

## 3D Printing Heat Shields

Stan Bouslog/NASA-JSC
Stan.a.Bouslog@nasa.gov
June 14, 2017



### What are Heat Shields?



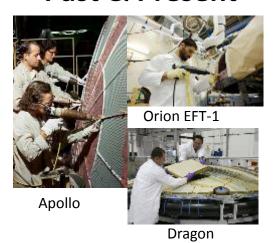
Space Vehicles are exposed to extreme heating returning to Earth or entering Mars atmosphere.



## Heat shields protect the vehicle from high heating. Thermal Protection System (TPS)

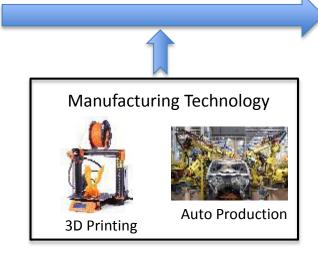


Apollo heat shield




EFT-1 Orion heat shield 5 meter diameter




### **Changing the Way We Build Heat Shields**

#### **Past & Present**



Labor intensive Heat Shield Manufacturing

- High cost
- Long duration builds
- Quality issues



**Future** 



Automated Heat Shield Manufacturing

- Reduced cost
- Rapid build
- Improve Quality

### The Challenge

Develop TPS materials compatible with additive manufacturing techniques.



# Desired Thermal Protection Material Characteristics

- Typical heat shield materials consist of a binder/resin and fillers
  - Fillers: carbon or glass fibers; phenolic or glass microballoons
- Material Density < 0.7 g/cc</li>
- Material Performance Goals
  - Well-behaved ablator during transient heating of at least 50 W/cm<sup>2</sup>, preferably >100 W/cm<sup>2</sup>
    - Stable, robust char
    - Minimal spallation
  - High char yield
  - Low thermal conductivity
  - Low coefficient of expansion: CTE < 10 x e-06</li>
- Integration onto Structure
  - Deposited directly onto pre-built structure (preferred)
    - Self-adhering or with adhesive layer already applied
  - Large surface areas 20+ m<sup>2</sup>
  - Thermal post-cure acceptable but limited to <350 F.</li>

Approaches: 1) Modify current 3D printed materials with additives

2) Develop new materials



### **Potential 3D Printing Techniques**

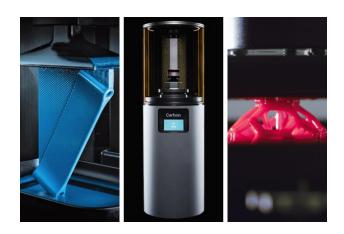
- Fused Deposition Modeling (FDM)
  - Filament or pellet feedstock
    - Several base materials Nylon, PEI (ULTEM), PEEK (KetaSpire)
    - Polymer additives fibers, microspheres, others
  - Machines under consideration Stratasys, Thermwood, Cosine Additive, Made-In-Space, Mark Forged, and open source consumer grade machines
- Contour Crafting
  - TBD 'slurry' deposited
  - Thermal curing or sintering



Stratasys FDM Systems



Thermwood LSAM

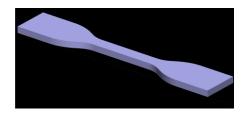



3D Concrete Printer

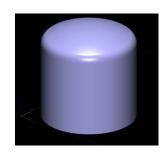


### **Opening the 3D Printing Trade Space**

- Printing Thermoset Plastics
  - Carbon's Continuous Liquid Interface Production (CLIP)
    - Cyanate ester resin with additives
    - Thermal post-cure
- Challenge is how to apply, cure and attach thermoset materials onto a structure.







### **3D Printed TPS Material Screening**

#### **Manufacture Test Articles**

Tensile Test Article



Thermal Test Article (30 mm)



#### **Material Characterization**

Thermal Decomposition

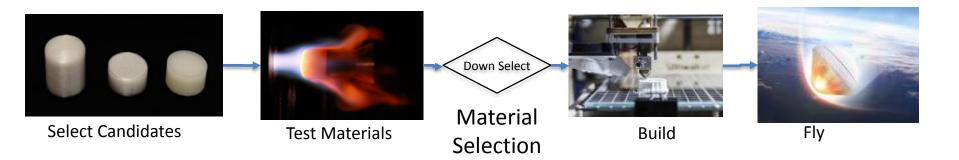
Tensile Strength



Air Plasma Tests

#### Manufacturing Demonstration Unit (MDU)




3D Print Heat Shield



### **Technical Goal: Build and Fly**

#### Material Development

### Flight Performance Demo



**Fast Track TPS Materials to Flight**