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NASA Turbine Environmental Barrier Coatings for CMC-

EBC Systems

• Emphasize temperature capability, performance and durability for next generation 
turbine engine systems

• Increase Technology Readiness Levels for component system demonstrations
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Environmental Barrier Coating and SiC/SiC System  

Development: Testing Challenges

• High Temperatures: 2700 to 3000°F (1500-1650°C) along with higher 

interface temperatures

• Exposure to water vapor and combustion products

• High Cyclic Stresses: thermal and mechanical, creep-fatigue effect

• Combined Interactions, in-plane and through-thickness gradients

• High Velocity Gases: Mach 1 and 2

• High Pressures: ~ up to 40 to 50 atmospheres

• Long term durability: 20,000 hr design life
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Outline

─ Advanced testing approaches for SiC/SiC and ceramic coating 

development: laser high heat flux based testing approaches

─ NASA CO2 laser rig development

─ Thermal conductivity

─ Cyclic durability and monitoring degradations of EBCs and CMCs

- Laser high heat flux and mechanical tests

- Combined high heat flux - mechanical tests

- High heat flux biaxial creep/fatigue test rigs

- Sub-element testing

─ Summary and future directions
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High Power CO2 Laser Based High Heat Flux Testing for 

SiC/SiC and Environmental Barrier Coatings Development
– Developed in 1990’s, the rig achieved turbine level high-heat-fluxes (315 

W/cm2) for turbine thermal barrier coating testing

– Crucial for advanced EBC-CMC developments
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High Power CO2 Laser Based High Heat Flux Testing for 

SiC/SiC and Environmental Barrier Coatings Development 

- Continued
– NASA high power CO2 laser rig systems 

– Various test rigs developed

– 7.9 micron single wavelength and 1 micron two color 

wavelength pyrometers for temperature measurements

– Thermography system for temperature distribution 

measurements

– Capable of programmable test mission cycles

– Capable of mechanical load cycles under high heat flux

– Environment test conditions (e.g., steam and vacuum)

High heat flux combustor rigSome temperature thermal gradient cycles
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High Power CO2 Laser Based High Heat Flux Testing for 

SiC/SiC and Environmental Barrier Coatings Development 

– Continued
– Controlled beam profiles, beam size and power density were major emphases, 

by using rotating ZnSe integrating lens with various focus lengths 

– Uniform distribution up to 2-3” diameter beam size for various testing

Example of 1” diameter disc specimen tests and beam profile

2” beam size subelement tests

Laser high heat flux rig
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High Power CO2 Laser Based High Heat Flux Fatigue Test 

Rig
– Laser creep and fatigue testing capable of full tension and compression loading 

– Uniform distribution up to 2-3” diameter beam size for various testing, 

depending on the heat flux requirements

Laser heat flux Thermal HCF/LCF Rig – Overall View

Specimen under testing in tensile-compression fatigue rig
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High Heat Flux Rig Testing with Water vapor Steam 

Chamber – Established in Early 2000

- Steam injected at up to 5m/sec

- Testing temperature >1700°C

─ High temperature and high-heat-flux testing capabilities

─ “Micro-steam environment” allowing high water vapor pressure, relatively high 

velocity under very high temperature condition

─ Used for 3000°F EBC-CMC developments

Steam during 

cooling cycles

High temperature testing 

with steam flow
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High Heat Flux Thermomechanical Testing for EBC 

Development

High heat flux tensile TMF and rupture testing

─ High heat flux and combined thermal-mechanical loading capabilities established to allow 

SiC/SiC system performance data to be obtained under simulated operating conditions

─ A 1000 Hz high heat flux HCF testing rig is being established this year

Laser heat flux

High heat flux flexural TMF testing: HCF, 

LCF, interlaminar and biaxial strengths
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Thermal Conductivity Measurement by a Laser High-Heat-

Flux Approach
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Thermal Gradient Cyclic Behavior of a Thermal 

Environmental Barrier Coating System
– Sintering and delamination of coatings reflected by the apparent thermal 

conductivity changes
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Environmental Barrier Coating and High Heat Flux 

Induced Delaminations
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Crack Extension Force G as a function of time

for 2.0mm half delamination length and crack depth of 0.08mm
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Thermal Gradient Cyclic Behavior of Air Plasma Sprayed 

Yb2SiO5 (with HfO2 Composite)/Yb2Si2O7/HfO2-Si Coatings 

on SiC/SiC CMCs

• Tsurface ~1482-1500°C, Tinterface 1350°C, T back surface 1225°C, heat flux 110 W/cm2

• Localized pore formation

After 50hr Cyclic Testing0.0
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Fatigue Testing using a Laser High-Heat-Flux Approach for 

Environmental Barrier Coated Prepreg SiC/SiC CMCs

- Environmental Barrier Coatings Yb2SiO5/Yb2Si2O7/Si on MI Prepreg SiC/SiC CMC substrates 

- One specimen tested in air, air testing at 1316°C

- One specimen tested in steam, steam testing at TEBC 1316°C, TCMC at ~1200°C

- Lower CMC failure strain observed in steam test environments

failure

failure

failure

failure

Fatigue strains (amplitudes) – Time Plot Thermal conductivity  – Time Plot
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Fatigue Testing using a Laser High-Heat-Flux Approach for EBC 

Coated Prepreg SiC/SiC CMCs - Continued

In steam; EBC cracking and volatility

O
Yb

Si

In Air; EBC cracking

- Crack and recession failure in air and steam tests
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Fatigue Testing using a Laser High-Heat-Flux Approach for EBC 

Coated Prepreg SiC/SiC CMCs - Continued

In steam; EBC cracking and volatility

O
Yb

Si

In Air; EBC cracking

- Crack and recession failure in air and steam tests
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EBC Coated CMC 2650°F (1454°C) Creep Rupture 

Durability Test
• SiC/SiC CMC 12C-470-022 SiC/SiC CVI-MI CMC specimen

• Coated with 2700°F (1482°C) RESi and Rare Earth EBC

• Test temperatures: TEBC surface at 2850-3000°F (1600-1650°C), and Tcmc back at ~2600°F 

(1426°C)

Creep rate 7.1x10 -6 1/s
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Advanced EBC-CMC Fatigue Test with CMAS: 

Successfully Tested 300 h Durability in High Heat Flux 

Fatigue Test Conditions 
- A thin EB-PVD turbine airfoil EBC system with advanced HfO2-rare earth silicate 

and GdYbSi (controlled oxygen activity) bond coat tested at TEBC-surface 1537°C, 

Tbond coat 1480°C, Tback CMC surface 1250°C

- Fatigue Stress amplitude 69 MPa, at mechanical fatigue frequency f=3Hz, stress 

ratio R=0.05

- Low cycle thermal gradient fatigue 60min hot, 3min cooling

Strain amplitude

1537°C, 69MPa (10ksi), 300 h fatigue (3 Hz, R=0.05) on 

14C579-011001_#8  CVI-MI SiC/SiC (with CMAS)

Fatigue strain-time plot

Fatigue temperature-time plot
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EBC Fatigue Test Failure with CMAS

EB-PVD Processed EBCs: alternating HfO2-rich and ytterbium silicate layer systems for 

CMAS and impact resistance

- Advanced alternating HfO2-RE-silicate coatings (EB-PVD processing) – HfO2-

layer infiltration and rare earth silicate layer melting

- Advanced composition clustering EBCs being developed 
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Advanced EBC-CMC Fatigue Test with CMAS and in 

steam Jet: Successfully Tested 150 h Durability in High 

Heat Flux Fatigue Test Conditions
- Advanced Hf-NdYb silicate-NdYbSi bond coat EBC coatings on 3D architecture 

CVI-PIP SiC-SiC CMC (EB-PVD processing)

Surface view CMAS 

35mg/cm2)
Back view CMAS 

35mg/cm2)
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SiC/SiC Turbine Airfoil Trailing Edge Tests

- Subelement wedge testing and high temperature tests, aiming at understanding 

the CMC and EBC degradation  
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Summary and Future Plans
• Advanced high heat flux creep rupture, fatigue rigs established for simulated 

turbine engine EBC-CMC testing

─ High temperature comprehensive environment testing capability including heat flux, 

steam and CMAS, at very high temperature

─ Real time coating degradation monitoring and fatigue-creep stain monitoring

─ Testing capabilities incorporated into the advanced EBC-CMC developments

• Long term creep rupture and fatigue behavior evaluated for Hafnium Rare Earth 

silicate and Rare Earth-Silicon based EBCs-CMCs at 1482°C+ (2700°F+)

̶ Crucial for advanced EBC-CMC development and validations

• The heat flux thermomechanical testing of subelements for the EBC-CMC 

subelement

̶ Important for durability and life modeling

Future plans

• HCF high heat flux rig with additional environmental testing capabilities (steam-air mixture 

environments and controlled steam or vacuum capabilities)

• EBC erosion-impact capabilities also planned in combination of laser high heat flux, creep-

fatigue, high velocity steam, and CMAS integrated tests

• Additional full field strain measurement experiments, in particular at high temperatures

• Planned a multi-axial testing rig for CMC and EBC testing
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