The EthernetRx module handles errors in one of three ways:

(1) A sticky flag called SMErrorFlag is created if an error occurs, causing the state machine to enter

the “others” state in the state machine navigation case statement.
(2) The state machine contains an ERROR state that is entered if the EthDataSrcRdy signal fails to

go high at the expected end of a command or streaming data packet. This is done to prevent the
state machine from getting stuck in a state (either EN_CMD_PARSE or EN_STREAM_DATA)
with no way to exit. If this ERROR state is entered, the StuckFlag is set high.

(3) Flags are created if the FIFO overflows (FifoFlag(0)) or underflows (FifoFlag(1)). All of these
flags are sticky and are only cleared when the FlagReset signal is asserted.

Table 6 shows the inputs and outputs of the EthernetRx module.
The test bench for this module is EthernetRx_tb.vhd. This test bench simulates incoming

packets by reading data from a text file called RxSourceData.txt. The wave configuration file is
EthernetRx.wcfg.

NASA/TM—2017-219429 16

Figure 9.—EthernetRx state machine.

TABLE 6.—EthernetRx INPUTS AND OUTPUTS
StreamPktByte1 Streaming source port byte MSBa (0x8C)
StreamPktByte2 Streaming source port byte LSBb (0xA0)
CmdPktByte1 Command source port byte MSB (0x8C)
CmdPktByte2 Command source port byte LSB (0x35)

Module inputs
Clock 125 MHz clock
Reset Reset
EthDataSrcRdy Ethernet data source ready—low when data is valid
EthDataIn Ethernet data in (8-bits)
EthDataSof Ethernet data start-of-frame
EthDataEof Ethernet data end-of-frame
FlagReset Resets sticky error flags

Module outputs
SMErrorFlag Indicates that the SMc entered the “others” state
ErrorFlag Indicates SM was stuck in state 5 or 8
EthDataOut Ethernet data out (8 bits)
EthRdyOut Ethernet data source ready out (low when EthDataOut is valid)
CommandEn Enable command parsing
StrDataEn Enable streaming data

NASA/TM—2017-219429 17

TABLE 7.—RxPackets INPUTS AND OUTPUTS
Module generics

HeaderLen Length of Ethernet portion of packet
Module inputs

Clock Clock (125 MHz)
Reset Reset signal
Enable Enable signal (asserted high)
DataIn 8-bit data—packet bytes received from EMACd PHYe
FlagReset Status bits reset

Module outputs
SMErrorFlag Indicates that SM entered “others” state
DataOut 8-bit data—payload portion of received packet
DataValid Indicates when DataOut is valid (asserted high)

aMost significant byte.
bLeast significant byte.
cState machine.
dEthernet Media Access Controller.
ePhysical layer.

4.1.4 RxPackets.vhd

The RxPackets module is used to receive command or streaming data packets from the GPM. This
module strips off the remaining portion of the Ethernet packet header from the packet and leaves just the
payload portion of the packet. The outputs of this module are data bytes (DataOut) and a DataValid
signal that is high when the output data is valid. Table 7 shows the inputs and outputs of the RxPackets
module.

Two instances of the RxPackets module are in the design: one for command packets
(Inst_RxCommandPackets) and one for streaming data packets (Inst_RxStreamPackets). Both instances
of the RxPackets module are clocked by a 125 MHz clock (GtxClk).

The state machine in the RxPackets module (Fig. 10) is used to strip the Ethernet header off of the
received packets. An Enable signal (=‘1’) starts the state machine. The Enable signal comes from the
EthernetRx module: either CommandEnable or StreamEnable. A counter counts the number of header
bytes and the state machine creates a data valid output signal that is high only during the payload portion
of the packet. The Ethernet header information is stripped off of the packet, leaving data only. The state
machine exits when RxSrcReady goes high (end of the packet).

In the Inst_RxStreamPackets instance of RxPackets, the payload header (3 bytes) is stripped off along
with the Ethernet header. This is controlled by setting the generic input HeaderLen to be 3 bytes longer
than it is for the Inst_RxCommandPackets instance.

The RxPackets module state machine outputs an error flag (SMErrorFlag), which indicates, when
high, that the “others” state in the state machine navigation case statement was erroneously entered. This
is a sticky flag that will remain high until a Request Status Bits command is received. The FlagReset
input signal is created when the response to the Request Status Bits command is transmitted and is used in
the ResetGen module to clear the SMErrorFlag signal.

The test bench for this module is named RxPackets_tb.vhd. To test for command packets
(Inst_RxCommandPackets), use input file RxSourceData.txt. To test for streaming packets
(Inst_RxStreamPackets), use input file StreamingData.txt. The wave configuration file is
RxPackets.wcfg. Note that the payload portion of each packet always starts with the header
byte 0xAA.

4.1.5 DAC_FDI.vhd

This module forms the firmware developer interface (FDI) for sending data to the DAC (AD9122) on
the RF front-end board (AD–FMCOMMS1–EBZ). Depending on the DAC's configured sample rate, the
FPGA clock rate changes to match, and output dual data rate (ODDR) primitives are used to output data
on the rising and falling edges of the clock. The I data is output to the DAC on the rising edge of the clock

NASA/TM—2017-219429 18

and the Q data is output on the falling edge of the clock. Table 8 shows the inputs and outputs of the
DAC_FDI module.

Figure 10.—RxPackets state machine.

TABLE 8.—DAC_FDI INPUTS AND OUTPUTS
Module inputs

DacClkInP Differential clock input (P)
DacClkInN Differential clock input (N)
Clk200Mhz 200 MHz clock for IDELAY primitive
Reset Asynchronous reset
IncomingSamplesI Incoming Ia samples in two's complement
IncomingSamplesQ Incoming Qb samples in two's complement

Module outputs
ClkFromDAC Clock intended to drive incoming samples
DacClkOutP Differential clock output (P)
DacClkOutN Differential clock output (N)
DacFrameOutP Differential frame output (P)
DacFrameOutN Differential frame output (N)
DacDataOutP Differential data output (P)
DacDataOutN Differential data output (N)

aIn-phase.
bQuadrature.

NASA/TM—2017-219429 19

TABLE 9.—ADC_FDI INPUTS AND OUTPUTS
Module inputs

AdcClkInP Differential clock input (P)
AdcClkInN Differential clock input (N)
Clk200Mhz 200 MHz clock for IDELAY primitive
Reset Asynchronous reset
AdcOrInP Differential overrange indicator (P), not used
AdcOrInN Differential overrange indicator (N), not used
AdcDataInP Differential data input (P)
AdcDataInN Differential data input (N)

Module outputs
ClkFromADC Synchronous clock for outgoing samples
OutgoingSamplesI Outgoing Ia samples in two’s complement
OutgoingSamplesQ Outgoing Qb samples in two’s complement

aIn-phase.
bQuadrature.

4.1.6 ADC_FDI.vhd

This module forms the FDI for getting data from the ADC (AD9643) on the RF front-end board
(AD–FMCOMMS1–EBZ). Depending on the ADC's configured sample rate, the FPGA clock rate
changes to match, and input dual data rate (IDDR) primitives are used to input data (I on rising edge and
Q on falling edge) and output both I and Q on the same clock edge. Table 9 shows the inputs and outputs
of the ADC_FDI module.

4.1.7 OutputDataMux.vhd

The OutputDataMux module is on the Rx side of the wrapper, and is used to multiplex the two types
of Ethernet traffic transmitted by the FPGA to the GPM processor: command responses and streaming
data. A state machine controls which type of packet has priority and when a packet (command response or
streaming data) will be sent to the Ethernet port.

The OutputDataMux module is clocked by two primary clocks: a 125 MHz clock called GtxClk and
an approximately 196.6 MHz clock called WFClock. A clock domain crossing occurs in the
RxStreamingData (see Section 4.1.11) module and is handled using a FIFO (StreamingFifo).

A block diagram of the OutputDataMux module is shown in Figure 11. The block diagram shows a
multiplexer, a controlling state machine, and two main modules: TxResponsePackets and
RxStreamingData. TxResponsePackets, described in Section 4.1.8, packetizes and sends command
responses. RxStreamingData, described in Section 4.1.11, packetizes and sends streaming data to the
Linux PC over Ethernet.

The state machine (Fig. 12) controls which type of packet has control over the Ethernet Tx port. The
state machine gives response packets priority over streaming data, but streaming data packets send four
557-byte packets each time they have control of the Ethernet Tx port. The state machine starts in the
IDLE state where it waits until a command response packet is ready to be sent (RespReadReady = ‘1’) or
a streaming packet is ready to be sent (SampReadReady = ‘1’). Either of these signals going high will
transfer the state machine to another state, but only if the EthDestReady (destination ready) signal is low,
which indicates that the EMAC is ready to receive packet data (Table 10). If both RespReadReady and
SampReadReady are high at the same time, command response packets are given priority (i.e., transmitted
first). This was done because response packets are short (60 bytes) and streaming packets are sent in
groups of four, 557-byte packets.

If a command response packet is given control of the Ethernet Tx port, the state machine enters the
READRESPONSE state where the ResponseReadReady signal is asserted to give control to the
TxResponsePackets module (see Section 4.1.8). When the RspPacketDone output signal from the
TxResponsePackets module goes high, the command response packet is done and the state machine returns
to IDLE.

NASA/TM—2017-219429 20

Figure 11.—OutputDataMux module. MUX, multiplexer; WF, waveform.

Figure 12.—OutputDataMux state machine.

NASA/TM—2017-219429 21

TABLE 10.—OutputDataMux KEY SIGNALS
RespReadReady Indicates that a response packet is ready to be sent to Ethernet port (from

TxResponsePackets)
RspPacketDone High indicates a command response packet is finished (from TxResponsePackets)
SampReadReady Indicates that streaming data is ready to be output (from RxStreamingData)
StrPacketsDone High indicates four streaming data packets are finished (from RxStreamingData)
ResponseReadReady OutputDataMux SMa output used to start SM in RxStreamingData; high when a

command response can be transmitted
SampleReadReady OutputDataMux SM output used to start SM in RxStreamingData; high when a

streaming packets can be transmitted
ResponseData Ethernet data bytes from TxResponsePackets
ResponseSof Ethernet start-of-frame from TxResponsePackets
ResponseEof Ethernet end-of-frame from TxResponsePackets
ResponseSrcRdy Ethernet data source ready from TxResponsePackets
StreamData Ethernet data bytes from RxStreamingData
StreamSof Ethernet start-of-frame from RxStreamingData
StreamEof Ethernet end-of-frame from RxStreamingData
StreamSrcRdy Ethernet data source ready from RxStreamingData

aState machine.
TABLE 11.—ERROR FLAGS AND SOURCE MODULES

Error flag Source module
SMErrorFlag(6) RespFifoOutputSM.vhd
SMErrorFlag(5) RespFifoInputSM.vhd
SMErrorFlag(4) StrDataFifoOutputSM.vhd
SMErrorFlag(3) StreamFifoOutputSM.vhd
SMErrorFlag(2) CreatePacketSM.vhd
SMErrorFlag(1) StreamFifoInputSM.vhd
SMErrorFlag(0) OutputDataMux.vhd
FifoFlags(5) RxStreamingData.vhd, StreamingDataFifo empty flag
FifoFlags(4) RxStreamingData.vhd, StreamingDataFifo full flag
FifoFlags(3) RxStreamingData.vhd, StreamingFifo empty flag
FifoFlags(2) RxStreamingData.vhd, StreamingFifo full flag
FifoFlags(1) TxResponsePackets.vhd, ResponseFifo full flag
FifoFlags(0) TxResponsePackets.vhd, ResponseFifo empty flag

If a streaming data is given control of the Ethernet Tx port, the state machine enters the

READSAMPLE state where the SampleReadReady signal is asserted to give control to the
RxStreamingData module (see Section 4.1.11). When the StrPacketsDone output signal from the
RxStreamingData module goes high, four streaming data packets are done and the state machine returns
to IDLE. The RxStreamingData module pauses briefly after a group of four streaming packets are
transmitted to allow any command response packets to be sent if any are waiting.

The output multiplexer uses the ResponseReadReady and the SampleReadReady signals described in
the previous two paragraphs to select where the Ethernet signals (EthDataOut, EthDataSof, EthDataEof,
and EthDataSrcRdy) originate from, either from the TxResponsePacket or RxStreamingData module.

Error handling in OutputDataMux consists of three parts:

(1) An error flag (SMErrorFlag), which indicates that the OutputDataMux state machine entered the

“others” state in the state machine navigation case statement.
(2) A pass-through of error flags (SMErrorFlags) from lower level modules.
(3) A pass-through of FIFO full and empty flags (FifoFlags) from lower level modules.

The source module for each error flag is defined in Table 11.
The FlagReset input signal is created when the response to the Request Status Bits command is

transmitted and is to clear the SMErrorFlags and FifoFlags signal. Table 12 shows the inputs and outputs
for the OutputDataMux module.

NASA/TM—2017-219429 22

TABLE 12.—OutputDataMux INPUTS AND OUTPUTS
Module generic

CmdResponseSize Sets size of a command response packet (120 bits for this implementation)
Module inputs

Clock Ethernet clock (125 MHz)
EthReset Primary reset (Ethernet clock domain)
WFReset Waveform reset (waveform clock domain)
WFClock Waveform clock
WFClockEn Enable signal to allow for different waveform data rates
CmdResponseReady Indicates that a command response can be sent
CmdResponseIn Contents of response to command (the size of this vector is set with the generic

CmdResponseSize)
StreamDataReady Stream enable stays high until streaming is stopped
StreamDataIn 16-bit data samples from ADCa
EthDestReady Ethernet transmit destination ready
FlagReset Resets the error flags

Module outputs
RespSending_n Low when a command response is being sent
SMErrorFlags 7 bits, indicates that a SMb entered “others” state
FifoFlags 6 bits, FIFOc full and empty flags for lower-level modules
EthDataOut 8 bits, Ethernet packet data to be transmitted
EthDataSof Ethernet transmit start-of-frame signal
EthDataEof Ethernet transmit end-of-frame signal
EthDataSrcRdy Ethernet transmit data source ready signal

aAnalog-to-digital converter.
bState machine.
cFirst in first out.

Figure 13.—Timing of OutpuDataMux Ethernet signals for a single packet.

Figure 14.—Timing of streaming data packet groups.

Figure 13 shows the relative timing of the Ethernet signals out of the OutputDataMux module for a

single packet.
Figure 14 shows the timing of groups of streaming data packets at the output of the OutputDataMux

module. The time between packets is fixed, but the time between packet groups will vary depending on
the selected sample rate.

NASA/TM—2017-219429 23

The test bench named OutputDataMux_tb.vhd tests this module. The test bench instantiates a
SineWaveGen (see Section 4.2.9) to simulate streaming data and creates multiple command responses to
test how streaming data packets and command responses can be interleaved. The wave configuration file
is OutputDataMux.wcfg.

4.1.8 TxResponsePackets.vhd

The TxResponsePackets module controls creation of command response packets. The primary inputs
to this module are the command response data (120 bits) and a control signal (TxReady) that indicates the
command response data is valid. The size of the command response data (CmdResponse) is set using the
CmdResponseSize generic, so that future implementations can use different command response sizes.
Another important input is the OutputPktRdy signal, which is connected to the ResponseReadReady signal
in OutputDataMux.vhd. This signal is high when the command response packet has control of the
Ethernet Tx port and is used in TxResponsePackets.vhd to start the RespFifoOutputSM.vhd
state machine.

Figure 15 contains a block diagram of the TxResponsePackets module. The input clock to the module
is a 125 MHz clock. The command response data is written into the ResponseFifo eight bits at a time
under control of the RespFifoInputSM.vhd (see Section 4.1.9) and is read out under the control of
the state machine in RespFifoOutputSM.vhd (see Section 4.1.10). Packet headers are stored in the
TxPacketROM and are written into the FIFO immediately before the command response payload packet
data. A multiplexer (the MuxDataOut process) is used to select between packet headers from the
TxPacketROM and command response data. The RespFifoInputSM controls the reading of the packet
header out of the TxPacketROM (TxResponseHeader1.coe) and the multiplexer select signal. The
ResponseFifo can contain multiple command response packets, if necessary.

RespFifoOutputSM.vhd controls the FIFO reads and creates the LocalLink signals to the
Ethernet core. A high true output signal RespReadReady indicates to the OutputDataMux that a response
packet is ready to be sent. This signal goes high when the FIFO contains at least one complete packet and
is created from the prog_empty signal of the FIFO, which is a read-side signal that is set to go low when
the threshold (set to 46) is reached.

Figure 15.—TxResponsePackets module. FIFO, first in first out; MUX, multiplexer; ROM, read-only memory.

NASA/TM—2017-219429 24

The format of a command response packet is shown in Table 13. The payload portion of these packets
is constructed in the CommandDecoder module described in the CommandDecoder.vhd section. For this
implementation, the payload portion of a command response packet consists of 15 bytes (=120 bits). Byte
one is always 0xAA, as it is defined to be the payload header. Byte two is the identification (ID) of the
command that was received (see Table 14). Byte three contains either 0xBB for an accepted command or
0x44 for a rejected command. Bytes 4 to 15 contain data that is defined for each packet ID in Table 14.
The format of a response packet for a rejected command is shown in Table 15.

TABLE 13.—RESPONSE PACKET
PAYLOAD STRUCTURE

Byte
number

Description

1 Header byte (0xAA)
2 Response IDa
3 Accepted or rejected
4 Data (MSBb)
5 Data
6 Data
7 Data
8 Data
9 Data
10 Data
11 Data
12 Data
13 Data
14 Data
15 Data (LSBc)

aIdentification.
bMost significant byte.
cLeast significant byte.

NASA/TM—2017-219429 25

TABLE 14.—RESPONSE PACKET DEFINITION FOR EACH COMMAND
Description Header

byte 1
Command IDa

byte 2
Accepted
or rejected

byte 3

Byte 4 Bytes 5 to 11 Bytes 12 to 15

Null response 0xAA 0x00 0xBB 0x00 0x00 0x00
Reset response 0xAA 0x01 0xBB 0x00 0x00 0x00
Start waveform 0xAA 0x06 0xBB 0x00 0x00 0x00
Stop waveform 0xAA 0x07 0xBB 0x00 0x00 0x00
Start PRBSb generator 0xAA 0x08 0xBB 0x01 0x00 0x00
Enable BERTc 0xAA 0x09 0xBB 0x01 0x00 0x00

Test command 0xAA 0x0C 0xBB
0xXX (dip switch

value)
0x00 0x00

Stream Txd-side data 0xAA 0x0D 0xBB 0x01 0x00 0x00
Stream Rxe-side data 0xAA 0x0E 0xBB 0x01 0x00 0x00
Insert error in PRBS 0xAA 0x0F 0xBB 0x01 0x00 0x00
Stop PRBS generator 0xAA 0x10 0xBB 0x00 0x00 0x00
Disable BERT 0xAA 0x11 0xBB 0x00 0x00 0x00

Select data source 0xAA 0x13 0xBB

0x00 = sine wave
0x01 = PRBS

0x02 = streaming sine
0x03 = streaming

PRBS

0x00 0x00

Loopback 0xAA 0x14 0xBB
0x00 = No loopback

0x01 = Loopback
0x00 0x00

Stop streaming Rx-
side data

0xAA 0x15 0xBB 0x00 0x00 0x00

Stop streaming Tx-
side data

0xAA 0x16 0xBB 0x00 0x00 0x00

Request status bits 0xAA 0xF9 0xBB
(Upper 56 bits)

0x00
(Lower 40 bits)

status bits

Tx StreamingFIFO
level

0xAA 0xFA 0xBB

BYTE 4:
0x01 <= ¼ full
0x00 otherwise

BYTE 5:
0x01 >= ¾ full
0x00 otherwise

BYTE 6:
0x01 >= center
0x00 otherwise
BYTES 7 to 11

0x00

0x00

Telemetry
BERf data

0xAA 0xFB 0xBB Bits received Bit errors

Telemetry
dip switch value

0xAA 0xFC 0xBB
0xXX (dip switch

value)
0x00 0x00

Telemetry
(waveform running or
stopped)

0xAA 0XFD 0xBB

0x08 = waveform
running

0x00 = waveform
stopped

0x00 0x00

aIdentification.
bPseudorandom bit sequence.
cBit error rate tester.
dTransmit.
eReceive.
fBit error rate.

NASA/TM—2017-219429 26

TABLE 15.—FORMAT FOR RESPONSE TO REJECTED COMMAND
Description Header

byte 1
Command IDa

byte 2
Rejected

byte 3
Byte 4 Bytes

5 to 15
Rejected command packet 0xAA Command ID of received

command
0x44 0x00 0x00

aIdentification.

TABLE 16.—TxResponsePackets INPUTS AND OUTPUTS

Module generic
CmdResponseSize Sets size of command response packet (120 bits for this implementation)

Module inputs
Clock Clock
Reset Reset
TxReady Indicates that a command response can be written into FIFOa.
OutputPktRdy Ready to transmit response packet on Ethernet
CmdResponse 120-bit command response packet
FlagReset Resets error flags

Module outputs
SMErrorFlags 2 bits, indicates that the SMb entered the “others” state
FifoFlags 2 bits, FIFO full (bit 0) and empty (bit 1) flags
RspPacketDone High indicates a command response packet is finished
RespReadReady Indicates that a response packet is ready to be sent to the Ethernet port
Sof_n Start-of-frame signal
Eof_n Ethernet end-of-frame signal
DataOut Ethernet data, 8 bits
DataValid_n Ethernet data source ready signal

aFirst in first out.
bState machine.

Error handling in TxResponsePackets consists of three parts:

(1) A sticky error flag (SMErrorFlag), which indicates that the TxResponsePackets state machine

entered the “others” state in the state machine navigation case statement.
(2) The SMErrorFlags from the submodules RespFifoInputSM and RespFifoOutputSM are passed

up to the next level (OutputDataMux) through the TxResponsePackets module.
(3) The FIFO full and empty flags (FifoFlags) from the ResponseFifo are passed up to the next

level (OutputDataMux).

Table 16 shows the inputs and outputs for the TxResponsePackets module.

There is no separate test bench for the TxResponsePackets module. Its functionality can be fully
simulated and tested using the OutputDataMux test bench.

4.1.9 RespFifoInputSM.vhd

This module contains a state machine that controls the writing of command response packets into the
ResponseFifo of the TxResponsePackets module. The state machine starts when the Ready input signal
goes high. The Ready signal is connected to the TxReady signal in TxResponsePackets.vhd. When
the Ready signal goes high, the FIFO write signal (FifoWrite) is raised to allow bytes to be written into
the ResponseFifo and sets the DataSelect output signal low to select Ethernet packet headers at the input
to the FIFO.

The Memory Address output signal (MemAddr, 6 bits) is used to address the TxPacketROM to write
the packet Ethernet headers into the FIFO, and then the DataSelect output signal goes high to multiplex
the command response to be written into the FIFO.

The state machine, shown in Figure 16, uses counters to count the number of header bytes and the
number of command response bytes that are written.

The RespFifoInputSM module is clocked by a 125 MHz clock.

NASA/TM—2017-219429 27

Error handling in the RespFifoInputSM module consists of a sticky error flag (SMErrorFlag), which
indicates that the RespFifoInputSM state machine entered the “others” state. Table 17 shows the inputs
and outputs for the RespFifoInputSM module.

There is no separate test bench for the RespFifoInputSM module. Its functionality can be fully
simulated and tested using the OutputDataMux test bench.

Figure 16.—RespFifoInputsSM state machine.

TABLE 17.—RespFifoInputSM INPUTS AND OUTPUTS
Module inputs

Clock Clock
Reset Reset
Ready Ready signal that starts SMa when command response is ready
FlagReset Resets error flags

Module outputs
SMErrorFlag Indicates that SM entered “others” state
FifoWrite Write signal to ResponseFIFO
MemAddr Memory address output to address header ROMb
DataSelect Shows when data is being written into FIFOc

aState machine.
bRead-only memory.
cFirst in first out.

NASA/TM—2017-219429 28

4.1.10 RespFifoOutputSM.vhd

The RespFifoOutputSM module controls the reading of command response data packets out of the
ResponseFIFO and creates the required control signals for the Ethernet core (start-of-frame, end-of-frame,
and data source ready). The RespFifoOutputSM module is clocked by the 125 MHz clock.

The state machine (Fig. 17) starts when the Ready input signal goes high. This signal is called
ResponseReadReady in the OutputDataMux.vhd and indicates that the command response packets
have control of the Ethernet Tx port. When Ready goes high, the state machine goes to the START state
when the Start_n and OutValid_n signals are set low, and RespFifoRd (the FifoRead signal) is set high to
read from the FIFO. The state machine then goes to the READDATA state when Start_n is set high. In
this state, FIFO reads continue, OutValid_n stays low, and bytes are counted until all but one packet byte
has been read from the FIFO (Count = BYTECNT - 2). The next state (STOP) sets the Stop_n signal low
and reads the last packet byte from the FIFO. The state machine then navigates to the last state (DONE)
where RespFifoRd and Stop_n are both set high.

Figure 17.—RespFifoOutputSM state machine.

NASA/TM—2017-219429 29

TABLE 18.—RespFifoOutputSM INPUTS AND OUTPUTS
Module generic

BYTECNT Total number of bytes in command response Ethernet packet
Module inputs

Clock Clock, 125 MHz
Reset Reset
Ready Starts SMa—low when a response packet is read to be sent
FlagReset Resets error flags

Module outputs
SMErrorFlag Indicates that SM entered “others” state
RspPacketDone High indicates a command response packet is finished
FifoRead Read signal to ResponseFIFO
StartOfFrame Ethernet packet start-of-frame signal
EndOfFrame Ethernet packet end-of-frame signal
SourceReady Ethernet packet data source ready signal

aState machine.

Error handling in the RespFifoOutputSM module consists of a sticky error flag (SMErrorFlag),

which indicates that the RespFifoOutputSM state machine entered the “others” state in the state machine
navigation case statement. Table 18 shows the inputs and outputs for the RespFifoOutputSM module.

There is no separate test bench for the RespFifoOutputSM module. Its functionality can be fully
simulated and tested using the OutputDataMux test bench.

4.1.11 RxStreamingData.vhd

The RxStreamingData module controls the Rx-side streaming data functions of the test waveform.
The block diagram for this module is shown in Figure 18. Inputs clocks to this module are a 125 MHz
clock for the Ethernet functions and a 196.6 MHz clock for the waveform functions. There is a clock
domain crossing that occurs in order to transmit the streaming data (running at 196.6 MHz) over the
Ethernet (running at 125 MHz). In Figure 18, the waveform clock domain is shown in blue and the
125 MHz clock domain is shown in orange.

The RxStreamingData module contains two FIFOs that are used for clock domain crossing and the
formation of complete packets: StreamingFifo and StreamingDataFifo. Data from the ADC’s I channel is
sampled and stored at the waveform word clock rate into the StreamingFifo in 16-bit words. The data is
read out of the StreamingFifo at a rate of 1/2 of the 125 MHz Ethernet clock rate (i.e., 62.5 MHz). This
output is multiplexed with Ethernet packet headers (from Rx_Streaming_Data_ROM containing
TxPacketDataSW8.coe) and written into the StreamingDataFifo in 8-bit bytes. The output of the
StreamingDataFifo and associated control signals are sent to the Ethernet EMAC.

Three state machines control the reading and writing of the two FIFOs. The StreamFifoInputSM
(see Section 4.1.12) controls the input to the StreamingFifo. The StreamFifoOutputSM
(see Section 4.1.13) controls the reading of data from the StreamingFifo, the addressing of the
Rx_Streaming_Data_ROM, and the writing of data into the StreamingDataFifo. The
StrDataFifoOutputSM (see Section 4.1.15) controls the reading of data from the StreamingDataFifo.

Important inputs to this module are the Enable and OutputStrReady signals (Table 19). The Enable
signal is high when a Rx-side streaming data command was correctly received. The Enable signal is
synchronized to the waveform clock domain, so that the signal (EnableRegD) can be used to start the
StreamFifoInputSM state machine. Another important input signal, OutputStrReady, comes from the
OutputDataMux signal called SampleReadReady, which is asserted to give control of the Ethernet Tx port
to the RxStreamingData module.

Two important outputs of the RxStreaming data module are StrPacketsDone and StreamReadReady
(Table 19). StrPacketsDone indicates to the OutputDataMux that a set of four streaming packets have
been sent. The StreamReadReady signal indicates that the StreamingDataFifo has at least 3000 bytes in it
and is ready to be read. This signal is used in OutputDataMux (called SampReadReady) to start sending
four streaming data packets to the Ethernet Tx port.

NASA/TM—2017-219429 30

Error handling in RxStreamingData consists of three parts:

(1) A sticky error flag (SMErrorFlag), which indicates that the RxStreamingData state machine

entered the “others” state in the state machine navigation case statement.
(2) The SMErrorFlags from the submodules StreamFIfoInputSM, StreamingFifoOutputSM,

CreatePacketSM, and StrDataFifoOputputSM are passed up to the next level (OutputDataMux)
through the RxStreamingData module.

(3) The FIFO full and empty flags (FifoFlags) from the StreamingDataFifo and StreamingFifo are
passed up to the next level (OutputDataMux).

Figure 18.—RxStreamingData module. FIFO, first in first out; MUX, multiplexer; ROM, read-only memory.

TABLE 19.—RxStreamingData INPUTS AND OUTPUTS

Module inputs
Clock 125 MHz clock
Reset Reset (Ethernet clock domain)
ResetWF Waveform reset (waveform clock domain)
WFClock Waveform clock
WFClockEn Waveform clock enable
Enable This enable signal starts streaming data
OutputStrReady Ready to transmit four streaming packets on Ethernet
DataIn 16 bits, data from ADCa
FlagReset Resets the error flags

Module outputs
SMErrorFlags 4 bits, indicates that the SMb entered “others” state
FifoFlags 4 bits, FIFOc full and empty flags
StrPacketsDone Indicates a set of four streaming packets are done
StreamReadReady Indicates that data is ready to be output
DataOut 8 bits, packet data for sample captured data packets to Ethernet
DataSof Start-of-frame for sample packets
DataEof End-of-frame for sample packets
DataReady Source ready for sample Ethernet packets

aAnalog-to-digital converter.
bState machine.
cFirst in first out.

NASA/TM—2017-219429 31

There is no separate test bench for the RxStreamingData module. Its functionality can be fully
simulated and tested using the OutputDataMux test bench.

4.1.12 StreamFifoInputSM.vhd

The StreamFifoInputSM module contains the state machine that controls the writing of streaming data
into the StreamingFifo. This module is clocked by the waveform clock.

The StreamFifoInputSM state machine (Fig. 19) starts when Rx-side streaming command is received
(i.e., the Enable input signal is high). The StreamingFifo is first reset (states RST1 and RST2) by the state
machine before writes are started. This ensures that only good data is stored in the FIFO.

After the reset is issued to the StreamingFifo, the state machine navigates through four 1-clock-cycle
wait states to ensure that the reset is done and the StreamingFifo is ready for data. Next, the
WRITEDATA state is entered. In this state, the FifoWrite signal is set high to enable FIFO writes. Writes
continue until the Enable signal goes low when a stop streaming command is received and processed.

Figure 19.—StreamFifoInputSM state machine.

NASA/TM—2017-219429 32

TABLE 20.—StreamFifoInputSM INPUTS AND OUTPUTS
Module inputs

Clock Clock (waveform clock rate)
ClockEn Clock enable to allow for rates other than waveform clock rate
Reset Reset
Enable Signal that enables start of SMa; high when a streaming command is received
FlagReset Resets error flags

Module outputs
SMErrorFlag SM error flag
FifoRst Resets StreamingFifo before data is written into it
FifoWrite Active high signal that controls when data is written into StreamingFifo

aState machine.

Error handling in StreamFifoInputSM consists of a sticky error flag (SMErrorFlag), which indicates

that the StreamFifoInputSM state machine entered the “others” state in the state machine navigation case
statement. Table 20 shows the inputs and outputs for the StreamFifoInputSM module.

There is no separate test bench for the StreamFifoInputSM module. Its functionality can be fully
simulated and tested using the OutputDataMux test bench.

4.1.13 StreamFifoOutputSM.vhd

The StreamFifoOutputSM module state machine controls the reading of data from the StreamingFifo,
the formation of four streaming data packets, and the writing of the packet data into the
StreamingDataFifo. This module is clocked by the Ethernet clock rate, which is 125 MHz.

The StreamingFifo is written in 16-bit words under the control of the previous module,
StreamFifoInputSM (Fig. 19). The Enable input signal to StreamFifoOutputSM (Fig. 20) will be high if a
valid Rx-side streaming command was received. Once Enable is high, the state machine waits for the
StreamingFifo to partially fill with data. When the StreamingFifo contains 10,000 out of a possible
16,384 bytes, the prog_empty signal goes low. In the RxStreamingData module, this signal is inverted and
called ProgAlmostFull, which is high when the StreamingFifo is ready to be read. The ProgAlmostFull
signal is called AlmostFull in the StreamFifoOutputSM module. When AlmostFull goes high the first
time, the state machine moves to the CREATEPKT1 state.

The CREATEPKT1 state transfers control to the CreatePacketSM state machine (see Section 4.1.14),
which controls the formation of streaming packets and the writing of these packets into the
StreamingDataFifo. When the CreatePacketSM module is done creating a packet, it raises the
PacketDone signal and transfers the StreamFifoOutputSM state machine to the two 1-clock-cycle wait
states. Next, the state machine goes to the CREATEPKT2 state to create the second packet, followed by
two wait states. This process continues until the fourth packet is created in CREATEPKT4, followed by
two wait states (STOP and DONE). The state machine then returns to the IDLE state. If the Enable signal
is still high, the state machine will go to the WAITING state to wait for the AlmostFull signal (from the
StreamingFifo) to go high again.

The streaming data is written into the StreamingFifo at the waveform word rate, which is much
slower than the Ethernet clock rate. Data is read out of the StreamingFifo at one-half the Ethernet clock
rate, which is 62.5 MSamples/sec. Because the data is read out faster than it is written into the FIFO, there
will be time between each group of four streaming packets while the StreamingFifo fills with streaming
data. The StreamingFifo will not underflow because only four packets of data (<2000 bytes) are read out
at a time and no additional data is read out until the FIFO fills up to greater than 10,000 words. The
StreamingFifo should not overflow, because the data is read out faster than it is written.

One important state machine output signal is called DataEn. The DataEn signal is used for the
multiplexer select signal (called DataSel) in the RxStreamingPackets module. Table 21 shows the DataEn
values and their associated functions.

NASA/TM—2017-219429 33

Figure 20.—StreamFifoOutputSM state machine.

TABLE 21.—SIGNAL DEFINITION

DataEn Description
0000 Ethernet header
0001 Data from StreamingFifo
0010 Data header for packet number 1
0011 Data header for packet number 2
0100 Data header for packet number 3
0101 Data header for packet number 4

Error handling in StreamFifoOutputSM consists of a sticky error flag (SMErrorFlag), which indicates

that the StreamFifoOutputSM state machine entered the “others” state in the state machine navigation
case statement. The SMErrorFlag signal from the submodule CreatePacketSM is passed up to the next
level (RxStreamingData) through the StreamFifoOutputSM module. Table 22 shows the inputs and
outputs for the StreamFifoOutputSM module.

There are no separate test benches for the StreamFifoOutputSM module. Its functionality can be fully
simulated and tested using the OutputDataMux test bench.

4.1.14 CreatePacketSM.vhd

This module works with the state machine in the StreamFifoOutputSM module to create a single
packet of Rx streaming data. This module is clocked by the Ethernet clock, which is 125 MHz.

This state machine (Fig. 21) controls the reading of data from the StreamingFifo and multiplexing of
data and headers into the StreamingDataFifo. In the COUNTHEAD state, the CreatePacketSM state
machine starts an address counter (AddrCnt) to address the Rx_Streaming_Data_ROM, which contains

NASA/TM—2017-219429 34

TABLE 22.—StreamFifoOutputSM INPUTS AND OUTPUTS
Module inputs

Clock 125 MHz clock
Reset Reset signal
Enable Signal to trigger SMa to start
AlmostFull Almost full signal from StreamingFifo
FlagReset Resets the error flags

Module outputs
SMErrorFlags 2 bits, indicates that SM entered “others” state
MemAddr 6 bits, address used for the ROMb containing packet header bytes
DataSelect 4 bits, MUXc selects signals that indicate to select packet header, sample data, or data headers
FifoRead Active high to read from StreamingFifo
DataReady Indicates that StreamingDataFifo is full enough to start reads
HalfClockEn 50 percent duty cycle of clock signal; used to multiplex 16-bit data from StreamingFifo into 8-

bit data into StreamingDataFifo
FifoWrite Active high signal used to write to StreamingDataFifo

aState machine.
bRead-only memory.
cMultiplexer.

Figure 21.—CreatePacketSM state machine.

the Ethernet header for the streaming packets. A multiplexer controls which type of data is written into
the StreamingDataFifo. Refer to the RxStreamingData block diagram in Figure 18 for clarification of how
these blocks are interconnected.

First, the Ethernet header bytes (8 bits) are written into the StreamingDataFifo in the COUNTHEAD
state. The AddrCnt signal is used to keep track of the number of bytes written into the StreamingDataFifo.
Next, the state machine enters the INSDATAHEAD state, where the three payload header bytes are
written into the StreamingDataFifo. The three payload header bytes are shown in Figure 22. The third
byte, the streaming packet number, is a packet count inserted in the RxStreamingData module. This count
is increased by one for each successive packet and can be used in testing to ensure no packets have been
dropped.

NASA/TM—2017-219429 35

Figure 22.—Streaming packet payload header structure. ID, identification.

TABLE 23.—CreatePacketSM INPUTS AND OUTPUTS
Module inputs

Clock 125 MHz Clock
Reset Reset
Start Start signal to start SMa
DataSourceIn 4 bits, indicates which packet of four is being created
FlagReset Resets error flags

Module outputs
SMErrorFlag Indicates that SM entered “others” state
ReadEn Read enable signal to StreamingFifo
HalfClockEn Controls which byte of 16-bit data is written into StreamingDataFifo
PktDone Packet done, passes control back to StreamingFifoOutputSM
MemAddr 6 bits, address to get Ethernet header out of ROMb
OutValid_n Low when data into StreamingDataFifo is valid
DataSourceOut 4 bits, DataSelect vector to choose which type of data is written into

StreamingDataFifo (data, Ethernet header, or payload header)
aState machine.
bRead-only memory.

After the payload header is written into the StreamingDataFifo, reads from the StreamingFifo are

started. The output of the StreamingFifo is 16 bit and is read at a frequency of 62.5 MHz. The input to the
StreamingDataFifo is 8 bits and is written at a frequency of 125 MHz. The rate difference allows for one
16-bit word to be read from the StreamingFifo in the time it takes to write two 8-bit bytes into the
StreamingDataFifo. When writing streaming data into the StreamingDataFifo, the CreatePacketSM state
machine alternates between two states, COUNTDATA and COUNTDATAb. In COUNTDATA, a signal
called HalfClockEnable is set high. In COUNTDATAb, HalfClockEnable is set low. HalfClockEnable
controls a multiplexer to select which byte of the 16-bit data out of the StreamingFifo is written into the
StreamingDataFifo. The least significant byte (LSB) is written first and the most significant byte (MSB)
is written second. When the AddrCnt value reaches the size of a streaming packet
(TX_DATA_PACKET_SIZE-1), the state machine enters the last state, DONE, where the PktDone signal
is set high and control is returned to the StreamFifoOutputSM state machine.

Error handling in CreatePacketSM consists of a sticky error flag (SMErrorFlag), which indicates that
the CreatePacketSM state machine entered the “others” state in the state machine navigation case
statement. Table 23 shows the inputs and outputs for the CreatePacketSM module.

There are no separate test benches for the CreatePacketSM module. Its functionality can be fully
simulated and tested using the OutputDataMux test bench.

4.1.15 StrDataFifoOutputSM.vhd

The StrDataFifoOutputSM module controls the reads from the StreamingDataFifo, which contains
packetized streaming data. The streaming data is read in groups of four packets at a time.

The state machine reads out a packet, creates signals required by the Ethernet core (end-of-frame,
start-of-frame, and data source ready), and adds a short time delay between each packet. This module is
clocked by the Ethernet clock, which is 125 MHz.

NASA/TM—2017-219429 36

Figure 23.—StrDataFifoOutputSM state machine.

The state machine (Fig. 23) reads a packet out of the StreamingDataFifo, waits for a short delay, and
then repeats until four packets have been read. Then, it tests to see if streaming data has been disabled. If
so, it stops and goes to IDLE. Otherwise, it reads out four more packets.

This paragraph describes how the state machine works. First, when an Rx-side streaming command is
received, the StrEn input is set high. The state machine will exit the IDLE state and go to two states,
RSTFIFO and RSTFIFO2, to reset the StreamingDataFifo to clear it before new data is written into it.
Next, the state machine enters the WAIT4EN state to wait for the Enable input to go high and navigates
to the WAIT4DATA state. When the StreamingDataFifo is full enough to be read, the Ready signal goes
high and navigates to the START state. In the START state, StreamingDataFifo reads begin and the
Start_n (start-of-frame) signal is set low. Next, the state machine goes to the READDATA state where the
rest of the packet (except for the last byte) is read out of the FIFO and the Start_n signal is set high. Then,
in the STOP state, the last packet byte is read and the Stop_n signal is set low. Next, the state machine
enters the WAITING state, which waits for 25 clock cycles to put space between each packet. In the next
state, DONE, the packet count is checked. If fewer than four packets have been read, the state machine
returns to the START state to read out another packet. Otherwise, it will navigate to the FINISH state. If
streaming data is still enabled (StrEn = 1), then the state machine will move to the WAIT4EN state to
wait for Enable = 1.

NASA/TM—2017-219429 37

Error handling in StrDataFifoOutputSM consists of a sticky error flag (SMErrorFlag), which
indicates that the StrDataFifoOutputSM state machine entered the “others” state in the state machine
navigation case statement. Table 24 shows the inputs and outputs for the StrDataFifoOutputSM module.

There are no separate test benches for the StrDataFifoOutputSM module. Its functionality can be fully
simulated and tested using the OutputDataMux test bench.

4.1.16 ClockEnables.vhd

The ClockEnables module uses generics to create three different clock enable signals. This module
can be used by the waveform developer to generate the clock enable signals required for the waveform
implementation. The wrapper contains two instances of the ClockEnables module: TxClockEnables for
the Tx-side waveform and RxClockEnables for the Rx-side waveform. TxClockEnables is clocked by the
DAC sample clock, and RxClockEnables is clocked by the ADC sample clock, both of which are
approximately 196.6 MHz. Table 25 shows the inputs and outputs for the ClockEnables module.

The test bench for this module is ClockEnables_tb.vhd. This test bench set the EndCount
values for the three clock enable generators in the ClockEnable module and allows the user to see the
generated ClockEn signals. The wave configuration file is ClockEnables.wcfg.

TABLE 24.—StrDataFifoOutputSM INPUTS AND OUTPUTS

Module generics
ByteCnt Size of streaming packets in bytes
CountSize Counts number of bytes in a packet
WaitCntSize Counts wait time between packets in a group
PacketCntSize Counts number of data packets sent in a group

Module inputs
Clock 125 MHz Clock
Reset Reset
StrEn Streaming enable signal from a streaming command
Enable Ready to transmit four streaming packets from OutputDataMux
Ready Active high signal that starts SMa; comes from the fill level of StreamingDataFifo;

is high when StreamingDataFifo ReadDataCnt >= 0xBB8
FlagReset Resets error flags

Module outputs
SMErrorFlag Flag that indicates SM entered “others” state
FifoRead FIFOb read signal
StartOfFrame Start-of-frame; used for EMACc; low for first byte of packet
EndOfFrame End-of-frame; used for EMAC; low for last byte of packet
SourceReady Data source ready; used for EMAC; low during the packet data
RstDataFifo Resets the StreamingDataFifo after data is read out
StrPacketsDone Indicates a set of four streaming packets are done

aState machine.
aFirst in first out.
bEthernet Media Access Controller.

TABLE 25.—ClockEnables INPUTS AND OUTPUTS

Module generics
EndCount1 Count value for ClockEn1
EndCount2 Count value for ClockEn2
EndCount3 Count value for ClockEn3

Module inputs
Clock System clock
Reset Active high reset

Module outputs
ClockEn1 Output enable
ClockEn2 Output enable2
ClockEn3 Output enable3

NASA/TM—2017-219429 38

4.2 STRS_Waveform.vhd

The STRS_Waveform module is the top module for the implementation of the test waveform. An
STRS test waveform is required to exercise every interface in the FPGA wrapper to demonstrate its
functionality. A waveform developer would remove this module and replace it with his or her custom
waveform module.

This test waveform in the STRS_Waveform module performs the following functions:

 Decodes received commands and implements the appropriate functionality.
 Generates sine and cosine waves for the I and Q inputs to the DAC.
 Strips headers off of streaming Tx-side data packets.
 Routes Tx-side streaming data to the BERT for checking to test working

Tx-side streaming.
 Routes Tx-side streaming data to the DAC or loopback to the Rx side for creating

Rx-side streaming data packets.
 Creates Rx-side streaming data packets from either PRBS data or received ADC data.

The STRS_Waveform module has three input clocks:

(1) Clk125 (125 MHz Ethernet clock)
(2) Tx-side waveform clock (approx. 196.6 MHz)
(3) Rx-side waveform clock (approx. 196.6 MHz)

Four clock enable signals are used to control the clocking of the waveform functions: two for the Tx

side and two for the Rx side. Two of the clock enable signals, TxWFClockEn2 and RxWFClockEn2, are
used for the vast majority of the waveform functions. The TxWFClockEn2 and RxWFClockEn2 signals
are used for the 8-bit PRBS generator (PrbsTx23.vhd) and the 8-bit BERT (PrbsRx23.vhd)
modules. Clock domain crossings occur in the following submodules—TxStreamData,
CommandDecoder, and ClockDomainCrossing. See each submodule description for clock domain
crossing details.

The Tx-side waveform block diagram, shown in Figure 24, contains CommandParse, TxStreamData,
CommandDecoder, SineWaveGen, and TransmitSignal modules. The CommandParse module parses
received commands and outputs the Command ID and Command Data from the received command. The
CommandDecoder inputs the command ID and command data from CommandParse and creates the
appropriate command action. TxStreamData receives streaming data packets from the processor and
extracts the data from the packets. The SineWaveGen module generates sine waves for the I and Q DAC
inputs on the RF front end-board. TransmitSignal creates PRBS data.

The Rx-side waveform block diagram, shown in Figure 25, contains the ReceiveSignal module and
registers. The ReceiveSignal module contains a BERT and a multiplexer that selects between incoming
data either from the ADC or a loopback data signal from the Tx side of the waveform.

Error flags and FIFO full and empty flags within the STRS_Waveform module and its submodules
are combined with the incoming the StatusBits from the wrapper into one 40-bit StatusBitsR signal, which
is sent to the CommandDecoder module to be transmitted in a response to a Status command. Table 26
shows the bit definition for all the status bits.

NASA/TM—2017-219429 39

Figure 24.—Tx-side waveform. Clk, clock.

Figure 25.—Rx-side waveform. PRBS, pseudorandom bit sequence; Tx, transmit.

NASA/TM—2017-219429 40

TABLE 26.—DEFINITION OF StatusBits (ERROR FLAGS)
Bit Definition Description
0 Sync Lost BERTa lost synchronization
1 SyncLossCnt(0) Number of times a sync loss occurred
2 SyncLossCnt(1)
3 SyncLossCnt(2)
4 SyncLossCnt(3)
5 SyncLossCnt(4)
6 SyncLossCnt(5)
7 SyncLossCnt(6)
8 SyncLossCnt(7)
9 open
10 open
11 EthernetRx SM StuckFlag Indicates EthernetRx SMb is stuck
12 ResponsePktFifo_Full ResponsePktFifo overflow and underflow

indicators
13 StreamingFifo_Full StreamingFifo overflow and underflow

indicators 14 StreamingFifo_Empty
15 Streaming_Data_Fifo_Full StreamingDataFifo overflow and underflow

indicators 16 Streaming_Data_Fifo_Empty
17 StreamingDataFifo_Full StreamingDataFifo overflow and underflow

indicators 18 StreamingDataFifo_Empty
19 SMFailure_ResetGen Flags indicating that particular SM (indicated in

name of flag) erroneously entered “others” state 20 SMFailure_EthernetRx
21 SMFailure_RxCommandPackets
22 SMFailure_RxStreamingPackets
23 SMFailure_RespFifoOutputSM
24 SMFailure_StreamFifoInputSM
25 SMFailure_CreatePacketSM
26 SMFailure_StreamFifoOutputSM
27 SMFailure_StrDataFifoOutputSM
28 SMFailure_OutputDataMux
29 SMFailure_TxStreamData
30 SMFailure_CommandParse
31 SMFailure_PrbsRx23_Wrapper
32 SMFailure_BertSyncherSM
33 SMFailure_ReceiveSignal
34 SMFailure_TxStreamFifoWriteSM
35 SMFailure_RespFifoInputSM
36 SMFailure_PulseGenSM
37 SMFailure_StatusResetGenSM
38 TxSidePacketError(CmdParse) Indicates that received packet was shorter than

expected
39 EmacRxError Rxc error on EMACd IPe

aBit error rate tester.
bState machine.
eReceive.
dEthernet Media Access Controller.
eInternet Protocol.

NASA/TM—2017-219429 41

TABLE 27.—STRS_Waveform INPUTS AND OUTPUTS
Module inputs

Clk125 125 MHz clock
TxWFClock Tx-side waveform clock (approx. 196.6 MHz, DACa clock)
TxWFClockEn1 Tx-side waveform clock enable (byte rate)
TxWFClockEn2 Tx-side waveform clock enable (word rate)
RxWFClock Rx-side waveform clock (approx. 196.6 MHz, ADCb clock)
RxWFClockEn1 Rx-side waveform clock enable (byte rate)
RxWFClockEn2 Rx-side waveform clock enable (word rate)
SymbClockEn Symbol rate clock enable
Reset Reset signal from the wrapper (power-on-reset and push button)
DIP_SW 8 bits, dip switches onboard
RxCmdDataIn 8 bits, received command data
RxCmdDataSrcRdy Received command data valid signal
StreamDataIn 8 bits, received streaming data
StreamDataValid Received streaming data valid signal
EmacRxError EMACc PHYd receive error
StatusBitsIn 36 bits, status bits coming from wrapper
RespSending_n Low while a command response is being sent
AdcDataInI ADC Ie channel data
AdcDataInQ ADC Qf channel data

Module outputs
DacDataOutI DAC I channel data
DacDataOutQ DAC Q channel data
WFResetOut Waveform reset signal
FlagResetOut Status bits reset signal
CmdResponse 120-bit contents of response to a command
TxSendReady Indicates that a command response can be sent
StreamEnRx Stream enable, stays high until streaming is stopped
RxParallelData 16 bits, data to be streamed
LED 8 bits, outputs to board LEDsg

aDigital-to-analog converter.
bAnalog-to-digital converter.
cEthernet Media Access Controller.
dPhysical layer.
eIn-phase.
fQuadrature.
gLight-emitting diodes.

The STRS_Waveform module also contains two processes (CntBytes and RespSendStart), which

work together to create an active-low signal called TxSendReady that indicates a command response
packet is ready to be sent.

Table 27 shows the inputs and outputs for the STRS_Waveform module.
There is no separate test bench for the STRS_Waveform module.

4.2.1 ClockDomainCrossing.vhd

The ClockDomainCrossing module registers multiple signals with the appropriate clock to allow
these signals to cross the clock domain. Most of the signals that need to cross the clock domain are
created in the 125 MHz clock domain as the result of a received command. These signals must cross the
clock domain to the waveform clock domain to control the appropriate functions. Therefore, most of the
signals that cross the clock domain are passed into the ClockDomainCrossing module through the
CmdRegister input signal vector that was created in the CommandDecoder module. The definition of the
bits within the CmdRegister vector can be found in Section 4.2.5.

NASA/TM—2017-219429 42

TABLE 28.—ClockDomainCrossing INPUTS AND OUTPUTS
Module inputs

Clk125 125 MHz clock
TxWFClock Txa-side waveform clock
TxWFClockEn Tx-side waveform clock enable
RxWFClock Rxb-side waveform clock
Reset Reset
SoftReset Soft reset from reset command
CmdRegister 16 bits, command register

Module outputs
SoftResetOut Registered soft reset (125 MHz clock domain)
WFResetOut Waveform reset (waveform clock domain)
MainReset Main reset (125 MHz clock domain)
SourceSelectR 2 bits, source select (waveform clock domain)
PrbsEnableR PRBSc generator (waveform clock domain)
BertEnableR Enable BERTd (waveform clock domain)
ErrorInsertR Insert a single error (waveform clock domain)
LoopbackCtrlR Loopback (waveform clock domain)
StreamEnRx Enable Rx-side streaming (waveform clock domain)
StartWFR Registered start waveform signal (waveform clock

domain)
aTransmit.
bReceive.
cPseudorandom bit sequence.
dBit error rate tester.
eWaveform.

Other key signals are created from the Reset and SoftReset input signals. The Reset and SoftReset

signals are combined (OR’d) into a ComboReset signal. The ComboReset signal is then double registered
in the 125 MHz clock domain to create the MainReset signal and double registered in the waveform clock
domain to create the WFReset signal. Table 28 shows the inputs and outputs for the
ClockDomainCrossing module.

There is no separate test bench for the ClockDomainCrossing module.

4.2.2 TxStreamData.vhd

The TxStreamData module is part of the STRS waveform and is used to receive streaming data packets
from the processor. The purpose of this module is to cross the clock domain between the Ethernet packet byte
rate (125 MHz) on the input to the waveform word clock rate on the output of the module. A FIFO (called
StreamingDataFifo) is used to accomplish this purpose. Additionally, the FIFO will allow the “bursty” input
data to be output in continuous words. The outputs of this module are 16-bit data words and a data valid signal
that is high when the output data is valid.

A state machine, TxStreamFifoWriteSM, is used to control the writing of data into the FIFO. Received
streaming Ethernet data is in 8-bit bytes and needs to be written into the FIFO in 16-bit words. The state
machine combines two Ethernet bytes into one 16-bit word and writes it into the FIFO. See Section 4.2.3 for
more information about the TxStreamFifoWriteSM module.

A block diagram of the TxStreamData module is shown in Figure 26. Using the StreamDataValid signal
as the FIFO write enable signal, incoming data is written into the FIFO only during the payload portion of the
streaming data. The StreamDataIn (8 bits) is written into FIFO using the 125 MHz clock rate.

A state machine (Fig. 27) controls the reading of data from the FIFO. The FIFO reads start when the
prog_empty signal (a read-side signal currently set to 98,750, 16-bit words) indicates that the FIFO is full
enough to start FIFO reads. The prog_empty signal is inverted to create a new signal called Threshold. FIFO
reads continue unless the Enable input signal goes low from a received command that stops Tx-side streaming.
To prevent FIFO underflows, reads will stop when the FIFO AlmostEmpty signal goes high and will restart
again when if the Threshold signal goes high again.

NASA/TM—2017-219429 43

Figure 26.—TxStreamData. FIFO, first in first out.

Figure 27.—TxStreamData state machine.

To prevent potential FIFO overflows or underflows, and thus the interruption of continuous streaming data
at the output of the TxStreamData module, three status signals are created.

(1) Fifo3QtrFull signal indicates that the FIFO is 3/4 full.
(2) Fifo1QtrFull signal indicates that the FIFO is 1/4 full.
(3) FifoCenter signal indicates when the FIFO level is in the middle (i.e., between 1/4 full and 3/4 full).

These three signals are outputs of the TxStreamData module and are routed in the STRS_Waveform
module to the CommandDecoder module. The three status signals will be transmitted to the processor in a
response to a TxStreamingFifoLevel command. The general purpose processor (GPP) uses the FIFO
status signals with its packet transmission algorithm to control the rate at which it sends streaming data
packets to the FPGA to avoid loss of data.

NASA/TM—2017-219429 44

TABLE 29.—TxStreamData INPUTS AND OUTPUTS
Module inputs

EthClock Ethernet clock (125 MHz)
WFClock Waveform clock
Reset Reset
Enable Txa-side streaming enable
StreamDataIn 8 bits, streaming data with headers removed
StreamDataValid High indicates StreamDataIn is valid
FlagReset Resets the error flags

Module outputs
SMErrorFlag Indicates that SMb entered “others” state
FifoFlags 2 bits, FIFOc full (bit 0) and empty (bit 1) flags
Fifo3QtrFull FIFO 3/4 full in Ethernet clock domain
Fifo1QtrFull FIFO 1/4 full in Ethernet clock domain
FifoCenter FIFO level is between 1/4 full and 3/4 full
DataOut 16 bits, output data words
DataOutValid High when DataOut is valid

aTransmit.
bState machine.
cFirst in first out.

Error handling in TxStreamData consists of two parts:

(1) An error flag (SMErrorFlag), which indicates that the TxStreamData state machine entered the

“others” state in the state machine navigation case statement.
(2) A pass-through of the FIFO full and empty flags (FifoFlags).

Table 29 shows the inputs and outputs for the TxStreamData module.
The test bench for this module is named TxStreamData_tb.vhd. It creates input signals by

reading streaming data and a StreamDataValid control signal from a file called
StreamingDataNoHeader.txt. The wave configuration file is TxStreamData.wcfg.

4.2.3 TxStreamFifoWriteSM.vhd

The TxStreamFifoWriteSM module controls writing of Ethernet data (8 bits) into the
StreamingDataFifo 16 bits at a time. Input Ethernet data is registered to create a 1-clock-cycle delay so
that two bytes can be combined into one word. The state machine controls the registering of the two bytes
together and creates a corresponding WriteEnable signal so that the 16-bit word can be written into the
FIFO. The state machine diagram is shown in Figure 28.

Error handling in TxStreamFifoWriteSM consists of an error flag (SMErrorFlag), which indicates
that the TxStreamFifoWriteSM state machine entered the “others” state in the state machine navigation
case statement. Table 30 shows the inputs and outputs for the TxStreamFifoWriteSM module.

The test bench for this module is TxStreamFifoWriteSM_tb.vhd. It creates sample streaming
input data in a “brute force” method, so the process writing words into the FIFO can be observed. The
wave configuration file is TxStreamFifoWriteSM.wcfg.

NASA/TM—2017-219429 45

Figure 28.—TxStreamFifoWriteSM state machine.

TABLE 30.—TxStreamFifoWriteSM INPUTS AND OUTPUTS
Module inputs

EthClock Ethernet clock (125 MHz)
Reset Reset
FlagReset Resets error flags
StreamEnable Txa-side streaming enable
DataValid Indicates with DataIn is valid
DataIn Input data, 16 bits

Module outputs
SMErrorFlag Indicates that SMb entered “others” state
FifoReset FIFOc reset
WriteEn FIFO write enable
DataOut 16 bits, output data words

aTransmit.
bState machine.
cFirst in first out.

NASA/TM—2017-219429 46

4.2.4 CommandParse.vhd

This module parses the Command Packets (payload portion) to extract the command header, the
command ID, and the command data. Inputs are the received data from RxPackets.vhd in 8-bit bytes
with an active-high DataValid signal. The Ethernet headers are removed from the packet before it reaches
the CommandParse module. The CommandParse is clocked by a 125 MHz clock.

A state machine (Fig. 29) implements the CommandParse module functions: extracting the Command
ID and Command Data from the packet. The state machine starts when the DataValid signal goes high.
The state machine navigates to the GETHEADER state, where the header (0xAA) is removed. Next, the
state machine goes to the GETCMDID state, where the Command ID is extracted from the packet. Then,
the state machine goes to the GETDATA state, where the data portion of the command is extracted.

If the DataValid signal goes low before the expected end of the command packet, the state machine
navigates to the ERROR state to prevent bad commands from being parsed. During the ERROR state, an
error flag (CmdError) is set high.

Key outputs of this module are the CommandID (8 bits), the CmdData (40 bits), and an active-high
signal called OutReady that indicates when the CmdData and CommandID are valid.

Figure 29.—CommandParse state machine.

NASA/TM—2017-219429 47

TABLE 31.—CommandParse INPUTS AND OUTPUTS
Module inputs

Clock 125 MHz clock
Reset Reset
DataValid Indicates an Ethernet command is being received
RxData 8 bits, received data 8-bit parallel
FlagReset Resets error flags

Module outputs
SMErrorFlags 2 bits, indicates that SMa entered “others” state
OutReady High indicates command data and command IDb are valid
CmdIdOut 8 bits, command ID from received packet
CmdData 40 bits, command data (payload) from received packet

aState machine.
bIdentification.

Error handling for the CommandParse module consists of two parts:

(1) An error flag (SMErrorFlag), which indicates that the CommandParse state machine entered the

“others” state in the state machine navigation case statement.
(2) An error flag called CmdError that is high if the state machine enters the ERROR state.

The flags are output from the module in the signal SMErrorFlags, a 2-bit signal. SMErrorFlag is

bit 0 and CmdError is bit 1. Table 31 shows the inputs and outputs for the CommandParse module.
The test bench for this module is CommandParse_tb.vhd. It creates sample command data in a

“brute force” method. The wave configuration file is CommandParse.wcfg.

4.2.5 CommandDecoder.vhd

A block diagram of the CommandDecoder module is shown in Figure 30. This module receives the
CommandID and the CommandData from the CommandParse module, and it decodes the command to
determine and implement the desired action. The command structure is shown in Table 32, and a list of all
the possible commands and their formats are shown in Table 33.

The CommandDecoder is clocked by a 125 MHz clock. There are two inputs signals to this module
(BertBits and BertErrors) that cross the clock domain from the waveform clock domain to the 125 MHz
domain. This is handled by double registering the BertBits and BertErrors signals with the 125 MHz
clock when they enter the CommandDecoder module. There is another clock domain crossing in the
CommandDecoder. The KnightRider submodule runs on the waveform clock rate. The output of the
KnightRider module (KRLeds) is double registered with the 125 MHz clock crosses the clock domain to
allow KRLeds to be combined with other signals before setting the onboard LEDs.

The primary process in the module is the ExecuteCmd process, which is a large case block that uses
the CommandID signal to select the correct “when” block to execute. Each “when” block in the case
block forms a 120-bit command response packet (ResponseO, see Table 14 for the format) and sets
appropriate control signals based upon the CommandID and CommandData received.

In addition to the ResponseO signal, the following key signals are set in the case statement “when”
blocks:

(1) SendReset, which set high when a Soft Reset command is received.
(2) LedsOut, which sets the FPGA board LED bank.
(3) StatusReset, which is set high when a Status command is received.
(4) CommandReg, a 16-bit vector which is used to control functions within the waveform.

The bits within the CommandReg signal are set according to the received command. Table 34 shows

the definition of the bits in the CommandReg signal.

NASA/TM—2017-219429 48

Figure 30.—CommandDecoder module. LEDs, light-emitting diodes; MUX, multiplexer.

TABLE 32.—COMMAND STRUCTURE
Byte number Description

1 Header byte (0xAA)
2 Command IDa
3 Data (MSBb)
4 Data
5 Data
6 Data
7 Data (LSBc)

aIdentification.
bMost significant byte.
cLeast significant byte.

NASA/TM—2017-219429 49

TABLE 33.—COMMANDS
Description Header

byte 1
Command
IDa byte 2

Byte 3 Bytes
4 to 7

Null command—do nothing 0xAA 0x00 0x00 0x00

Reset 0xAA 0x01 0x00 0x00

Start waveform 0xAA 0x06 0x00 0x00

Stop waveform 0xAA 0x07 0x00 0x00

Start PRBSb generator 0xAA 0x08 0x00 0x00

Enable BERTc 0xAA 0x09 0x00 0x00

Test command 0xAA 0x0C 0xXX (LEDd value) 0x00

Stream forward data 0xAA 0x0D 0x00 0x00

Stream return data 0xAA 0x0E 0x00 0x00

Insert error in PRBS 0xAA 0x0F 0x00 0x00

Stop PRBS generator 0xAA 0x10 0x00 0x00

Disable BERT 0xAA 0x11 0x00 0x00

Select Txe data source 0xAA 0x13

0x00 = sine wave
0x01 = PRBS

0x02 = streaming sine
0x03 = streaming PRBS

0x00

Select Rxf data source 0xAA 0x14
0x00 = ADCg

0x01 = loopback
0x00

Stop Rx-side streaming data 0xAA 0x15 0x00 0x00

Stop Tx-side streaming data 0xAA 0x16 0x00 0x00

Start Rx-side PRBS generator 0xAA 0x17 0x00 0x00

Stop Rx-side PRBS generator 0xAA 0x18 0x00 0x00

Tx StreamingFifo level 0xAA 0xF9 0x00 0x00

Request status bits 0xAA 0xFA 0x00 0x00

Request telemetry
(BERh data)

0xAA 0xFB 0x00 0x00

Request telemetry
(dip switch value)

0xAA 0xFC 0x00 0x00

Request telemetry
(waveform running or stopped)

0xAA 0XFD 0x00 0x00

aIdentification.
bPseudorandom bit sequence.
cBit error rate tester.
dLight-emitting diode.
eTransmit.
fReceive.
gAnalog-to-digital converter.
hBit error rate.

NASA/TM—2017-219429 50

TABLE 34.—COMMAND REGISTER BIT DEFINITION
Bit number Description Definition

1 Enable Rx-side PRBSa 1 = running, 0 = stopped
3 Waveform running 1 = running, 0 = stopped
5 Insert PRBS error 1 = insert error, 0 = no error
6 Enable Txb-side PRBS 1 = enabled, 0 = disabled
7 Enable BERTc 1 = enabled, 0 = disabled
8 and 9 Tx source select 00 = sine, 01 = PRBS, 10 = streaming sine,

11 = streaming PRBS
12 Stream enable Tx 1 = enabled, 0 = disabled
13 Stream enable Rxd 1 = enabled, 0 = disabled
14 and 15 Rx source select 00 = ADCe, 01 = loopback

aPseudorandom bit sequence.
bTransmit.
cBit error rate tester.
dReceive.
eAnalog-to-digital converter.

TABLE 35.—LedOut BIT DEFINITION

Bit number Definition
0 to 3 KnightRider flashing lights when waveform is running

4 EMACa receive error (from PHYb error signal)
5 to 7 Unused

aEthernet Media Access Controller.
bPhysical layer.

A reset command creates a soft reset pulse to the waveform logic. Although a response command is

created by decoding this command, it will never be sent since the reset pulse clears signals that would
cause a response command to be sent. This is understood and treated accordingly by the STRS code.
When a reset command is received, the CommandDecoder module sets SendReset high. This signal is
converted to a pulse (ResetOut) using the PulseGenSM module. This ResetOut signal resets the waveform
logic, but not the wrapper.

The bank of LEDs on the FPGA board are used to provide a visual indication of some of the functions
of the waveform and are set with the LedsOut signal. Table 35 shows the definition of the bits in the
LedsOut signal. The KnightRider module creates flashing lights on the four least significant bits of the
LED bank to show when the waveform is running.

The StatusReset signal is created when a Request Status Bits command is received. This signal is used
to create the FlagResetOut signal that clears all the “sticky” status bits in the wrapper and the waveform.
The FlagResetOut signal is created in the submodule StatusResetGenSM, a state machine that is started
when StatusReset goes high.

The case statement that decodes all the commands contains command validation to make sure the
received commands are valid and issued in the appropriate order. For example, a BER command will be
rejected if the BERT is not running, and a TxConfigure command will be rejected if the waveform is
currently running (so you cannot change the data rate while the waveform is running). The format of a
rejected command is shown in Table 15. A rejected command response packet will also be sent if an
unknown Command ID is received.

Input signals, BertBits and BertErrors, come from the ReceiveSignal module, which runs off of the
Rx-side waveform clock. These signals cross clock domains in CommandDecoder and therefore are
synchronized to the 125 MHz clock with a double register to transmit this information in a response
packet as a result of a received BER Data command.

Error handling in the CommandDecoder module consists of registering and combining the error flags
generated from the wrapper submodules, the waveform submodules, and from the CommandDecoder
submodules (PuleGenSM and StatusResetGenSM) into a single 40-bit word called StatusBits. The
StatusBits signal is sent to the processor in response to a Request Status Bits command. Table 36 shows
the inputs and outputs for the CommandDecoder module.

NASA/TM—2017-219429 51

TABLE 36.—CommandDecoder INPUTS AND OUTPUTS
Module inputs

Clock 125 MHz clock
Reset Reset from FPGAa board
CmdIdIn 8 bits, command IDb from CommandParse module
CmdDataIn 40 bits, command data from CommandParse module
InputValid High indicates command data and command ID from CommandParse are valid
DipSwitches 8 bits, dip switch bank from the FPGA board
WFClock Waveform clock
WFClockEn Waveform clock enable
BertBits 64 bits, total bits received from BERTc
BertErrors 32 bits, total bits in error from BERT
Fifo3QtrFull FIFOd 3/4 full in Ethernet clock domain
Fifo1QtrFull FIFO 1/4 full in Ethernet clock domain
FifoCenter FIFO level is near center
EmacRxError EMACe PHYf receive error
StatusBitsIn 40 bits, status bits coming from the waveform
RespSending_n Low while a command response is being sent

Module outputs
Leds 8 bits, LEDg bank on the FPGA board
FlagResetOut Reset for status bits
Response 120 bits, contents of the response to a command
CmdRegOut 16 bits, command register, a register that enables or disables waveform functions
ResetOut Reset caused by reset command
Done Indicates end of a packet and that output data is ready

aField-programmable gate array.
bIdentification.
cBit error rate tester.
dFirst in first out.
eEthernet Media Access Controller.
fPhysical layer.
gLight-emitting diode.

The test bench for this module is named CommandDecoder_tb.vhd. The test bench sets the value

of CmdDataIn and then changes the CmdIdIn value so that the response can be observed. The wave
configuration file is CommandDecoder.wcfg.

4.2.6 StatusResetSM.vhd

The StatusResetSM module (a submodule to CommandDecoder) creates the FlagResetOut signal in
the CommandDecoder module that clears all the status bit flags in the waveform and the wrapper. The
StatusResetSM is clocked by the 125 MHz clock.

The StatusResetSM state machine creates a signal (Output) that is 5 clock cycles wide (high) when
the input signal Enable (StatusReset in CommandDecoder) goes high.

The state machine (diagram in Fig. 31) starts in the IDLE state with a power-on-reset or push button
reset, causing a Reset signal to go high. When the Reset signal goes low (is de-asserted), the state machine
goes through four wait states, each one cycle long. During states WAIT3 and WAIT4, a FlagReset signal
is asserted. This FlagReset is only for startup purposes and is done to clear any error flags that become
erroneously set during a reset. The state machine then navigates to a fifth wait state (WAIT5). In the
CommandDecoder module, the Enable signal is connected to a StatusReset signal that is high when a
Request Status command is received. The state machine will stay in WAIT5 until the Enable input signal
goes high and then go to the WAIT4RESP state.

NASA/TM—2017-219429 52

Figure 31.—StatusResetSM state machine.

TABLE 37.—StatusResetSM INPUTS AND OUTPUTS
Module inputs

Clock Clock signal
Reset Reset (asserted low)
Enable Starts SMa when it goes high
RespSending_n Low while a command response is being sent

Module outputs
SMErrorFlag Indicates that SM entered “others” state
Output Output signal—a pulse that is high for five clock cycles

aState machine.

The input signal RespSending_n is low while a command response is being sent over the Ethernet
port. When the RespSending_n signal goes low, the state machine navigates to the WAIT4SENT state.
The state machine then waits for the RespSending_n signal to go high to navigate to the SET state, where
the FlagReset signal is asserted. It will stay in this state until the counter reaches a count of four and then
enters the RST state, where the FlagReset signal is de-asserted. When Enable = 0, the state machine will
return to the WAIT4RESP state.

Error handling in StatusResetSM consists of a sticky error flag (SMErrorFlag), which indicates that
the StatusResetSM state machine entered the “others” state in the state machine navigation case
statement. Table 37 shows the inputs and outputs for the StatusResetSM module.

There is no separate test bench for the StatusResetSM module.

NASA/TM—2017-219429 53

4.2.7 PulseGenSM.vhd

The PulseGenSM module (a submodule to CommandDecoder) creates a signal (Output) that is high
for five clock cycles when the input signal Enable goes high. This module is used by the
CommandDecoder module to create a soft reset pulse when a reset command is received. The
PulseGenSM is clocked by the 125 MHz clock.

The state machine (shown in Fig. 32) is very simple. When Enable goes high, the state machine goes
to the SET state where Output is set high until Count = 4, when it goes to the RESET state. It will set the
Output signal low in RESET and wait for Enable to go low to return to IDLE. Waiting for Enable to go
low prevents multiple soft reset pulses from being issued.

Error handling in the PulseGen module consists of a sticky error flag (SMErrorFlag), which indicates
that the PulseGen state machine entered the “others” state in the state machine navigation case statement.
Table 38 shows the inputs and outputs for the PulseGen module.

There is no separate test bench for the PulseGen module.

Figure 32.—PulseGen state machine.

TABLE 38.—PulseGen INPUTS AND OUTPUTS
Module inputs

Clock Clock signal
Reset Reset (asserted low)
Enable Starts SMa when it goes high
FlagReset Resets error flags

Module outputs
SMErrorFlag Indicates that SM entered “others” state
Output Output signal—a pulse that is high for five clock cycles

aState machine.

NASA/TM—2017-219429 54

4.2.8 KnightRider.vhd

The KnightRider module (a submodule to CommandDecoder) is used to create a “KnightRider” effect
on four LEDs to indicate that the waveform is running. This module was created by Tom Bizon for a
previous project and was used for the iPAS STRS radio.

The KnightRider module is clocked by the Tx-side waveform clock.
The KnightRider input Stop is connected to the inverted waveform running signal (not

CmdRegister(3)) in the CommandDecoder, so that the LEDs will turn off when the waveform is stopped.
The SendTNSPkt input is connected to the Tx-side waveform rate (not CmdRegister(0)) in
CommandDecoder. SendTNSPkt sets a divide ratio that affects the speed that the LEDs flash at. The
Count_n input signal (a count enable) is connected and asserted (set to zero) when a down counter in
CommandDecoder reaches all zeroes. The counter starts at 0xFFFF and counts down at the Tx-side
waveform rate. This counter is used to slow down the LED KnightRider effect so that rate changes can be
seen. Table 39 shows the inputs and outputs of the KnightRider module.

There is no separate test bench for the KnightRider module.

4.2.9 SineWaveGen.vhd

This module generates a 16-bit sine wave signal. The generated sine wave has 128 samples per cycle,
clocked at a rate of 1.54 MHz, so it creates a sine wave with a frequency of 24 KHz. The SineWaveGen is
clocked by the Tx-side waveform clock. This sine wave is used only when running the iPAS radio in
loopback (bypassing the RF front end). The TransmitSignal module contains a separate two tone
generator that creates a sine wave that can be used as an input to the I and Q DACs.

The sine is created using a look up table (LUT) called SINE_LUT1, which is defined in
STRS_Radio_Pkg.vhd. The LUT contains the first 1/4 cycle of the sine wave. The CreateSine
process uses the 1/4 wave to create a full sine wave signal called TwoToneOutput, which is reassigned to
the output signal called SineData. The module is clocked by the Tx-side waveform clock. ClockEn is used
as clock enable signal that will enable rates slower than input Clock signal.

The Enable input signal to this module is the waveform enable signal created when a Start Waveform
command is received. The output of this module is the 16-bit SinData signal. Table 40 shows the inputs
and outputs for the SineWaveGen module.

TABLE 39.—KnightRider INPUTS AND OUTPUTS

Module inputs
Clk Clock
Rst Reset
Enable Enable (used to enable or disable the component, tied high)
SendTNSPkt This signal sets rate of KnightRider effect; set SendTNSPkt = ‘1’ is for a slower effect or set

SendTNSPkt = ‘0’ for a faster effect
Count_n Count enable signal
Stop Stop (turns off all LEDsa)

Module outputs
LedOut 4 bits, output to drive four LEDs

aLight-emitting diodes.

TABLE 40.—SineWaveGen INPUTS AND OUTPUTS

Module inputs
Clock Clock
ClockEn Clock enable
Reset Reset signal synced with waveform clock
Enable Enable signal that starts sine wave generator

Module outputs
SinData 16 bits, sine wave data

NASA/TM—2017-219429 55

The test bench for this module is called SineWaveGen_tb.vhd. The test bench simply resets the
module and then enables the sine wave generator so the output can be observed. See the test bench
comments for how to test lower clock rates. The wave configuration file is SineWaveGen.wcfg.

4.2.10 TransmitSignal.vhd

The TransmitSignal module’s primary functions are to generate serial 223–1 PRBS data, insert errors
into the PRBS data on command, modulate the PRBS data, and to multiplex multiple data sources onto
either the DacData bus or LoopbackData bus. A block diagram of the TransmitSignal module is shown in
Figure 33. The PrbsTx23Wrapper block creates 16-bit PRBS data. The ErrorInsert block inserts a single
bit error into the PRBS data when an Insert Error Command is received. The TransmitSignal module also
receives input data from an external sine wave generator and Tx-side streaming. The module also contains
an internal sine wave generator that creates a 12 KHz sine wave, which is intended for the transmission of
a tone through the RFM.

PRBS data, either from streaming data or generated by the PrbsTx23Wrapper module, can be sourced
to the BPSK modulator. The modulator is enabled when either type PRBS data is selected (by a source
select command) and when Loopback is not selected (LoopbackCtrl = ‘0’) with a Loopback command.

The PrbsTx23Wrapper module contains two data multiplexers: Inst_DacDataMux and
Inst_LoopbackDataMux. The DacDataMux multiplexes data onto the DAC input I and Q buses when
LoopbackCtrl = ‘0’, and the LoopbackDataMux multiplexes data onto the LoopbackData bus when
LoopbackCtrl = ‘1’.

Data Selection is controlled by the source select bits (Table 41).

Figure 33.—TransmitSignal module.

TABLE 41.—TransmitSignal SOURCE SELECT BITS

Source select bit DacDataMux LoopbackDataMux
00 Sine wave Sine wave
01 Modulated PRBSa Internal PRBS
10 Modulated streaming data Streaming data
11 Modulated streaming data Streaming data

aPseudorandom bit sequence.

NASA/TM—2017-219429 56

The TransmitSignal module is clocked by the waveform clock. Clock enables are used to provide the
required clock rates to different parts of the module. WFClockEn1 is a byte enable and is used to enable the
PrbsTx23 module, which creates PRBS data in 8-bit bytes. WFClockEn2 is a word (16 bit) enable and is
used for most of the clocking in the TransmitSignal module. SymbClockEn is the symbol clock enable and a
serial data enable that is used in the BPSK modulator (BpskMod.vhd). See Sections 4.2.11, 4.2.12, and
4.2.15 for additional details. Table 42 shows the inputs and outputs for the TransmitSignal module.

The test bench for this module is called TransmitSignal_tb.vhd. The test bench creates clock
and enable signals for the TransmitSignal module and starts the PRBS generator. See the test bench
comments for how to change rates. DataSel can also be changed in the test bench to test other data
sources. The wave configuration file is TransmitSignal.wcfg.

4.2.11 PrbsTx23_Wrapper.vhd

The PrbsTx23Wrapper module is a wrapper module for the PrbsTx23 module. The PrbsTx23 module
creates 223–1 PRBS data in 8-bit bytes, but for this implementation, we need parallel PRBS data in 16-bit
words. The PrbsTx23_Wrapper combines two 8-bit bytes into a single 16-bit word. The PrbsTx23 module
runs from the waveform clock and ClockEn1 (byte clock enable) to create a PRBS sequence in 8-bit
bytes. To create 16-bit PRBS words, the PrbsTx23_Wrapper module combines two bytes from PrbsTx23
and registers them with ClockEn2 (the word clock enable signal). Table 43 shows the inputs and outputs
for the PrbsTx23_Wrapper module.

TABLE 42.—TransmitSignal INPUTS AND OUTPUTS
Module inputs

WFClock Waveform clock
WFClockEn1 Byte clock enable
WFClockEn2 Word clock enable
SymbClockEn Symbol clock enable
Reset Reset
WFRunning Waveform has been started from command
ModulationOn Turn on modulator
LoopbackCtrl ‘0’ = no loopback, ‘1’ = loopback
DataSel 2 bits, MUXa select signals—00 = sine, 01 = PRBSb, 10 = streaming sine, 11 = streaming

PRBS
SineData 16 bits, sine wave data
StreamingData 16 bits, real-time streamed data from processor
EnablePRBS Enable PRBS generator (active high)
InsertError Insert one error in PRBS serial data (active high)
NRZ_Control Binary encoding control—1 = NRZ-M, 0 = NRZ-L

Module outputs
DacDataI Ic input to DACd, 16 bits
DacDataQ Qe input to DAC, 16 bits
LoopbackData Loopback data, 16 bits

aMultiplexer

bPseudorandom bit sequence.
cIn-phase.
dcDigital-to-analog converter.
eQuadrature.

TABLE 43.—PrbsTx23_Wrapper INPUTS AND OUTPUTS
Module inputs

Clock Waveform clock
ClockEn1 Enable (once per byte)
ClockEn2 Enable (once per word)
Reset Reset
Start Starts PRBSa generator

Module outputs
DataOut 16 bits, output data
DataValid High when DataOut is valid

aPseudorandom bit sequence.

NASA/TM—2017-219429 57

The test bench for this module is called PrbsTx23Wrapper_tb.vhd. The test bench set the
RateControl signal and starts the PRBS generator. See the test bench comments for how to control rates.
The wave configuration file is PrbsTx23Wrapper.wcfg.

4.2.12 PrbsTx23.vhd

The PrbsTx23 module creates a 223–1 length PRBS binary data sequence and outputs data in 8-bit
bytes. This module was written by Linda Moore at NASA Glenn Research Center for the SCaN Testbed
Experiment 6 project and was used for this implementation without changes.

This module is clocked by the waveform clock and uses the byte-clock enable for the Enable signal.
Table 44 shows the inputs and outputs for the PrbsTx23 module.

Test bench is called PrbsTx23_tb.vhd. The test bench simply resets the module and then enables
the PRBS generator so the output can be observed. The wave configuration file is PrbsTx23.wcfg.

4.2.13 error_insert.vhd

The error_insert module is used to create a single error in the 16-bit parallel PRBS data. The
error_insert module flips a bit in a 16-bit data word (data_in) when the error_ins signal is raised from
low to high. The output data_out contains the errored data. This module is intended to be used with a
PRBS generator and BER checker to insert and test for proper PRBS and BER checker operation.

This module was originally written for the experiment front end processor created for the CoNNeCT
project. It was modified slightly in this current implementation to change serial input and output data to a
parallel 16-bit format.

This module is clocked by the waveform clock. A ClockEn input signal is used to enable slower clock
rates. Table 45 shows the inputs and outputs for the error_insert module.

There is no separate test bench for the error_insert module.

TABLE 44.—PrbsTx23 INPUTS AND OUTPUTS
Module inputs

Clk Clock
Reset Reset
Enable Enable

Module outputs
ValidDo Valid data output
Do 8 bits, data output

TABLE 45.—error_insert INPUTS AND OUTPUTS

Module inputs
clk Clock
ClockEn Clock enable
data_in 16 bits, data in
error_ins Error insert

Module outputs
data_out 16 bits, data out

NASA/TM—2017-219429 58

4.2.14 DataMux.vhd

The DataMux module is used to select one of three possible Tx data sources: sine wave, PRBS data,
or streaming data. It consists of a simple case statement multiplexer. This module is not clocked. This
module is instantiated twice in the TransmitSignal module: once for data input to the DAC (called
DacDataMux) and once for Loopback data (called LoopbackDataMux). The DataMux module contains a
generic called DataSize, which is used to set the width of the data buses for the following signals:
SineData, PrbsData, StreamData, and OutputData. This generic is set to 16 for the LoopbackDataMux and
32 for the DacDataMux (16 bits for I and 16 bits for Q). Table 46 shows the inputs and outputs for the
DataMux module.

There is no separate test bench for the DataMux module.

4.2.15 BpskMod.vhd

The BpskMod module performs BPSK modulation of input PRBS data bits. First the parallel, 16-bit
PRBS data, either from the internal PRBS generator or from streaming data packets containing PRBS
data, is converted to serial using a 16-to-1 parallel to serial converter (ParallelToSerial.vhd).
Next, serial bits are converted to symbols. Then, the symbols are upsampled by a factor of eight (one non-
zero symbol proceeded by seven zero symbols) and passed through a pulse-shaping filter (PSFx8a035,
generated IP), which has an oversampling factor of eight, a rolloff of 35 percent, and is of type square-
root-raised-cosine.

The NRZControl input signal will convert the serial data into the BPSK modulator to the NRZ-M
format. The NRZControl signal is controlled on the Xilinx® ML605 FPGA board by dip switch 0
(1 = NRZ-M, 0 = NRZ-L). NRZ-M format makes it easier for the receiving demodulator to resolve the
data polarity from the received signal. Table 47 shows the inputs and outputs for the BPSKMod module.

There is no separate test bench for the BpskMod module.

TABLE 46.—DataMux INPUTS AND OUTPUTS
Module inputs

DataSel 2 bits, MUXa select signals—00 = sine, 01 = PRBSa, 10 and 11 =
streaming

SineData Sine wave data
PrbsData 223–1 PRBS data
StreamData Streaming data

Module outputs
OutputData Output of the MUX

aMultiplexer

bPseudorandom bit sequence.

TABLE 47.—BPSKMod INPUTS AND OUTPUTS

Module inputs
Clock Waveform clock
WordClockEn Word clock enable
ClockEn Symbol word clock enable
Reset Reset
ModulationOn High when modulation is desired
ModeSelect Used to select streaming data or internal PRBSa data—01 = PRBS, 11 = streaming PRBS
StreamDataIn Streaming input data
PrbsDataIn Internal PRBS input data
NRZ_Control Binary encoding control—1 = NRZ-M, 0 = NRZ-L

Module outputs
IOutput 16 bits, Ib data
QOutput 16 bits, Qc data

aPseudorandom bit sequence.
bIn-phase.
cQuadrature.

NASA/TM—2017-219429 59

4.2.16 ReceiveSignal.vhd

The ReceiveSignal module, shown in Figure 34, takes care of the received data entering the Rx side
of the waveform. Incoming data will enter the Rx side from the either the ADC or the Loopback signal.
Loopback data is routed directly to a 223–1 bit BERT (PrbsRx23Wrapper) and ADC data is double
registered. The module contains a 223–1 PRBS generator to send PRBS data in streaming packets to the
GPP independent of the Tx side of the radio.

ReceiveSignal module contains a very simple state machine (shown in Fig. 35) that controls the
BERT. When the BERT is enabled (BertEn = ‘1’), the state machine creates a reset signal to the BERT to
clear out previous bit and error counts, waits a couple of clock cycles, and then starts the BERT.

The DataInMux process is used to select either LoopbackIn data, AdcDataIn, or PRBS data to go the
StreamingInput signal to be used for the Rx-side streaming data source. The RxSourceCtrl input signal
selects LoopbackIn when “01”, AdcDataIn when “00”, and PRBS data when “10”.

The ReceiveSignal module is clocked by WFClock signal, which is approximately 200 MHz in the
original waveform version. Clock enables are used to provide the required clock rates to different parts of
the module. WFClockEn1 is a byte enable, and is used to enable the PrbsRx23 module, which performs
BER checking on 8-bit PRBS data bytes. WFClockEn2 is a word (16 bit) enable, and is used for most of
the clocking in the ReceiveSignal module. See Sections 4.2.11 and 4.2.12 for details.

Error handling in the ReceiveSignal module consists of passing the error flags from the
PrbsRx23_Wrapper up to the STRS_Waveform module to be combined with other error flags into the
StatusBits word. Table 48 shows the inputs and outputs for the ReceiveSignal module.

Test bench ReceiveSignal_tb.vhd tests the BERT portion of the module. It contains an
instantiated PrbsTx23Wrapper to generate the data to test the ReceiveSignal module. The wave
configuration file is ReceiveSignal.wcfg.

Figure 34.—ReceiveSignal module. BERT, bit error rate tester;

MUX, multiplexer; PRBS, pseudorandom bit sequence.

NASA/TM—2017-219429 60

Figure 35.—ReceiveSignal state machine.

TABLE 48.—ReceiveSignal INPUTS AND OUTPUTS
Module inputs

WFClock Waveform data clock rate
WFClockEn1 Waveform data clock enable
WFClockEn2 Waveform data clock enable
Reset Reset
BertEn BERTa enable
RxSourceCtrl 2 bits, Rxb-side data source control
AdcDataIn 16 bits, ADCc data
LoopbackIn 16 bits, loopback data
DataReady High when AdcDataIn is valid
FlagReset Resets the error flags

Module outputs
SMErrorFlagOut 3 bits, indicates that SMd entered

“others” state
DataOut 16 bits, parallel received data
SyncLost BERT lost sync
SyncLostCnt 8 bits, times synchronization was lost
BertBits 64 bits, number of bits received
BertErrors 32 bits, number of bit errors counted

aBit error rate tester.
bReceive.
cAnalog-to-digital converter.
dState machine.

NASA/TM—2017-219429 61

4.2.17 PrbsRx23_Wrapper.vhd

The PrbsRx23_Wrapper module is a wrapper module for the PrbsRx23 module. The PrbsRx23
module is 8-bit BERT for a 223–1 length PRBS binary data sequence, but for this implementation, we
need parallel PRBS data in 16-bit words. The PrbsRx23_Wrapper extracts two 8-bit bytes from a single
16-bit input data word. To accomplish this, the PrbsRx23 module is enabled at twice the rate of the
PrbsRx23_Wrapper module.

This module is clocked by the waveform clock, which is approximately 200 MHz for the original
delivered waveform. The 16-bit incoming PRBS data words are clocked by word clock enable,
WFClockEn2. Since the BERT takes an 8-bit input word, it must be enabled at twice the rate of the 16-bit
word rate, using the byte clock enable, WFClockEn1.

PrbsRx23_Wrapper module uses a very simple state machine (see Fig. 36) to control the order at
which the 8-bit bytes (extracted from the 16-bit input data, DataIn) are presented to the PrbsRx23
module.

Error handling in the PrbsRx23_Wrapper module consists of three parts:

(1) A sticky error flag (SMErrorFlagO), which indicates that the PrbsRx23_Wrapper state
machine entered the “others” state in the state machine navigation case statement.

(2) Passing up to the next level an error flag, SMErrorFlag, originally from the
BERTSyncherSM module, which indicates that the state machine entered the “others” state.

(3) Passing up to the next level the BERTSyncherSM module SyncLost and SyncLossCnt signals.

Figure 36.—PrbsRx23_Wrapper state machine.

NASA/TM—2017-219429 62

TABLE 49.—PrbsRx23_Wrapper INPUTS AND OUTPUTS
Module inputs

WFClock Waveform clock
WFClockEn1 Byte rate clock enable
WFClockEn2 Word rate clock enable
Reset Reset
Enable Enable signal to start BERTa
DataIn 16 bits, input data
FlagReset Resets error flags

Module outputs
SMErrorFlags 2 bits, indicates that SMb entered “others” state
Synched Indicates BERT is synced
SyncLost BERT lost sync
SyncLostCnt 8 bits, a count of number of times synchronization was lost
Bits 64 bits, bits received
Errors 32 bits, errors detected

aBit error rate tester.
bState machine.

Table 49 shows the inputs and outputs for the PrbsRx23_Wrapper module.
Test bench PrbsRx23Wrapper_tb.vhd tests the BERT portion of the module. It reads in 16-bit

PRBS data from a file. Two files are included in the test bench: Prbs23_16bitsWithZeroes.txt,
which tests that the BERT will not synchronize to long strings of zeroes, and Prbs23_16bits.txt,
which tests the BERT with straight PRBS data. The wave configuration file is
PrbsRx23Wrapper.wcfg.

4.2.18 PrbsRx23.vhd

The PrbsRx23 module is 8-bit parallel-input BERT for a 223–1 PRBS sequence. It uses the incoming
data to seed the internal PRBS generator. Once the PRBS generator is synced, the PRBS generator runs
without the incoming data. The module contains a state machine in BertSyncherSM, which acquires
synchronization and detects loss of synchronization. Once synchronized, incoming data is compared to
the correct PRBS data to get count of the number of erroneous bits. If synchronization is lost, the BERT
will reacquire, but the counts (errors and bits) will not reset and they start up where they left off.

The PrbsRx23 module contains two important processes: PRBS_Gen and CompareProcess.
PRBS_Gen generates the PRBS sequence that is used to compare against the incoming data. At the
beginning, the incoming data is used to seed the linear feedback shift register (LFSR). Once sync is
achieved, the LFSR continues on its own, without incoming data. CompareProcess starts when the PRBS
generator is synced to the incoming data. It exclusive ORs (XORs) the incoming data byte (DataIn) to the
linear feedback shift register output (Value0) in two separate nibbles and creates an integer
(CompareHigh and CompareLow) for each nibble, where each ‘1’ represents a bit error in the data.

The ErrorCounter process is responsible for counting the number of errors in each byte. This process
uses a LUT to determine the number of high bits in the CompareHigh and CompareLow signals. The
ADDER_LUT simply outputs a 4-bit vector representation of the number of high bits contained in its
input signal, CompareHigh or CompareLow. These values are then added together with the running total
of errors, as shown in the line of code below:

ErrorCnt <= ErrorCnt + ADDER_LUT(CompareHigh) + ADDER_LUT(CompareLow);

Because the 223–1 PRBS sequence is generated using a linear feedback shift register, it is subject to
erroneously synchronizing to long sequences of zeroes. The PrbsRx23 module contains a process,
ZeroCounter, which counts the number of consecutive bits that are zero. The ZeroCnt is used as an input
the BERTSyncherSM module (see the BERTSyncherSM.vhd section), which will consider a ZeroCnt >
0x3F as a loss of synchronization, resulting in an attempt to resynchronize.

NASA/TM—2017-219429 63

TABLE 50.—PrbsRx23 INPUTS AND OUTPUTS
Module inputs

Clock Clock
Reset Reset
ClockEn Clock enable
Enable BERTa enable from BERT enable command
DataIn 8 bits, received PRBSb data
FlagReset Resets error flags

Module outputs
SMErrorFlag SMc error flag
Synched Indicates BERT is synced to DataIn
SyncLost BERT lost sync
SyncLostCnt 8 bits, a count of number of times synchronization was lost
Bits 64 bits, number of bits received
Errors 32 bits, number of errors counter

aBit error rate tester.
bPseudorandom bit sequence.
cState machine.

This module is clocked by the waveform clock and enabled by the byte clock enable, WFClockEn2.
Error handling in the PrbsRx23 module consists of passing an error flag, SMErrorFlag, from the

BERTSyncherSM module, which indicates that the state machine entered the “others” state in the state
machine navigation case statement, up to the next level. The PrbsRx23 module also passes a SyncLost
signal and SyncLossCnt signal up to the next level to become part of the status bits along with the other
error flags. Table 50 shows the inputs and outputs for the PrbsRx23 module.

Test bench PrbsRx23_tb.vhd tests this module. It reads in 8-bit PRBS data from a text file.
Multiple text files are included to test with and without errors. These are defined in the test bench
comments. The wave configuration file is PrbsRx23.wcfg.

4.2.19 BertSyncherSM.vhd

The BertSyncherSM module works with signals that come from the PrbsRx23 module, contains a
state machine that controls synchronization of the BERT to the incoming data, and detects loss of
synchronization. The state machine (diagram is shown in Fig. 37) starts when the BERT is enabled
(Enable = 1) and navigates to the SYNCHING state after a one cycle wait state. In the SYNCHING state,
the module input DataIn is compared to the module input Value0 (the LFSR output) for a window of
10 bytes (SYNC_BYTES). If there are no errors during that 10-byte window and there have not been 24 or
more consecutive zeroes in the data, the BERT is considered synchronized and the state machine moves
to the DATASYCNHED state. If 24 or more consecutive zeroes in the data are detected in the
10-byte window, the state machine will move to the IDLE state to start over.

In the DATASYNCHED state, the number of errors (ErrorCnt) in the received data is counted during
a window of 32 data bytes. The number of consecutive zeroes in the incoming data is also counted. If
there are 63 or more consecutive zeroes in the 32-byte window (256 bits), then the BERT had
synchronized to all zeroes instead of the 223–1 PRBS sequence. This is considered a loss of
synchronization and the state machine goes to the SYNC_LOST state.

When the 32-byte window is completed and there was no false lock to all zeroes, the state machine
will go to the CHECK4ERRORS state. In CHECK4ERRORS, synchronization is lost if there are greater
than 32 bit errors in the 32-byte window. The state machine will go to the SYNC_LOST state where the
SyncLost signal in asserted and the SyncLossCnt is incremented, and then return to the IDLE state to
attempt to resynchronize.

This module is clocked by the waveform clock and enabled by the word clock enable, WFClockEn2.

NASA/TM—2017-219429 64

Figure 37.—BERTSyncherSM state machine.

Error handling in the BertSyncherSM module consists of three parts:

(1) A sticky error flag (SMErrorFlag), which indicates that the BertSyncherSM state machine

entered the “others” state in the state machine navigation case statement.
(2) A “sticky” SyncLost signal, which indicates that the BERT lost synchronization with the

incoming PRBS data.
(3) SyncLossCnt, which is an 8-bit signal that keeps track of the number of total losses of

synchronization.

NASA/TM—2017-219429 65

Table 51 shows the inputs and outputs for the BertSyncherSM module.
There is no separate test bench for the BertSyncherSM module. The functionality of the

BertSyncherSM module can be simulated and demonstrated by using the PrbsRx23Wrapper_tb or the
PrbsRx23_tb test benches.

TABLE 51.—BertSyncherSM INPUTS AND OUTPUTS

Module inputs
Clock Clock
ClockEn Clock enable
Reset Reset
Enable Enable signal that enables BERTa
CompHighIn 4 bits, error bits—most significant nibble
CompLowIn 4 bits, error bits—least significant nibble
DataIn 8 bits, input data
Value0 8 bits, generated PRBSb data
ZeroCnt 16 bits, number of consecutive zeroes
FlagReset Resets error flags

Module outputs
SMErrorFlag Indicates that SMc entered “others” state
Synched BERT is synced
SyncLost BERT lost sync
SyncLossCnt 8 bits, number of sync losses

aBit error rate tester.
bPseudorandom bit sequence.
cState machine.

NASA/TM—2017-219429 66

4.3 STRS_Radio_Pkg

STRS_Radio_Pkg is a VHDL package that is used to share objects among many of the design modules
in this implementation. This package contains a number of reusable constants and defines the Xilinx®
ChipScope™ Pro Integrated CONtroller (ICON) and Integrated Logic Analyzer (ILA) components so they
can be used in multiple modules (Table 52). The package also contains the LUT used in PrbsRx23.vhd
to add up the number of errors in a received byte.

TABLE 52.—DEFINITION OF CONSTANTS IN STRS_Radio_Pkg
Constant name Value Description Modules

PACKET_SIZE 60 Length of a command response
packet

EthernetRx,
TxResponsePackets,
RespFifoInputSM,
RespFifoOutputSM

DATA_PACKET_SIZE 557 Length of a streaming data packet

EthernetRx,
CreatePacketSM,
RxStreamingData, and as
BYTECNT in
StrDataFifoOutputSM

HEADER_SIZE 42 Length of a transmit header

RespFifoInputSM and
CreatePacketSM

SOURCE_PORT_BYTE 33 Location of source port number in
packet header

EthernetRx

REMAINING_HEADER_SIZE 26 Length of remainder of header in
Txa-side packets after enable goes
high

RxPackets

COMMAND_RESPONSE_SIZE 120 Length of a command response
packet payload

OutputDataMux and
TxResponsePackets

STREAM_PKT_BYTE1 0x8C Tx-side streaming UDPb packet
source port address—MSBc

EthernetRx

STREAM_PKT_BYTE2 0xA0 Tx-side streaming UDP packet
source port address—LSBd

EthernetRx

CMD_PKT_BYTE1 0x8C Command UDP packet source port
address—MSB

EthernetRx

CMD_PKT_BYTE2 0x35 Command UDP packet source port
address—LSB

EthernetRx

PACKET_BYTE_CNT 570 Number of bytes in an Rx-sidee
streaming data packet

RxStreamingData

WAIT_CNT 500 Number of clock cycles between
Rx-side streaming data packets

RxStreamingData

PACKET_NUM_CNT 4 Number of data packets sent in a
group of packets

RxStreamingData

aTransmit.
bUser Datagram Protocol.
cMost significant bit.
dLeast significant bit.
eReceive-side.

NASA/TM—2017-219429 67

TABLE 53.—FIELD-PROGRAMMABLE GATE ARRAY (FPGA) RESOURCE UTILIZATION
Resource name Usage (percentage) Usage (used/available)

Slice registers 2 percent 6,717/301,440
Slice LUTsa 4 percent 7,264/150,720

Fully used LUT–FF pairs 49 percent 4,314/9,211

Bonded IOBsb 17 percent 103/600
DSP48E1s 2 percent 22/768
Block RAMc/FIFOd 40 percent 169/416
BUFG/BUFGCTRLs 32 percent 14/32

aLookup tables.
bInput/output blocks.
cRandom-access memory.
dFirst in first out.

4.4 Programmable Logic Device (PLD) Resource Usage

The amount of PLD resources utilized in the design is shown in Table 53.

5.0 Simulation and Testing

Much of the iPAS STRS radio FPGA design was thoroughly simulated using test benches and the
Xilinx® ISE simulator (iSIM). Information about test benches is included with each module description in
Section 4.0 of this document. Simulation was used during development to test and debug the VHDL code
implementation. Further testing of the FPGA code occurred in the FPGA by using a C++ test program to
emulate the functions of the GPM. Formal verification of the design was completed with full system testing.

6.0 Conclusions

The Space Telecommunications Radio System (STRS) was developed to reduce the cost and risk of
using complex, configurable, and reprogrammable radio systems across multiple NASA missions. To
promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn
Research Center developed an STRS-compliant software defined radio (SDR) on a radio platform used by
the Advanced Exploration System program at the NASA Johnson Space Center in their Integrated Power,
Avionics, and Software (iPAS) laboratory. This platform, called the Reconfigurable, Intelligently-
Adaptive Communication System (RIACS) platform, consists of easily obtainable commercial off-the-
shelf hardware. The hardware description language (HDL) code developed for the field-programmable
gate array (FPGA) portion of the platform consists of a wrapper and a test waveform. The wrapper
implements each platform interface that is accessible to the FPGA for SDR waveform development. The
test waveform is a placeholder for a full radio waveform, and it exercises and demonstrates each interface
in the FPGA wrapper. A waveform developer can remove the test waveform and replace it with a new
waveform to create a custom radio on the platform. The result of this development is a very low cost
STRS-compliant platform that can be used for waveform developments for multiple applications.

NASA/TM—2017-219429 69

Appendix

The following abbreviations and acronyms are used within this document.

ADC analog-to-digital converter
API application programming interface
BER bit error rate
BERT bit error rate tester
BPSK binary phase shift keying
DAC digital-to-analog converter
DSP digital signal processor
EDK Embedded Development Kit
EMAC Ethernet Media Access Controller
FDI firmware developer interface
FIFO first in first out
FMC FPGA Mezzanine Card
FPGA field-programmable gate array
GPM general purpose module
GPP general purpose processor
GUI graphical user interface
HAL hardware abstraction layer
HDL hardware description language
HID hardware interface description
I in-phase
ICON Integrated CONtroller
ID identification
IDDR input dual data rate
IHL Internet header length
IIC Inter-Integrated Circuit
ILA Integrated Logic Analyzer
IOB input/output block
IP Internet Protocol
iPAS Integrated Power, Avionics, and Software
ISE Integrated Synthesis Environment
iSIM ISE Simulator
LED light-emitting diode
LFSR linear feedback shift register
LSB least significant bit/byte
LUT lookup table
MAC media access control
MSB most significant bit/byte
MUX multiplexer
ODDR output dual data rate
OE operating environment
PC personal computer
PHY physical layer
PLD programmable logic device
PLL phase-locked loop
PRBS pseudorandom bit sequence
Q quadrature-phase
RAM random-access memory

NASA/TM—2017-219429 70

RIACS Reconfigurable, Intelligently-Adaptive Communication System
RF radiofrequency
RFM RF module
ROM read-only memory
Rx receive
SCaN Space Communications and Networking
SDK Software Development Kit
SDR software defined radio
SM state machine
SPM signal processing module
STRS Space Telecommunications Radio System
SW switch
Tx transmit
UART universal asynchronous receiver/transmitter
UDP User Datagram Protocol
VGA variable-gain amplifier
VHDL VHSIC Hardware Description Language
WF waveform
XOR exclusive or

NASA/TM—2017-219429 71

References

1. Shalkhauser, Mary Jo W.; and Roche, Rigoberto: Hardware Interface Description for the iPAS STRS
Radio. NASA/TM—2017-219432, to be published, 2017.

2. Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC Wrapper v1.4 Getting Started Guide.
https://www.xilinx.com/support/documentation/ip_documentation/v6_emac_gsg545.pdf Accessed
April 21, 2017

