

Hardware Interface Description for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio

Mary Jo W. Shalkhauser and Rigoberto Roche Glenn Research Center, Cleveland, Ohio

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI Program provides access to the NASA Technical Report Server—Registered (NTRS Reg) and NASA Technical Report Server— Public (NTRS) thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers, but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., "quick-release" reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question to help@sti.nasa.gov
- Fax your question to the NASA STI Information Desk at 757-864-6500
- Telephone the NASA STI Information Desk at 757-864-9658
- Write to: NASA STI Program Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199

Hardware Interface Description for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio

Mary Jo W. Shalkhauser and Rigoberto Roche Glenn Research Center, Cleveland, Ohio

National Aeronautics and Space Administration

Glenn Research Center Cleveland, Ohio 44135

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA STI Program Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199 National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

Hardware Interface Description for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio

Mary Jo W. Shalkhauser and Rigoberto Roche National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135

Summary

The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable, and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center developed an STRS-compliant SDR on a radio platform used by the Advanced Exploration System program at the Johnson Space Center in their Integrated Power, Avionics, and Software (iPAS) laboratory.

Introduction

The Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at Johnson Space Center. The platform consists of a Xilinx[®] Virtex[®]-6 ML605 Evaluation Kit, an Analog Devices AD–FMCOMMS1–EBZ radiofrequency (RF) front-end board, and an Axiomtek[™] eBOX620–110–FL embedded personal computer (PC) running the Ubuntu[®] 12.04 LTS operating system. Figure 1 shows the RIACS platform hardware. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications.

The purpose of this document is to describe the interfaces of the RIACS platform.

Design Overview

This section presents an overview of the RIACS platform.

System Description

Figure 2 shows how the STRS standard was implemented on the RIACS platform. The general purpose module (GPM) is the implementation of the STRS command infrastructure on the iPAS radio. It houses the operating environment (OE) and presents a communication conduit for commands and data to and from the signal processing module (SPM). The GPM is where the general purpose processor (GPP) hardware is contained and accessed by the operating system running the STRS project files.

The SPM encompasses the field-programmable gate array (FPGA) design, which consists of the FPGA wrapper that implements all the interfaces to the FPGA and abstracts them from the waveform, and the waveform, which is the FPGA implementation of the radio signal processing functions. The test waveform created for the iPAS STRS radio does not fully implement all the signal processing functionality for a radio, but it exercises and demonstrates each interface in the FPGA wrapper. A future user of the platform for an STRS radio would re-use the FPGA wrapper and replace the test waveform with their own radio signal processing functions.

Figure 1.—Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform. ADC, analog-to-digital converter; DAC, digital-to-analog converter; FPGA, field-programmable gate array; RF, radiofrequency; Rx, receive; Tx, transmit.

Figure 2.—Space Telecommunications Radio System (STRS) implementation on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform. ADC, analog-to-digital converter; DAC, digital-to-analog converter; FMC, FPGA Mezzanine Card; PC, personal computer; RF, radiofrequency; UDP, User Datagram Protocol. The radiofrequency module (RFM) provides the analog and RF signal processing for the iPAS STRS radio. On the transmit (Tx) side, the RF front-end board (AD–FMCOMMS1–EBZ) takes complex in-phase (I) and quadrature (Q) inputs (16 bits) into a high-speed digital-to-analog converter (DAC) to create an analog signal. The DAC output signal is up-converted to the desired RF frequency by a Q modulator. On the receive (Rx) side, the received RF signal is demodulated using direct-conversion to create I and Q analog signals. The analog signals are digitized using a 14-bit analog-to-digital converter (ADC).

General Purpose Module (GPM)

The GPM is the implementation of the STRS command infrastructure on the iPAS radio. It houses the OE and presents a communication conduit for commands and data to and from the SPM. The GPM is where the GPP hardware is contained and accessed by the operating system running the STRS project files.

The GPP hardware (eBOX620–110–FL) is used under the software implementation of the STRS Architecture; that is, STRS OE. This architecture can perform Tx-side streaming to the SPM, Rx-side streaming from the SPM, command generation, command transmission to the SPM, and command processing of responses from the SPM, all simultaneously. The GPP also controls the Ethernet communication protocol (setup in Transmission Control Protocol/Internet Protocol version 4 (TCP/IPv4)), scheduler and dynamic memory allocation of the hardware, and systemic pointing for STRS command and control interfaces.

This architecture also handles the use of specific waveform characteristics that are commanded in the iPAS test waveform application. These parameters include a pseudorandom bit sequence (PRBS) generator in the Tx side for parallel streaming to the SPM, an I and Q channel data source for parallel streaming to the SPM, a Rx-side streaming bit error rate tester (BERT), and a plotting tool for a graphical representation of the incoming data. Additional features include commands to display bit error rate (BER) from SPM BERT and from GPM BERT. Debugging tools included in this software architecture allow the user to query status bits and display any issues indicated by such bits. Additional queries are possible to obtain the status of the first in first out (FIFO) buffer during Tx-side streaming and observation of automatic speed adjustments of Tx-side packet streaming.

Signal Processing Module (SPM)

The SPM of the STRS radio architecture implements the signal processing functions on the iPAS RIACS platform using an FPGA. The FPGA design will consist of two parts: the FPGA wrapper and the test waveform. The FPGA wrapper implements each of these platform interfaces:

- (1) Ethernet communication to the embedded processor for commanding and data streaming
- (2) DAC and ADC interface to the RF board
- (3) RF board control and configuration
- (4) FPGA clocking

The test waveform does not fully implement all the signal processing functionality for a radio, but it exercises and demonstrates each interface in the FPGA wrapper. A future user of the platform for an STRS radio would use the FPGA wrapper and replace the test waveform with their own radio signal processing functions.

The FPGA design is required to receive and process commands and provide command control and data to the test waveform. It must also receive and transmit streaming data from and to the embedded processor (i.e., the GPP). The test waveform demonstrates each FPGA wrapper interface. To test Tx-side streaming, it can perform bit error rate (BER) testing on Tx-side PRBS streaming data. It can also generate PRBS streaming data packets for a Rx-side streaming data source. The test waveform generates sine waves for the I and Q inputs to the RF transceiver. Captured I and Q outputs of the RF transceiver can be streamed to the embedded processor, where it can be plotted to demonstrate proper functionality of the RF board and its interfaces.

Radiofrequency Module (RFM)

The RF front-end board (AD–FMCOMMS1–EBZ) provides the analog and RF signal processing for the iPAS STRS radio. On the Tx side, the AD–FMCOMMS1-EBZ board takes complex I and Q inputs (16 bits) into a high-speed DAC to create an analog signal. The DAC output signal is upconverted to the desired RF frequency by a quadrature modulator.

On the Rx side, the received RF signal is demodulated using direct-conversion to create I and Q analog signals. The analog signals are converted to digital data using a 14-bit ADC.

Concept of Operation

The flight computer graphical user interface (GUI) simulates the STRS commands that would originate from typical flight computer. The GPM is implemented on the embedded PC and includes the STRS OE and waveform application software. The STRS OE communicates with the waveform application through standard STRS application programming interfaces (APIs) to control and configure the waveform.

The SPM is implemented in the Xilinx[®] ML605 FPGA board. The FPGA consists of two parts: a FPGA wrapper and a test waveform. The FPGA wrapper abstracts the hardware interfaces from the waveform developer. The test waveform utilizes each of the hardware interfaces within the wrapper to demonstrate that the wrapper is correctly implemented. The GPM sends commands over an Ethernet port to the FPGA to control and configure the waveform. The GPM also streams packetized data to the FPGA and receives packetized streaming data from the FPGA over the same Ethernet port.

The RF front-end board (AD–FMCOMMS1–EBZ) contains a DAC, up-converter, down-converter, and an ADC. The FPGA configures the RF board using the Xilinx[®] MicroblazeTM 32-bit Reduced Instruction Set Computer soft processor and sends I and Q data to the DAC. The FPGA also receives down-converted and sampled I and Q data from the RF board.

The test waveform demonstrates STRS commands for configuration and control of the test waveform, Tx-side streaming data operation, RF front-end board configuration, Rx-side streaming data, and STRS telemetry querying.

General Purpose Module (GPM) (Space Telecommunications Radio System (STRS) Software Design Description)

This section contains a description of the GPM.

Software Description

The STRS reference implementation is deployed under the STRS_Architecture_RI directory. This code is intended to demonstrate the use of the STRS architecture and to provide an STRS-capable platform for testing STRS applications. There are several software files, databases, and data files that must be installed for the software to operate. These are initialized after the successful build of the STRS_Architecture_RI project. The executable file controlling the STRS APIs is configured at make time and its pre-execution parameters are set to work with the iPAS SPM through a bash file titled "runGUI.sh." The STRS_Architecture_RI can be represented by the STRS layer cake model to have a visual understanding of the working parts present in the code. There are several components to the architecture; these are described in more detail in the User's Guide for the iPAS STRS Radio (Ref. 1). The STRS architecture layer cake model is illustrated in Figure 3.

Notice that the GPM, board support package (BSP), drivers, and specialized hardware are accessed by the STRS architecture through the hardware abstraction layer (HAL) APIs, so that the code can be compiled and run with the specific hardware characteristics of the memory mapping where it exists, without changes to the command and control interfacing protocol used to control the radio.

The major software components of the STRS infrastructure include the OE, STRS applications (waveform), and the flight computer simulator (FCS). The command and control manager (CCM) is the major module for command handling and routing. The CCM allows commands to be executed directly from FCS or indirectly by means of the FCS GUI connected via Ethernet to the embedded PC (eBOX620–110–FL).

Figure 3.—Space Telecommunications Radio System (STRS) layer cake model. API, application programming interface; BSP, broad support package; GPM, general purpose module; HAL, hardware access layer; HW, hardware; OS, operating system; POSIX, Portable Operating System Interface; WF, waveform.

Figure 5.—Space Telecommunications Radio System (STRS) command interfaces on the general purpose module (GPM) for the Integrated Power, Avionics, and Software (iPAS) radio. FPGA, field-programmable gate array; GUI, graphical user interface; PC, personal computer; RF, radiofrequency; RI, reference implementation; SPM, signal processing module; WFIPAS, iPAS waveform.

Command Description

The FCS accepts external commands, processes macros, and passes all other commands to the OE, which passes them on to the CCM. The CCM parses the commands and calls the appropriate method within the OE. The STRS infrastructure controls the STRS applications and other parts of the radio. When commanded, the OE calls the appropriate method in the STRS application. The STRS application implements the STRS application-provided API. The STRS applications use the STRS infrastructure-provided APIs and the Portable Operating System Interface (POSIX) to interact with the rest of the radio. Figure 4 illustrates this behavior.

Note that all commands are echoed with intermediate outputs that track the progress of execution and a final output, which indicates the completion. Invalid commands produce error messages and the STRS reference implementation continues execution. Normally one command is processed at a time. However, multiple processes are created when streaming data.

Commands are executed by invoking the waveform application iPAS waveform (WFIPAS), which takes commands from the STRS interface and sends them the SPM for control and data handling in the iPAS radio. The interfacing of these commands from the moment of generation to the point of application onto the SPM is illustrated in Figure 5.

Signal Processing Module (SPM) (Field-Programmable Gate Array (FPGA) Design Description)

This section contains a description of the SPM.

Hardware Identification

This FPGA design is implemented on the Xilinx[®] ML605, Rev D evaluation board, which contains a Xilinx[®] Virtex[®]-6 XC6VLX240T–1FFG1156C FPGA. The AD-FMCOMMS1-EBZ RF front-end board is used for the RF front end.

Development Tools

The development tool used for this FPGA design is the Xilinx[®] Integrated Synthesis Environment (ISE) Design Suite System Edition version 14.4, which includes the Embedded Development Kit and Software Development Kit. The ISE Simulator (ISim) was used for design simulation of most of the VHSIC Hardware Description Language (VHDL) modules. The VHDL modules not simulated were verified in hardware.

Detailed Architecture Design and Block Diagrams

Figure 6 contains a block diagram of the Tx side of the FPGA design. Most of the blocks in the diagram (and subsequent block diagrams) represent HDL code modules and are labeled with the module or instance name, so that these functions can be easily located in the code. Each block in this diagram (and also in Fig. 7) represents a VHDL module. Each of these blocks and their submodules are described in the "PLD Detailed Design" section of the Programmable Logic Device (PLD) Design Description for the iPAS STRS Radio Technical Memorandum (TM) (Ref. 2). This block diagram shows Tx-side wrapper function, which include clock generation, reset signal generation, and the modules to receive streaming and command packets and remove Ethernet headers. The block diagram also shows the Tx-side waveform functions, which include command parsing and decoding, conversion of streaming packet data into continuous streaming data, PRBS generation, and I and Q signal generation (sine waves).

Figure 7 contains the block diagram of the Rx-side of the FPGA design. The Rx-side waveform performs BER testing of PRBS or streaming data. The Rx-side wrapper packetizes command responses and Rx-side streaming data and controls their transmission over the Ethernet port.

Details of the FPGA wrapper and test waveform can be found in the PLD Design Description for the iPAS STRS Radio Technical Memorandum (TM) (Ref. 2).

Figure 6.—Tx-side wrapper and waveform block diagram. EMAC, Ethernet Media Access Controller; LEDs, light-emitting diodes.

Figure 7.—Rx-side wrapper and waveform block diagram. ADC, analog-to-digital converter; BERT, bit error rate tester; EMAC, Ethernet Media Access Controller; MUX, multiplexer; Tx, transmit.

General Purpose Module (GPM) Interfaces

The eBOX620—110—FL embedded processor has the following hardware interfaces:

- (1) 1 x RS-232/422/485 (COM 1)
- (2) 3 x RS-232 (COM 2/3/4)
- (3) 1 x VGA 1 x DisplayPort
- (4) 1 x Audio (Mic-in/Line-out)
- (5) 2 x 10/100/1000 Mbps Ethernet (Realtek RTL8111E)
- (6) 6 x USB 2.0 1 x SMA type connector opening for antenna
- (7) 1 x VDC power input connector
- (8) 1 x ATX power switch

For the purposes of the iPAS radio, the two Ethernet interfaces (described in item (5) above and shown in Fig. 8) are the only ones used ($2 \times 10/100/1000$ Mbps Ethernet (Realtek RTL8111E)) for communication between the GPM and SPM as well as the GPM and the FCS. These are connected using two standard 8-pair T-568B Ethernet cables with RJ-45 plugs. Please note that Ethernet cable type T-568A can be used as well.

Software drivers set these hardware interfaces with specific characteristics on each end of the connection. For the GPP to FPGA connection, there is a User Datagram Protocol (UDP) stack setup, and for the GPP to FCS connection, there is a TCP/IPv4 setup. These network stacks are described in Figure 9.

The WFIPAS_Connect_SetUp bash file contains the commands necessary to set up the operating system in the embedded PC (eBOX620–110–FL) for client/server configuration with the different hardware systems it is interacting with. This bash file must be run prior to operation of the radio. Its contents are displayed in Figure 10.

Figure 8.—General purpose processor (GPP) Ethernet connections on the embedded PC (eBOX620–110–FL) used by the Integrated Power, Avionics, and Software (iPAS) radio. FCS, flight computer simulator; FPGA, field-programmable gate array.

			Application Data	Application Layer
		UDP Header	Application Data	Transport Layer
	IP Header	UDP Header	Application Data	Internet Layer
			$\widehat{\mathbf{t}}$	
ETH Header	IP Header	UDP Header	Application Data	Network Layer

Figure 9.—Ethernet communication layered stack. ETH, Ethernet; IP, Internet Protocol; UDP, User Datagram Protocol.

Figure 10.—WFIPAS_Connect_Setup bash file for configuring the Ethernet communication hardware.

If the configuration is successful, then the hardware interfaces are running, and the GPP is ready to receive and transmit data and commands. The hardware Internet Protocol (IP) configuration of the operating system is illustrated in Figure 11. Evoking the Unix command ifconfig in a terminal window allows the user to see this Ethernet configuration.

Note that a complete setup procedure for normal operation and debugging is provided in the User's Guide for the iPAS STRS Radio (Ref. 1). This document should be read thoroughly prior to operation of the radio.

The final interface to be configured is on the Windows 7 PC. To configure this interface, the user navigates to Windows 7 Control Panel \rightarrow Network and Internet \rightarrow Network and Sharing Center. If the Ethernet cable is connected to the machine, a screen similar to Figure 12 will be observed.

Figure 11.—Ethernet configuration for the Integrated Power, Avionics, and Software (iPAS) radio.

Figure 12.—Ethernet configuration for flight computer simulator (FCS) for Integrated Power, Avionics, and Software (iPAS) radio on Windows 7 personal computer (PC).

eneral	Networking Sharing	General	
Connection	Connect using:	You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network	
IPv6 Connectivity: No network access IPv6 Connectivity: No network access Media State: Enabled	Configure This connection uses the following items:	administrator for the appropriate IP settings.	
Duration: 00:08:29 Speed: 1.0 Gbps Details	Client for Microsoft Networks Client for Microsoft Networking Driver Client for Microsoft Networking Driver Client and Printer Sharing for Microsoft Networks Littermet Protocol Version 6. (TCP)(Pv6) Littermet Protocol Version 4 (TCP)(Pv4)	• Use the following IP address 192 . 168 . 1 . 2 Subnet mask: 255 . 255 . 0 Default gateway: 192 . 168 . 1 . 1	
Sent — Received	Link-Layer Topology Discovery Mapper I/O Driver Link-Layer Topology Discovery Responder Install Uninstall Properties	Obtain DNS server address automatically Use the following DNS server addresset	
Packets: 253 0	Description Transmission Control Protocol/Internet Protocol. The default wide area network protocol that provides communication across	Alternate DNS server:	
Properties Disable Diagnose	diverse interconnected networks.	Validate settings upon exit Advanced.	

Figure 13.—Internet Protocol (IP) configuration for flight computer simulator (FCS) for the Integrated Power, Avionics, and Software (IPAS) radio on Windows 7 personal computer (PC). DNS, Domain Name System; Gbps, gigabits per second; I/O, input/output.

Now the local area network (LAN) connection can be configured as follows:

- (1) Double-click on Local Area Connection. A window will appear with connection settings.
- (2) Click on Properties, and then double-click on Internet Protocol Version 4.
- (3) Configure the IP address and select the radio button "Use the following IP address."
- (4) Use 192.168.1.2 as the IP address and 192.169.1.1 as the Default Gateway.

This procedure is illustrated in Figure 13.

Once this procedure has been completed, all hardware interfaces for the GPM have been configured.

Radiofrequency Module (RFM) Interfaces

This section contains a description of the RFM interfaces.

Hardware Identification

The RFM consists of an RF front-end board (AD–FMCOMMS1–EBZ). The RFM was designed to provide the analog front-end for FPGA-based radio applications. Detailed information about the RF front-end board (AD–FMCOMMS1–EBZ) can be found in the Analog Devices Wiki at: https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms1-ebz/hardware/functional_overview

The RF front-end board (AD–FMCOMMS1–EBZ) is a mezzanine board compatible with the Xilinx[®] Virtex[®]-6 XC6VLX240T–1FFG1156C FPGA and can plug into either FPGA Mezzanine Card (FMC) connector on the Xilinx[®] ML605 Rev D evaluation board. The iPAS STRS radio requires the RF frontend board (AD–FMCOMMS1–EBZ) to be inserted in only the FMC–Low Pin Count (LPC) connector. The Tx side of the high-speed analog board contains a 16-bit DAC, followed by an up-converter and a 20 dB linear amplifier. The Rx side of the board contains a down-converter, followed by a variable gain amplifier and an ADC. The board also contains clock generators/synchronizers and frequency synthesizers needed for the operation of the analog components. The board is configured by the FPGA board through an Inter-Integrated Circuit (IIC) interface. The IIC interface is converted to Serial Peripheral Interface (SPI), which is used to set up the components on the board.

Interfaces

- **RF In**: Received RF signal into the RFM RF Frequency: 2.4 GHz Connector Type: Subminiature version A (SMA) Signal level: 1.4 to 2.0 V p-p (1.75 V p-p nominal) (6.9 to 10 dBm, 8.8 nominal)
- **RF Out**: Transmitted RF signal out of the RFM RF Frequency: 2.4 GHz Connector Type: SMA Signal level: 9 dBm

Ref0_Clk_Out_p/n: Differential clock reference clock into clock generator/synchronizer. Used for generating clocks on RFM Clock Frequency: 30 MHz Connector Type: FMC Signal level: LVDS (low-voltage differential signaling)

- AdcClkInP/N: Differential 196.608 MHz clock synchronous to the AdcDataIn bus. Sourced by the RFM Clock Frequency: 196.608 MHz Connector Type: FMC Signal level: LVDS
- AdcOrInP/N: Unused differential over-range indicator Connector Type: FMC Signal level: LVDS
- AdcDataInP/N[0:13]: 14-bit ADC output data Connector Type: FMC Signal level: LVDS
- DacClkInP/N: Differential 196.608 MHz clock. Sourced by the RFM and used for DAC data clock Clock Frequency: 196.608 MHz Connector Type: FMC Signal level: LVDS
- **DacDataOutP/N[0:15]**: 16-bit DAC input data Connector Type: FMC Signal level: LVDS
- **DacClkOutP/N**: 200 MHz clock input to DAC Connector Type: FMC Signal level: LVDS
- **DacFrameOutP/N**: Differential frame output. P is tied to VSS. N is tied to VDD Connector Type: FMC Signal level: LVDS
- **IicSda**: IIC bus serial data line for configuring the RFM Connector Type: FMC Signal level: LVCMOS25
- **IicScl**: IIC bus serial clock line for configuring the RFM Connector Type: FMC Signal level: LVCMOS25

Table I shows the FMC connector signals and pinouts.

Signal name	FPGA	J63 FMC–LPC ^a	Logic level	Direction relative to
	pin number	pin number		FPGA I/O ^b
AdcClkInP	F33	G2	°LVDS 25	I
AdcClkInN	G33	G3	LVDS 25	I
AdcOrInP	K26	G6	LVDS 25	I
AdcOrInN	K27	G7	LVDS 25	Ι
AdcDataInP[0]	L29	C22	LVDS 25	I
AdcDataInN[0]	1.30	C23	LVDS 25	I
AdcDataInP[1]	C33	C18	LVDS 25	Ĭ
AdcDataInN[1]	B34	C19	LVDS 25	Ĭ
AdcDataInP[2]	D34	D17	LVDS_25	Ĭ
AdcDataInN[2]	C34	D18	LVDS_25	Ĭ
AdcDataInP[3]	131	G9	LVDS_25	I
AdeDataInN[3]	132	G10	LVDS_25	I I
AdeDataInIV[5]	JJ2 H24	D11	LVDS_25	I I
AdeDataInF[4]	1134	DI1	LVDS_25	I T
AdeDataIIIN[4]	П33 F20	D12	LVDS_25	l I
AdcDataInP[5]	F30	C14	LVDS_25	l
AdcDataInN[5]	G30 E22	C15	LVDS_25	l I
AdcDataInP[6]	E32	015	LVDS_25	l
AdcDataInN[6]	E33	GI6	LVDS_25	<u>l</u>
AdcDataInP[/]	G32	HI3	LVDS_25	1
AdcDataInN[7]	H32	HI4	LVDS_25	l
AdcDataInP[8]	G31	H7	LVDS_25	l
AdcDataInN[8]	H30	H8	LVDS_25	I
AdcDataInP[9]	K28	H10	LVDS_25	I
AdcDataInN[9]	J29	H11	LVDS_25	I
AdcDataInP[10]	L25	D14	LVDS_25	Ĭ
AdcDataInN[10]	L26	D15	LVDS_25	I
AdcDataInP[11]	J30	G12	LVDS_25	Ι
AdcDataInN[11]	K29	G13	LVDS_25	Ι
AdcDataInP[12]	K33	C10	LVDS_25	Ι
AdcDataInN[12]	J34	C11	LVDS_25	Ι
AdcDataInP[13]	F31	D8	LVDS_25	Ι
AdcDataInN[13]	E31	D9	LVDS_25	Ι
DacClkInP	A10	H4	LVDS_25	Ι
DacClkInN	B10	H5	LVDS_25	Ι
DacClkOutP	R26	H25	LVDS_25	0
DacClkOutN	T26	H26	LVDS 25	0
DacFrameOutP	D31	H16	LVDS 25	0
DacFrameOutN	D32	H17	LVDS 25	0
DacDataOutP[0]	N25	H37	LVDS 25	0
DacDataOutN[0]	M25	H38	LVDS 25	0
DacDataOutP[1]	K32	G36	LVDS 25	0
DacDataOutN[1]	K31	G37	LVDS 25	0
DacDataOutP[2]	M26	H34	LVDS 25	0
DacDataOutN[2]	M27	H35	LVDS 25	0
DacDataOutP[3]	N33	H31	LVDS 25	0
DacDataOutN[3]	M33	H32	LVDS 25	0
DacDataOutP[4]	M31	G33	LVDS 25	0
DacDataOutN[4]	L31	G34	LVDS 25	0
DacDataOutP[5]	N34	G30	LVDS 25	0
DacDataOutN[5]	P34	G31	LVDS 25	0
DacDataOutP[6]	N32	H78	L VDS 25	0
DacDataOutN[6]	P32	H20	L VDS 25	0
DacDataOutP[7]	P31	G27	L VDS_25	0
DacDataOutr[/]	D20	G27		0
	N07	G24		0
DacDataOutP[0]	D27	C24		0
DacDataOutIN[8]	P21	023		0
DacDataOutP[9]	K31 D22	C26	LVDS_25	0
DacDataOutN[9]	K32	027	LVDS_25	0
DacDataOutP[10]	L33	D26	LVDS_25	U

TABLE I.—FIELD-PROGRAMMABLE GATE ARRAY (FPGA) MEZZANINE CARD (FMC) CONNECTOR SIGNALS AND PINOUTS

TABLE I.—Concluded.						
Signal name	FPGA	J63 FMC–LPC ^a	Logic level	Direction relative to		
	pin number	pin number		FPGA I/O ^b		
DacDataOutN[10]	M32	D27	LVDS_25	0		
DacDataOutP[11]	R28	D23	LVDS_25	0		
DacDataOutN[11]	R27	D24	LVDS_25	0		
DacDataOutP[12]	M30	H22	LVDS_25	0		
DacDataOutN[12]	N30	H23	LVDS_25	0		
DacDataOutP[13]	P29	G21	LVDS_25	0		
DacDataOutN[13]	R29	G22	LVDS_25	0		
DacDataOutP[14]	C32	H19	LVDS_25	0		
DacDataOutN[14]	B32	H20	LVDS_25	0		
DacDataOutP[15]	A33	G18	LVDS_25	0		
DacDataOutN[15]	B33	G19	LVDS_25	0		
IicSda	AF13	C31	LVCMOS25	IO		
IicScl	AG13	C30	LVCMOS25	IO		
Ref0_Clk_Out_p	N28	D20	LVDS_25	0		
Ref0_Clk_Out_n	N29	D21	LVDS_25	0		

^aFPGA Mezzanine Card Low Pin Count.

^bInput/output.

^cLow-voltage differential signaling.

Signal Processing Module (SPM) Field-Programmable Gate Array (FPGA) Interfaces

This section contains a description of the SPM FPGA interfaces.

Field-Programmable Gate Array (FPGA) Wrapper

STRS requires that the FPGA wrapper for an STRS radio encompass all the possible radio FPGA interfaces. The wrapper abstracts the interfaces from the waveform, so that the waveform developer does not need to implement these interfaces. This approach also allows the platform developer to protect proprietary information about their platform from a waveform developer. The wrapper can also include any other functionality that a radio would require, like power-on-resets and clock generation, which would be common to all radios on the platform.

STRS_SDR_Wrapper.vhd is the top-level module in the FPGA design. This module contains the necessary basic functions of the FPGA. This wrapper module contains the FPGA Input/Output (I/O) connections to the Xilinx[®] ML605 board and includes submodules for generating system resets as well as system clocks. The wrapper also includes the functionality to receive command and Tx-side streaming packets (Table II) and to transmit command response and Rx-side streaming packets (Table III).

VHSIC Hardware Description Language (VHDL) Signal Polarity Convention

A signal with a " $_n$ " at the end of the signal name like (*Reset_n*) is a low true (asserted low) signal. All signals without a " $_n$ " at the end of the signal name are high true (asserted high) signals.

Xilinx[®] ML605 Field-Programmable Gate Array (FPGA) Board Configuration— Jumpers and Dip Switch Settings

To use the wrapper and test waveform as is, insert jumpers and set dip switches according to the listings below. Some of the jumpers are in their default locations and are not needed for the iPAS STRS radio (i.e., Peripheral Component Internet express (PCIe) lane size). If a jumper connector is not listed, no jumper is needed. Table IV shows the jumper and switch configurations for the delivered platform.

	TABLE II.—WRAPPER MODULE INPUTS	
Signal name	Description	FPGA ^a pin number
CLK N	Differential FPGA system clock (200 MHz)	H9
CLK P	Differential FPGA system clock (200 MHz)	J9
USER_CLOCK	FPGA user clock (66 MHz)	U23
GMII_RXD0	Ethernet receive data bit 0 (from PHY ^b)	AN13
GMII_RXD1	Ethernet receive data bit 1 (from PHY)	AF14
GMII_RXD2	Ethernet receive data bit 2 (from PHY)	AE14
GMII_RXD3	Ethernet receive data bit 3 (from PHY)	AN12
GMII RXD4	Ethernet receive data bit 4 (from PHY)	AM12
GMII_RXD5	Ethernet receive data bit 5 (from PHY)	AD11
GMII_RXD6	Ethernet receive data bit 6 (from PHY)	AC12
GMII_RXD/	Ethernet receive data bit / (from PHY)	AC13
GMII_RX_DV	Ethernet receive data valid (from PH Y)	AM13
GMII_RA_ER	Ethernet receive error (from PHY)	AG12
DESET	Eulernet receive clock (nonin Pri F)	AP11 G26
GPIO DIP SW1	Din switch 1 on EPGA heard	D22
GPIO DIP SW2	Dip switch 2 on EPGA board	C22
GPIO DIP SW3	Dip switch 3 on FPGA board	L21
GPIO DIP SW4	Dip switch 4 on FPGA board	L20
GPIO DIP SW5	Dip switch 5 on FPGA board	C18
GPIO DIP SW6	Dip switch 6 on FPGA board	B18
GPIO DIP SW7	Dip switch 7 on FPGA board	K22
GPIO DIP SW8	Dip switch 8 on FPGA board	K21
DacClkInP	196.6 MHz clock from DAC ^c (p)	A10
DacClkInN	196.6 MHz clock from DAC (n)	B10
UartRx	UART ^d receive data	J24
AdcClkInP	196.6 MHz clock from ADC ^e ; synchronous with ADC data (p)	F33
AdcClkInN	196.6 MHz clock from ADC; synchronous with ADC data (n)	G33
AdcOrInP	Differential overrange indicator, positive (not used)	K26
AdcOrInN	Differential overrange indicator, negative (not used)	K27
AdcDataInP[0]		L29
AdcDataInN[0]		L30
AacDataInP[1]		D24
AdcDataInP[2]		D34
AdcDataInN[2]		C34
AdcDataInP[3]		131
AdcDataInN[3]		J32
AdcDataInP[4]		H34
AdcDataInN[4]		H33
AdcDataInP[5]		F30
AdcDataInN[5]		G30
AdcDataInP[6]		E32
AdcDataInN[6]	ADC output data 14-bit differential signal	E33
AdcDataInP[7]	ADC output data, 14-on differential signal	G32
AdcDataInN[7]		H32
AdcDataInP[8]		G31
AdcDataInN[8]		H30
AdcDataInP[9]		K28
AdcDataInN[9]		J29 L25
AdcDataInN[10]		L23 L26
AdeDataInP[11]		120
AdcDataInN[11]		K20
AdcDataInP[12]		K33
AdcDataInN[12]		J34
AdcDataInP[13]		F31
AdcDataInN[13]		E31
^a Field-programmable gate ar	ray.	٠
^b Physical layer.		
^d Universal asynchronous rec	eiver/transmitter	
eAnalog-to-digital converter	erver/transmitter.	
5 5		

	TABLE III.—WRAPPER MODULE OUTPUTS	
Signal name	Description	FPGA ^a pin number
GMII_TXD0	Ethernet transmit data bit 0 (to PHY ^b)	AM11
GMII_TXD1	Ethernet transmit data bit 1 (to PHY)	AL11
GMII_TXD2	Ethernet transmit data bit 2 (to PHY)	AG10
GMII_TXD3	Ethernet transmit data bit 3 (to PHY)	AG11
GMII TXD4	Ethernet transmit data bit 4 (to PHY)	AL10
GMII_TXD5	Ethernet transmit data bit 5 (to PHY)	AM10
GMII_TXD6	Ethernet transmit data bit 6 (to PHY)	AE11
GMII_TXD7	Ethernet transmit data bit 7 (to PHY)	AF11
GMII_TX_EN	Ethernet transmit enable (to PHY)	AJ10
GMII_TX_ER	Ethernet transmit error (to PHY)	AH10
GMII_TX_CLK	Ethernet transmit clock (to PHY)	AH12
PHY RESET	Reset signal to the Ethernet PHY chip	AH13
GPIO_LED_0	LED ^c 0 on FPGA board	AC22
GPIO_LED_1	LED 1 on FPGA board	AC24
GPIO_LED_2	LED 2 on FPGA board	AE22
GPIO_LED_3	LED 3 on FPGA board	AE23
GPIO_LED_4	LED 4 on FPGA board	AB23
GPIO_LED_5	LED 5 on FPGA board	AG23
GPIO LED 6	LED 6 on FPGA board	AE24
GPIO LED 7	LED 7 on FPGA board	AD24
DacClkInP	196.6 MHz clock from DAC ^d (p)	H25
DacClkInN	196.6 MHz clock from DAC (n)	H26
DacClkOutP	196.6 MHz clock to DAC; synchronous with DAC data (p)	R26
DacClkOutN	196.6 MHz clock to DAC; synchronous with DAC data (n)	T26
DacFrameOutP	Differential frame output (p)	D31
DacFrameOutN	Differential frame output (n)	D32
DacDataOutP[0]		N25
DacDataOutN[0]		M25
DacDataOutP[1]		K32
DacDataOutN[1]		K31
DacDataOutP[2]		M26
DacDataOutN[2]		M27
DacDataOutP[3]		N33
DacDataOutN[3]		M33
DacDataOutP[4]		M31
DacDataOutN[4]		L31
DacDataOutP[5]		N34
DacDataOutN[5]		P34
DacDataOutP[6]		N32
DacDataOutN[6]		P32
DacDataOutP[/]		P31
DacDataOutN[/]	DAC input data, 16-bit differential signal	N07
DacDataOutN[9]		1N2/ D27
DacDataOutP[0]		P 21
DacDataOutP[9]		R31 R22
DacDataOutN[9]		K32
DacDataOutP[10]		L33
DacDataOutN[10]		M32
DacDataOutP[11]		K28
DacDataOutN[11]		K27 M20
DacDataOutP[12]		M30
DacDataOutN[12]		1030 D20
DacDataOutP[13]		P29
DacDataOutN[13]		K29
DacDataOutP[14]		C32
DacDataOutN[14]		B32
DacDataOutP[15]		A33
DacDataOutNIIN		B.5.5

TABLE III.—Concluded.

Signal name	Description	FPGA ^a pin number
UartTx	UART ^e transmit data	J25
IicSda	IIC ^f bus serial data line	AG13
IicScl	IIC bus serial clock line	AF13
RefClkP	30 MHz reference clock for RF ^g board (positive)	N28
RefClkN	30 MHz reference clock for RF board (negative)	N29
ar: 11 11 4		

^aField-programmable gate array.

^bPhysical layer.

^cLight-emitting diode. ^dDigital-to-analog converter.

"Universal asynchronous receiver/transmitter.

fInter-Integrated Circuit.

gRadiofrequency.

TABLE IV.-JUMPER AND SWITCH CONFIGURATION FOR DELIVERED PLATFORM

Jumper purpose or dip switch ID ^a	Location	Jumper connections or	Description	
		switch position		
	J66	Jumper pins 1 and 2	To use CMUS (1 CD) interface to the	
Ethernet PHY ^b configuration	J67	Jumper pins 1 and 2	Fthernet PHV	
	J68	No jumper		
For $ITAG^{d}$ access to the board	J17	Jumper pins 1 and 2	Enables JTAG access without FMC ^e	
FOI JIAG access to the board	J18	Jumper pins 1 and 2	modules installed	
System ACE ^f error LED ^g disable	J69	Jumper pins 1 and 2	Enables LED, which will flash if there is an	
jumper			ACE problem	
Small SED ^h modulo control	J54	Jumper pins 1 and 2	SFP_RT_SEL (full bandwidth)	
Sinan SFF module control	J65	Jumper pins 1 and 2	SFP_TX_DISABLE (SFP enabled)	
PCIe ⁱ lane size	J42	Jumper pins 5 and 6	X8 lane size	
	J19	Jumper pins 1 and 2	Use on-chip reference	
System monitor	J35	Jumper pins 1 and 3	Not connected	
		Jumper pins 2 and 4	FPGA ^j thermal diode access	
	S1	CFGAddr 0—Off	Salaata which CE ^k imagaa ara downloadad	
Din awitch S1	S2	CFGAddr 1—Off	to EPCA (selects sub folder of a)	
Dip switch S1	S3	CFGAddr 2—On	to FFOA (selects sub-folder cfg 4)	
	S4	SysAce Mode—On	Enable ACE boot	
	S1	EXT CCLK—On	Oscillator enable	
	S2	C5_SEL—On	Boot EPROM ¹ select	
Dip gwitch \$2	S3	M0—Off		
Dip switch 52	S4	M1—On	FPGA mode (slave SelectMAP)	
	S5	M2—On		
	S6	Flash_A23—Off	Flash address select (lower)	

^aIdentification.

^bPhysical layer. ^cGigabit media-independent interface.

^dJoint Test Action Group.

^eFPGA Mezzanine Card.

fArchiver compression file.

gLight-emitting diode.

^hSmall form-factor pluggable.

ⁱPeripheral Component Interconnect express. ^jField-programmable gate array.

^kCompactFlash.

¹Erasable programmable read-only memory.

CompactFlash (CF)

The Xilinx[®] ML605 FPGA board contains a CF controller, which is compatible with Type I or II CF cards. The CF controller can be used to program the FPGA with an archiver compression file (ACE) file on the compact flash card (inserted in connector U73) during the board power-on cycle. Reprogramming of the FPGA can also be initiated by pushing the system ACE CF reset button (SW3) on the FPGA board.

To use the CF to program the FPGA, S4 on dip switch S1 must be set to On. The switches S1, S2, and S3 on dip switch S1 select which folder location on the compact flash to use for programming the FPGA. The compact flash contains eight subfolders, each of which can contain only one ACE file.

Joint Test Action Group (JTAG) Interface

During waveform development, the Xilinx[®] Virtex[®]-6 FPGA on the Xilinx[®] ML605 FPGA board can be programmed using the Xilinx[®] Impact program, the ISE[®]-generated .bit file, a Universal Serial Bus (USB) (computer side) to mini USB cable (Xilinx[®] ML605 FPGA board side), and the USB JTAG connector (J22) on the board.

Field-Programmable Gate Array (FPGA) Mezzanine Card (FMC) Connector Interface to Radiofrequency (RF) Board

The RF front-end board (AD–FMCOMMS1–EBZ RF) interfaces with the Xilinx[®] Virtex[®]-6 FPGA through the FMC LPC connector (J63). Table V shows the signals that pass through the FMC connector between the FPGA and the RF transceiver board and the signal names, FPGA pins, FMC LPC pins, and IO standard of the signals.

Board Resources

The ML605 evaluation board has a number of onboard resources that are available to the waveform developer. Some of these resources include light-emitting diodes (LEDs), dip switches, push button switches, and clocks.

The wrapper utilizes the 200 MHz differential clock for the primary clock of the design and a push button switch for the user reset. The test waveform uses the dip switches and LEDs for a test command (read dip switches and set LEDs) and for displaying some waveform status. Therefore, the wrapper must pass the LEDs and dip switches values to and from the board resources for the test waveform. New waveform developers who do not use the dip switches or LEDs may remove them from the User Constraints File (UCF) file and from the inputs and outputs of the STRS_SDR_Wrapper module. Please refer to the ML605 Hardware User Guide (Ref. 3) for more information about the ML605 onboard resources.

Ethernet

The Xilinx[®] ML605 FPGA board contains an onboard Marvell Alaska[®] Gigabit Ethernet PHY transceiver (88E1111) for Ethernet communications. To utilize this device for packet communications with the embedded PC (eBOX620–110–FL), the Xilinx[®] CORE Generator[™] Virtex[®]-6 Embedded Tri-mode Ethernet media access control (MAC) wrapper intellectual property core was generated with a 1000 Mbps transmission rate. The v6_emac_v1_5_example_design provided with the generated intellectual property core was included in the ISE[®] project.

Ethernet Packet Structure

Figure 14 shows the definition of the Ethernet header (MAC header, IP datagram header, and UDP header).

User Datagram Protocol (UDP) Port Numbers

Table VI shows the port numbers that were selected for each type of packet. A waveform developer may select different port source values, but must update the constants in the FPGA package (STRS Radio Pkg.vhd) and set up the Linux processor accordingly.

Ethernet Physical Layer (PHY)

The Ethernet PHY connection to an Ethernet cable is provided through a HALO[™] HFJ11–1G01E RJ–45 connector on the Xilinx[®] ML605 FPGA board. The PHY connections to the FPGA device are shown in Table VII.

0: 1		TLOW PIN COUNT (LPC) MEZZANINE	CONNECTOR	D i d
Signal name	FPGA pin numbers	FMC ^a connector pins	10° standard	Direction	Description
		(J63)		(relative to	
				FPGA)	
dac0 clk in p	A10	H4	°LVDS 25	Input	DAC ^d clock from FPGA
dac0 clk in n	B10	H5	LVDS 25	Input	into DAC
		-			
dac0 clk out p	R26	H25	LVDS 25	Output	DAC sample clock out of
	T20	1125	LVDS_25	Output	DAC sample clock out of
daco_cik_out_h	120	H26	LVD5_25	Output	DAC
				-	
dac0frame_out_p	D31	H16	LVDS_25	Output	Differential frame output
dac0_frame_out_n	D32	H17	LVDS_25	Output	Differential frame output
dac0 data out p[0]	N25	H37	LVDS 25	Output	
dac0 data out n[0]	M25	H38	LVDS 25	Output	1
dac0_data_out_n[1]	K32	G36	LVDS_25	Output	-
date_data_out_p[1]	K32	030	LVDS_25	Output	4
	KJI	037	LVDS_23	Output	-
dac0_data_out_p[2]	M26	H34	LVDS_25	Output	_
dac0_data_out_n[2]	M27	H35	LVDS_25	Output	
dac0_data_out_p[3]	N33	H31	LVDS_25	Output	
dac0 data out n[3]	M33	H32	LVDS 25	Output	
dac0 data out p[4]	M31	G33	LVDS 25	Output	
dac0 data out n[4]	I 31	G34	LVDS 25	Output	1
dae0_data_out_n[4]	N24	C20	LVDS_25	Output	4
daco_data_out_p[5]	N34	630	LVDS_25	Output	-
dac0_data_out_n[5]	P34	G31	LVDS_25	Output	
dac0_data_out_p[6]	N32	H28	LVDS_25	Output	
dac0 data out n[6]	P32	H29	LVDS 25	Output	
dac0 data out p[7]	P31	G27	LVDS 25	Output	
dac0 data out n[7]	P30	G28	LVDS 25	Output	
dac0_data_out_n[8]	N27	G20	LVDS_25	Output	DAC input data is 16 bits
date_data_out_p[8]	D27	624	LVDS_25	Output	4
daco_data_out_n[8]	P27	625	LVDS_25	Output	-
dac0_data_out_p[9]	R31	C26	LVDS_25	Output	
dac0_data_out_n[9]	R32	C27	LVDS_25	Output	
dac0_data_out_p[10]	L33	D26	LVDS_25	Output	
dac0 data out n[10]	M32	D27	LVDS 25	Output	
dac0 data out p[11]	R28	D23	LVDS 25	Output	
dac0 data out p[11]	R27	D24	LVDS 25	Output	
dae0_data_out_n[12]	M20	<u> </u>	LVDS_25	Output	-
	NI30	1122	LVDS_23	Output	-
dac0_data_out_n[12]	N30	H23	LVDS_25	Output	-
dac0_data_out_p[13]	P29	G21	LVDS_25	Output	
dac0_data_out_n[13]	R29	G22	LVDS_25	Output	
dac0_data_out_p[14]	C32	H19	LVDS_25	Output	
dac0 data out n[14]	B32	H20	LVDS 25	Output	
dac0 data out p[15]	A33	G18	LVDS 25	Output	
dac0 data out n[15]	B33	G19	LVDS 25	Output	1
uuco_uuu_out_n[15]	1355	617		Output	
ada0 alls in n	F22	62	LVDS 25	Input	
	F 33	62	LVDS_23	Input	Sample clock from ADC ^e
adc0_clk_in_n	633	63	LVD8_25	Input	*
_adc0_data_or_p	K26	G6	LVDS_25	Input	Unused
adc0_data_or_n	K27	G7	LVDS_25	Input	Ollused
adc0 data in p[0]	L29	C22	LVDS 25	Input	
adc0 data in n[0]	L 30	C23	LVDS 25	Input	
adc0 data in n[1]	C33	C18	LVDS 25	Input	1
	 D24	C10	LVDS_25	Input	-
adco_data_in_n[1]	B34	019	LVD8_25	input	4
adc0_data_in_p[2]	D34	D17	LVDS_25	Input	4
adc0_data_in_n[2]	C34	D18	LVDS_25	Input	1
adc0_data_in_p[3]	J31	G9	LVDS_25	Input	ADC output data is 14 bits
adc0 data in n[3]	J32	G10	LVDS 25	Input]
adc0 data in n[4]	H34	D11	LVDS 25	Input	1
adc0 data in n[4]	H22	D12	LVDS 25	Input	1
ado0_data_in_n[4]	E20	C14		Input	4
adco_data_in_p[5]	F 30	014	LVD8_25	input	4
adc0_data_in_n[5]	G30	C15	LVDS_25	Input	4
adc0_data_in_p[6]	E32	G15	LVDS_25	Input	

TABLE V.—RADIOFREQUENCY (RF) FRONT-END BOARD TO FIELD-PROGRAMMABLE GATE ARRAY (FPGA) INTERFACE THROUGH LOW PIN COUNT (LPC) MEZZANINE CONNECTOR

TABLE V.—Concluded.						
Signal name	FPGA pin numbers	FMC ^a connector pins	IO ^b standard	Direction	Description	
		(J63)		(relative to		
				FPGA)		
adc0_data_in_n[6]	E33	G16	LVDS_25	Input		
adc0_data_in_p[7]	G32	H13	LVDS_25	Input		
adc0_data_in_n[7]	H32	H14	LVDS_25	Input		
adc0_data_in_p[8]	G31	H7	LVDS_25	Input		
adc0_data_in_n[8]	H30	H8	LVDS_25	Input		
adc0_data_in_p[9]	K28	H10	LVDS_25	Input		
adc0_data_in_n[9]	J29	H11	LVDS_25	Input		
adc0_data_in_p[10]	L25	D14	LVDS_25	Input		
adc0_data_in_n[10]	L26	D15	LVDS_25	Input		
adc0_data_in_p[11]	J30	G12	LVDS_25	Input		
adc0_data_in_n[11]	K29	G13	LVDS_25	Input		
adc0_data_in_p[12]	K33	C10	LVDS_25	Input		
adc0_data_in_n[12]	J34	C11	LVDS_25	Input		
adc0_data_in_p[13]	F31	D8	LVDS_25	Input		
adc0_data_in_n[13]	E31	D9	LVDS_25	Input		
				·		
ref0_clk_out_p	N28	D20	LVDS_25	Output	20 MILT algeb	
ref0_clk_out_n	N29	D21	LVDS_25	Output	JU WHITZ CLOCK	

^aFPGA Mezzanine Card. ^bInput/output. ^cLow-voltage differential signal. ^dDigital-to-analog converter. ^eAnalog-to-digital converter.

MAC header	MAC destination address (6 bytes)						
		MAC so	urce address (6 by	tes)	Ethernet type		
					(2 bytes)		
	Version	payload, 2 bytes)					
	(4 bits)	(4 bits)	service				
			(8 bits)				
ID datagram	Identification (2 bytes)			Flags (3 bits)	Fragment offset		
IP datagram					(13 bits)		
	Time to live		Protocol	IP header checksum (2 bytes)			
	(1 byte)		(1 byte)				
	Sour	ce IP address (4 b	ytes)	Destination IP address (4 bytes)			
UDP header	Source port (2 bytes)		Destination port (2 bytes)				
	Length (UDP + payload, 2 bytes)			UDP checksum (2 bytes)			
Payload	Various lengths						

Figure 14.—Ethernet packet definition. IHL, Internet header length; IP, Internet Protocol; MAC, media access control; UDP, User Datagram Protocol.

TABLE VI.—USER DATAORAMITROTOCOL (UDI)TORT ADDRESSES				
Port definition	Hex value	Decimal value		
FPGA ^a port address for commands and response packets	0xD6D8	55,000		
FPGA port address for streaming data packets	0xDAC0	56,000		
Linux PC ^b port address for commands and response packets	0x8C35	35,893		
Linux PC port address for streaming data packets	0x8CA0	36,000		

TABLE VI —USER DATAGRAM PROTOCOL (UDP) PORT ADDRESSES

^aField-programmable gate array. ^bPersonal computer.

FIELD-PROGRAMMABLE GATE ARRAT (FPGA) DEVICE				
Signal name	Description	Direction	FPGA pin number	
GMII_RXD0	Ethernet receive data bit 0	To FPGA	AN13	
GMII_RXD1	Ethernet receive data bit 1	To FPGA	AF14	
GMII_RXD2	Ethernet receive data bit 2	To FPGA	AE14	
GMII_RXD3	Ethernet receive data bit 3	To FPGA	AN12	
GMII_RXD4	Ethernet receive data bit 4	To FPGA	AM12	
GMII RXD5	Ethernet receive data bit 5	To FPGA	AD11	
GMII_RXD6	Ethernet receive data bit 6	To FPGA	AC12	
GMII_RXD7	Ethernet receive data bit 7	To FPGA	AC13	
GMII_RX_DV	Ethernet receive data valid	To FPGA	AM13	
GMII_RX_ER	Ethernet receive error	To FPGA	AG12	
GMII_RX_CLK	Ethernet receive clock	To FPGA	AP11	
GMII_TXD0	Ethernet transmit data bit 0	To PHY	AM11	
GMII_TXD1	Ethernet transmit data bit 1	To PHY	AL11	
GMII TXD2	Ethernet transmit data bit 2	To PHY	AG10	
GMII TXD3	Ethernet transmit data bit 3	To PHY	AG11	
GMII_TXD4	Ethernet transmit data bit 4	To PHY	AL10	
GMII_TXD5	Ethernet transmit data bit 5	To PHY	AM10	
GMII_TXD6	Ethernet transmit data bit 6	To PHY	AE11	
GMII_TXD7	Ethernet transmit data bit 7	To PHY	AF11	
GMII_TX_EN	Ethernet transmit enable	To PHY	AJ10	
GMII TX ER	Ethernet transmit error	To PHY	AH10	
GMII_TX_CLK	Ethernet transmit clock	To PHY	AH12	
PHY_RESET	Reset signal	To PHY	AH13	

TABLE VII.—ETHERNET PHYSICAL LAYER (PHY) CONNECTIONS TO FIELD-PROGRAMMABLE GATE ARRAY (FPGA) DEVICE

User Constraints File (UCF)

The FPGA UCF, STRS_Radio.ucf, defines the Xilinx[®] Virtex[®]-6 FPGA pin connections to onboard resources (LEDs, Ethernet PHY, etc.) and board connectors (FMC LPC connector, for example).

Power Supply

The Xilinx[®] Virtex[®]-6 ML605 Evaluation Kit comes with a 12 V AC-to-DC power supply. The power supply has a 6-pin plug that mates with the ML605 6-pin right-angle Mini-Fit type connector at J60. The power can be turned on and off using the SW2 slide switch mounted on the Xilinx[®] ML605 FPGA board. When the power supply is connected and SW2 is On, the DS25 LED will be green.

Other Available Interfaces on the ML605 Evaluation Board

The Xilinx[®] ML605 FPGA board contains other interfaces that are not used for the iPAS STRS radio. These interfaces, which include small form-factor pluggable (SFP), PCIe, USB to universal asynchronous receiver/transmitter (UART) Bridge, memory, Digital Video Interface (DVI), and SMA connectors, are available to a developer using the RIACS platform. More information about these interfaces can be found in the ML605 Hardware User Guide (Ref. 3).

Conclusions

The Space Telecommunications Radio System (STRS) was developed to reduce the cost and risk of using complex, configurable, and reprogrammable radio systems across multiple NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center developed an STRS-compliant software defined radio (SDR) on a radio platform used by the Advanced Exploration System program at the NASA Johnson Space Center in their Integrated Power, Avionics, and Software (iPAS) laboratory. This platform, called the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, consists of easily obtainable commercial off-the-shelf hardware. This hardware interface description document defines all the platform interfaces to give NASA and other waveform developers the knowledge they need to fully understand and utilize the features of the platform.

Appendix

The following abbreviations and acronyms are used within this document.

AC	alternating current
ACE	archiver compression file
ADC	analog-to-digital converter
API	application programming interface
APP	application
BER	bit error rate
BERT	bit error rate tester
BSP	board support package
CCM	command and control manager
CF	compact flash
COM	communication port (serial)
DAC	digital-to-analog converter
DC	direct current
dB	decibels
dBm	decibel-milliwatts
DNS	Domain Name System
DVI	Digital Video Interface
EMAC	Ethernet Media Access Controller
EPROM	erasable programmable read-only memory
ETH	Ethernet
FCS	flight computer simulator
FIFO	first in first out
FMC	FPGA Mezzanine Card
FPGA	field-programmable gate array
Gbps	gigabits per second
GMII	gigabit media-independent interface
GPM	general purpose module
GPP	general purpose processor
GUI	graphical user interface
HAL	hardware abstraction layer
HDL	hardware description language
HW	hardware
Ι	in-phase
ID	identification
IHL	Internet header length
IIC	Inter-Integrated Circuit
IO, I/O	input/output
IP	Intellectual Property or Internet Protocol
IPv4	Internet Protocol version 4
iPAS	Integrated Power, Avionics, and Software
ISE	Integrated Synthesis Environment
iSIM	ISE Simulator
JTAG	Joint Test Action Group
LAN	local area network
LPC	Low Pin Count
LED	light-emitting diode
LVCMOS	Low Voltage Complementary Metal Oxide Semiconductor

LVDS	low-voltage differential signaling
MAC	media access control
MUX	multiplexer
OE	operating environment
PC	personal computer
PCIe	Peripheral Component Interconnect express
PHY	physical layer
PLD	programmable logic device
POSIX	Portable Operating System Interface
PRBS	pseudorandom bit sequence
Q	quadrature
RIACS	Reconfigurable, Intelligently-Adaptive Communication System
RF	radiofrequency
RFM	radiofrequency module
Rx	receive
SDR	software defined radio
SFP	small form-factor pluggable
SMA	SubMiniature version A
SPI	Serial Peripheral Interface
SPM	signal processing module
STRS	Space Telecommunications Radio System
SW	switch
TCP	Transmission Control Protocol
ТМ	Technical Memorandum
Tx	transmit
UART	universal asynchronous receiver/transmitter
UCF	User Constraints File
UDP	User Datagram Protocol
USB	Universal Serial Bus
V	volts
VGA	Video Graphics Array
VHDL	VHSIC Hardware Description Language
WF	waveform
WFIPAS	iPAS waveform

References

- 1. Roche, Rigoberto: User's Guide for the iPAS STRS Radio. NASA, to be published, 2017.
- Shalkhauser, Mary Jo W.: Programmable Logic Device (PLD) Design Description for the Integrated Power Avionics and Software (iPAS) Space Telecommunications Radio System (STRS) Radio. NASA/TM—2017-219429, to be published, 2017.
- 3. Xilinx: ML605 Hardware User Guide. 2012. http://www.xilinx.com/support/documentation/boards and kits/ug534.pdf Accessed Feb. 10, 2017.