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Satellite “Direct’> Measurement Capabilities

e Polar orbiting imagers provide frequent, global coverage

e Geostationary platforms offer high temporal resolution

e Multi-angle imagers offer aerosol plume height & cloud-top mapping
e Passive instruments can retrieve total-column aerosol amount (AOD)
e Active instruments determine aerosol & some cloud vertical structure
e UV imagers and active sensors can retrieve aerosol above cloud

e Multi-angle, spectral, polarized imagers obtain some aerosol type info.
e Active sensors can obtain some aerosol type info., day & night
e Satellite trace-gas retrievals offer clues about aerosol type

* Vis-IR imagers can retrieve cloud phase,r,, T, p,, 7., a., C;, LWP

Need to be creative &
Play to the strengths of what satellites offer!!




Multi-year Annual Average Aerosol Optical Depth
from Different Measurements + Synthesis (S™)

From: Kinne et al. ACP 2006
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Eight Years of Seasonally Averaged
Mid-visible Aerosol Optical Depth from MISR
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...includes bright desert dust source regions
MISR Team, JPL and GSFC



AIRS - Temperature & Water Vapor Profiles

Water Vapor Profiles
Match Observations 15%/2km

Nauru Island Radiosondes

Temperature Profiles
Accurate to 1K/km to 30 mb

W0 Ocean, Mid Latitude vs ECMWF %00 17
AIRS AIRS J | Radiosonde’ Ik
Bias \ R 400 RMS ™~ #
» \ s 20 N 4s
. i Anstrument Spec. £ s00- AIRS :f AIRS |, E
= Requug%ment 2 Bias  \ RMS E
2 E: g 600 v X a2
o =z o
= 10 700 2
g 800 4
S00 |
A0 6w ) e W R e W L D 100216 30 -20 10 0 = 10 20 30 40
-2 1.5 -1 -0.5T empe'gmre (K;>.5 1(7_ H;:rty/J F’2L) Water Vapor Error (%) (E. Fetzer/JPL)

Mean Clear Air Precipitable Water
AIRS data, January 2003

?fk__ /Wv—}

Milimeters




Overall Satellite Limitations

e Polar orbiters provide snapshots only
e Typically ~100s of meters or poorer horizontal resolution

e Difficult to probe cloud base
e Passive instruments offer little or no vertical information

e Active instruments offer little spatial coverage
* Bigger issues retrieving aerosols in the presence of clouds!

 Cloud property retrievals can be aliased by the presence of aerosols
e Little-to-no information about aerosol parficle properties

These points are summarized in Rosenfeld et al. Rev. Geophys. 2014




Finer Points on Satellite Aerosol Retrieval Limitations

e Difficult to retrieve aerosols that are collocated with cloud

-- Cloud-scattered light & cloud “contamination” can affect near-cloud aerosol retrievals

e Rarely can detect aerosol in droplet-formation region below
clouds — need cloud & aerosol vertical distributions

e Aerosols smaller than about 0.1 micron diameter look like
atmospheric gas molecules — must infer CCN number

e Must deduce aerosol kygroscopicity & MEE (composition)
from qualitative “type” — size, shape, and SSA constraints

* Environmental (Meteorological) Coupling — Factors can co-vary

-- LWP can decrease as aerosol number concentration increases (also depends on atm. stability)

e Many aerosol-cloud interaction time & spatial scales
do not match satellite sampling

Satellites are fairly blunt instruments
for studying aerosol-cloud interactions!!




Historical Examples
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(a) Ship tracks off the coast of California, from AVHRR.
(b) Retrieved r, and 7, differences. [Coakley & Walsh JAS 2002].
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(d) Correlation between AVHRR particle number (N,) and -

cloud droplet (N_) concentrations, for 4 months in 1990;
Yellow indicates high N, with large N,; red indicates high N,
despite small N,. [Nakajima et al., GRL 2001 ]

(c) False-color AVHRR: Red indicates large droplets,

yellow signifies smaller droplets [Rosenfeld, Sci. 2000]
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(e) Atlantic convective cloud invigoration from MODIS;
aerosol optical depth (AOD), cloud fraction (C;), cloud droplet
effective radius (r.), water optical depth (®.) vs. height; p,
encoded in colors, increasing from blue to green. [Koren et al.



Correlation Between AOD from Space and CCN
in Remote & Polluted Regions
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USING Al (= 7,X Ang) to Estimate CCN

Kapustin, Clarke, et al., JGR 2006

e Test Idea: Smaller particles more likely to become
CCN; Ang is a smaller quantity for larger particles Y
* ACE-Asia, Trace-P in situ field data — CCN proxy =~ =i —
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Scattering ¥ Angsyom, Mm«1

e Al does not work quantitatively in general,
but can if the data are stratified by:

-- RH 1n the aerosol layer(s) observed by satellites
-- Aerosol Type (hygroscopicity; pollution, BB, dust)
-- Aerosol Size (Ang is not unique for bi-modal dist.)

Scattering » Angsyom, Mm-1

Practically, in addition to 7, and Ang, this requires:

-- Vertical humidity structure
-- Height-resolved aerosol type
-- Height-resolved size dist. £

[extrapolated to small sizes(?)] S

Scultwing x Angstrorn, Wm-1

I'
TRAGE lighs 79 1117 i
Che-100nm, om-2

. . . Al vs. in situ CCN proxy
This study includes enough detail to () all ACE) (Bitic) & Trace ¥ dy

aSsess AI ~ Na and AI ~ CCN (b) ACE - OPC-only, amb. RH

(c) TP - OPC-only, amb. RH




Deducing CNN & W, for non-PPT, BL Convective Clouds
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See: Poster by Ayal Hashimshoni




Multi-angle Imaging SpectroRadiometer

http://www-misr.jpl.nasa.gov

A

% * Nine CCD push-broom cameras
o

* Nine view angles at Earth surface:
70.5° forward to 70.5° aft

+ Four spectral bands at each angle:
446, 558, 672, 866 nm -

- Studies Aerosols, Clouds, & Surface
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Ft. McMurray Wildfire Smoke Plume Heights
MISR Active Aerosol Plume-Height (AAP) Project 05 Mlay 2016
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Irag’s Mishraq Sulfur Plant and Oil Well Smoke Plume Heights

MISR Active Aerosol Plume-Height (AAP) Project 21 October 2016
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The Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO)

(b) Cloud Aerosol Discrimination

(c) Aerosol Subtypes
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Omar et al., JAOT 2009



CALIPSO Interpretive 6-Aerosol-Type Classification

CALIPSO Classification
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Phase Function

Single-scattering Phase Functions for Different Particle Properties
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MISR Aerosol Type Discrimination
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. Remote-sensing Analysis
llites ¢ Retrieval Validation

e Assumption Refinement

Suborbital

frequent, global

snapshots,
aerosol amount &
aerosol type maps,

plume & layer heights

Regional Context

targeted chemical &
microphysical detail

CURRENT STATE \
 Initial Conditions
e Assimilation

Aerosol-type
Predictions;

Meteorology;
Data integration

point-location
time series

Model Validation

* Parameterizations
* Climate Sensitivity

* Underlying mechanisms space timditerpoiiion

Aerosol Direct &

Must stratify the global satellite Indirect Effects
data to treat appropriately calculation and prediction
situations where different . €S

physical mechanisms apply ’ S—

Adapted from: Kahn, Survy. Geophys.



SAM-CAAM

[Systematic Aircraft Measurements to Characterize Aerosol Air Masses]
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[This is currently a concept-development effort, not yet a project]

Primary Objectives:

e Interpret and enhance 17* years of satellite aerosol retrieval products

» Characterize statistically particle properties for major aerosol types globally,
to provide detail unobtainable from space, but needed to improve:

-- Satellite aerosol retrieval algorithms

-- The translation between satellite-retrieved aerosol optical properties and
species-specific aerosol mass and size tracked in aerosol transport & climate models

Kahn et al., BAMS in press



SAM-CAAM Concept

[Systematic Aircraft Measurements to Characterize Aerosol Air Masses]

 Dedicated Operational Aircraft — routine flights, 2-3 x/week, on a continuing basis

e Sample Aerosol Air Masses accessible from a given base-of-operations, then move;
project science team to determine schedule, possible field campaign participation

» Focus on in situ measurements required to characterize particle Opftical Properties
(esp. Light Absorption), Composition, Hygroscopicity, and Mass Extinction Efficiency

 Process Data Routinely at central site; instrument PlIs develop & deliver algorithms,
upgrade as needed; data distributed via central web site

 Peer-reviewed paper to identifying 4 Payload Options, of varying ambition;
subsequent selections based on agency buy-in and available resources

SAM-CAAM is feasible because:
Unlike aerosol amount, aerosol microphysical properties tend to be repeatable
from year to year, for a given source 1n a given season
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Adapted from: Kahn, Survy. Geophys.
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SAM-CAAM Regquired Variables

[Systematic Aircraft Measurements to Characterize Aerosol Air Masses]

1. AEROSOL PROPERTIES FROM IN SITU MEASUREMENTS

0 N9 &N U B~ W N

& INTEGRATED ANALYSIS
Abbrev. Required Variable
EXT Spectral Extinction
ABS Spectral Absorption
GRO Hygroscopic Growth
SIZ Particle Size
CMP Particle Type (a composition constraint)
PHA Single-scattering Phase Function
MEE Mass Extinction Efficiency
RRI Real Refractive Index




SAM-CAAM Regquired Variables

[Systematic Aircraft Measurements to Characterize Aerosol Air Masses]

2. METEOROLOGICAL CONTEXT

Abbrev. Required Variable
9 CO Ambient Gases (CO + O, + NO,)
10 T; P;RH  Standard Ambient Meteorological Variables
11 LOC Geographic Location

3. AMBIENT REMOTE-SENSING CONTEXT
Abbrev. Required Variable

12 A-EXT & Ambient Spectral Extinction & Absorption

A-ABS
13 A-PHA  Ambient Particle Phase Function
14 A-CLD  Ambient Cloud & Large-Particle

Size/Type
15 HTS Aerosol Layer Heights




NASA C-23B Sherpa




Notional Payload Accommodation
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Schematic of a notional layout of the SAM-CAAM Payload Option C in the NASA C-23B Sherpa aircraft.

Two-bay racks are shown in red, in-cabin floor-mounted instruments in green, external probes in blue,
and the aerosol inlet in gold.



Box Model Considerations

e Spatial Domain: 5° x 5° (~500 km)
3-D Spatial Resolution: ~10 — a few 100 m

* Temporal Coverage: (at least) 24 hours, multiple times
Temporal Resolution: ~ (at least) 1-3 hours

* Need top, bottom, and *side* fluxes

Satellites Cannot Provide All This

But satellites can provide context over the domain
... and some validation of the modeling

What is the fractional coverage of different cloud types in the domain?
How do the TOA radiative fluxes vary with atmospheric conditions?
What are the background AOD and aerosol type gradients?
What are the cloud-top, aerosol layer, and aerosol plume heights?



