SATELLITE Contributions to ACPC

Ralph Kahn NASA/Goddard Space Flight Center

Satellite "Direct" Measurement Capabilities

- *Polar orbiting imagers* provide *frequent, global coverage*
- *Geostationary platforms* offer *high temporal resolution*
- *Multi-angle imagers* offer *aerosol plume height & cloud-top mapping*
- *Passive instruments* can retrieve total-column *aerosol amount (AOD)*
- *Active instruments* determine aerosol & some cloud *vertical structure*
- *UV imagers* and *active sensors can* retrieve *aerosol above cloud*
- *Multi-angle*, *spectral*, *polarized* imagers obtain *some aerosol type info.*
- *Active sensors* can obtain *some aerosol type info., day & night*
- Satellite trace-gas retrievals offer *clues about aerosol type*
- *Vis-IR imagers* can retrieve *cloud phase*, r_c , $\mathbf{T_c}$, p_c , τ_c , α_c , C_f , LWP

*Need to be creative & Play to the strengths of what satellites offer***!!**

Multi-year Annual Average *Aerosol Optical Depth* **from Different Measurements +** *Synthesis* **(S*)**

Eight Years of Seasonally Averaged Mid-visible Aerosol Optical Depth from MISR

…includes bright desert dust source regions

MISR Team, JPL and GSFC

AIRS - Temperature & Water Vapor Profiles

Temperature Profiles Accurate to 1K/km to 30 mb

Water Vapor Profiles Match Observations 15%/2km

Overall Satellite *Limitations*

- *Polar orbiters* provide *snapshots only*
- Typically ~100s of meters or poorer *horizontal resolution*
- Difficult to probe *cloud base*
- *Passive instruments* offer little or no *vertical information*
- *Active instruments* offer little *spatial coverage*
- Bigger issues retrieving aerosols *in the presence of clouds!*
- Cloud property retrievals can be aliased *by the presence of aerosols*
- Little-to-no information about aerosol *particle properties*

These points are summarized in *Rosenfeld et al. Rev. Geophys. 2014*

Finer Points on Satellite Aerosol Retrieval *Limitations*

- Difficult to retrieve aerosols that are *collocated with cloud* -- *Cloud-scattered light &* cloud "contamination" can affect near-cloud aerosol retrievals
- Rarely can detect aerosol in *droplet-formation region* below clouds – need cloud & aerosol *vertical distributions*
- Aerosols smaller than about *0.1 micron diameter* look like atmospheric gas molecules – must *infer CCN* number
- Must deduce aerosol *hygroscopicity* & *MEE* (composition) from qualitative "type" $-$ size, shape, and SSA constraints
- Environmental (Meteorological) Coupling Factors can *co-vary* -- LWP can decrease as aerosol number concentration increases (also depends on atm. stability)
- Many aerosol-cloud interaction time & spatial scales do not match *satellite sampling*

*Satellites are fairly blunt instruments for studying aerosol-cloud interactions***!!**

(a) Ship tracks off the coast of California, from AVHRR. (b) Retrieved r_c and τ_c differences. [*Coakley & Walsh JAS 2002*].

(d) Correlation between AVHRR particle number (N_a) and cloud droplet (N_c) concentrations, for 4 months in 1990; Yellow indicates high N_c with large N_a ; red indicates high N_c despite small N^a . [*Nakajima et al., GRL 2001*]

Historical Examples

(c) False-color AVHRR: Red indicates large droplets, yellow signifies smaller droplets [*Rosenfeld, Sci. 2000*]

(e) Atlantic convective cloud invigoration from MODIS; aerosol optical depth (AOD) , cloud fraction (C_f) , cloud droplet effective radius (r_c) , water optical depth (ω_c) vs. height; p_c encoded in colors, increasing from blue to green. [*Koren et al.* GRY ACCES

Correlation **Between AOD from Space and CCN in Remote & Polluted Regions**

Andreae ACP 2009

USING AI (= $\tau_a X Ang$) to Estimate *CCN*

Kapustin, Clarke, et al., JGR 2006

- Test Idea: Smaller particles more likely to become *CCN; Ang* is a smaller quantity for larger particles
- ACE-Asia, Trace-P *in situ* **field data** *CCN* proxy
- **AI does not work quantitatively in general**, but can **if the data are stratified** by:
- -- **RH** in the aerosol layer(s) observed by satellites
- -- **Aerosol Type** (hygroscopicity; pollution, BB, dust)
- -- **Aerosol Size** (*Ang* is not unique for bi-modal dist.)

Practically, in addition to τ_a and Ang , this requires:

- -- Vertical **humidity structure**
- -- **Height-resolved** aerosol **type**
- -- **Height-resolved size** dist. [extrapolated to small sizes(?)]

This study includes enough detail to assess $AI \sim N_a$ and $AI \sim CCN$

AI vs. *in situ CCN* proxy (a) all ACE (blue) & Trace-P, **dry** (b) ACE - OPC-only, amb. *RH* (c) TP - OPC-only, amb. *RH*

Deducing CNN & *W^b* **for non-PPT, BL Convective Clouds**

Multi-angle Imaging SpectroRadiometer

http://www-misr.jpl.nasa.gov

- **Nine CCD push-broom cameras**
- **Nine view angles at Earth surface: 70.5º forward to 70.5º aft**
- **Four spectral bands at each angle: 446, 558, 672, 866 nm**
- **Studies Aerosols, Clouds, & Surface**

Ft. McMurray Wildfire Smoke Plume Heights MISR Active Aerosol Plume-Height (AAP) Project 06 May 2016

The *height* at which smoke is lofted into the atmosphere affects *how long* it will stay aloft, *how far* it will travel, and *how much of an impact* it will have on air quality downwind, and regional climate.

Parallax, the change in apparent plume position relative to the surface, as observed from the NASA Earth Observing System's Multi-angle Imaging Spectroradiometer (*MISR*) instrument, makes it possible to map the height of *smoke*, *dust*, and *volcanic plumes* nearsource, where plume features are visible in the multi-angle views.

Zero-wind & Wind-Corrected *MISR Height Profiles* **Downwind from Near-source**

T. Canty, R. Bolt, CJ Vernon / U. Maryland

Iraq's Mishraq Sulfur Plant and Oil Well Smoke Plume Heights MISR Active Aerosol Plume-Height (AAP) Project 21 October 2016

The *height* at which smoke is injected into the atmosphere affects *how long* it will stay aloft, *how far* it will travel, and *how much of an impact* it will have on air quality downwind, and regional climate. In *northern Iraq*, at least two people have lost their lives, up to 1000 hospitalized, and 200 families evacuated from their homes due to sulfur & smoke pollution.

Parallax, the change in apparent plume position relative to the surface, as observed from the NASA Earth Observing System's Multi-angle Imaging Spectroradiometer (*MISR*) instrument, makes it possible to map the height of *smoke*, *dust*, and *volcanic plumes* nearsource, where plume features are visible in the multi-angle views.

Zero-wind & Wind-Corrected *MISR Height Profiles* **Downwind from Near-source**

R. Kahn, **T. Kucsera** / NASA GSFC **T. Canty, R. Bolt, CJ Vernon / U. Maryland**

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (**CALIPSO**)

Omar et al., JAOT 2009

CALIPSO *Interpretive* **6-Aerosol-Type Classification**

Omar et al., JAOT 2009

Single-scattering Phase Functions for **Different Particle Properties**

MISR Aerosol Type Discrimination

January 2007 July 2007

Kahn & Gaitley JGR 2015

Adapted from: Kahn, Survy. Geophys. 2012

SAM-CAAM

[Systematic Aircraft Measurements to Characterize Aerosol Air Masses]

[This is currently a *concept-development effort*, not yet a project]

Primary Objectives:

- Interpret and *enhance 17⁺ years of satellite aerosol retrieval* products
- Characterize statistically particle properties for major aerosol types globally, to provide detail unobtainable from space, but needed to *improve*:
	- -- Satellite aerosol retrieval algorithms

-- The translation between satellite-retrieved aerosol optical properties and species-specific aerosol mass and size tracked in **aerosol transport & climate models**

SAM-CAAM Concept

[Systematic Aircraft Measurements to Characterize Aerosol Air Masses]

- **Dedicated Operational Aircraft** routine flights, 2-3 x/week, on a continuing basis
- *Sample Aerosol Air Masses* accessible from a given base-of-operations, then move; project science team to determine schedule, possible field campaign participation
- Focus on *in situ measurements required* to characterize particle *Optical Properties* (esp. *Light Absorption*), *Composition*, *Hygroscopicity*, and *Mass Extinction Efficiency*
- *Process Data Routinely* at central site; instrument PIs develop & deliver algorithms, upgrade as needed; data distributed via central web site
- Peer-reviewed paper to identifying *4 Payload Options*, of varying ambition; subsequent selections based on agency buy-in and available resources

SAM-CAAM is feasible because: Unlike aerosol amount, *aerosol microphysical properties tend to be repeatable* from year to year, for a given source in a given season

Adapted from: Kahn, Survy. Geophys. 2012

Backup Slides

SAM-CAAM Required Variables

[Systematic Aircraft Measurements to Characterize Aerosol Air Masses]

1. AEROSOL PROPERTIES FROM *IN SITU* **MEASUREMENTS & INTEGRATED ANALYSIS**

SAM-CAAM Required Variables

[Systematic Aircraft Measurements to Characterize Aerosol Air Masses]

2. METEOROLOGICAL CONTEXT

3. AMBIENT REMOTE-SENSING CONTEXT

NASA C-23B Sherpa

Notional Payload Accommodation

Schematic of a notional layout of the SAM-CAAM Payload Option C in the NASA C-23B Sherpa aircraft. Two-bay racks are shown in red, in-cabin floor-mounted instruments in green, external probes in blue, and the aerosol inlet in gold.

Box Model Considerations

- **Spatial Domain:** 5˚ x 5˚ (~500 km) **3-D Spatial Resolution: ~**10 – a few 100 m
- **Temporal Coverage:** (at least) 24 hours, multiple times **Temporal Resolution:** \sim (at least) 1-3 hours
	- *Need top, bottom, and *side* fluxes*

Satellites *Cannot* **Provide All This**

But satellites can provide *context* over the domain … and some *validation* of the modeling

What is the *fractional coverage* of different cloud types in the domain? How do the TOA *radiative fluxes vary* with atmospheric conditions? What are the *background AOD* and aerosol type gradients? What are the cloud-top, aerosol layer, and aerosol *plume heights*?