

Introduction						
Compressible mixing layers						
• Examples: supersonic combustion, exhaust nozzles, and internal flows present in jet engines and scramjets						
 Experimental studies investigating compressibility effects: Chinzei et al., Papamoschou & Roshko, Goebel and Dutton, Samimy & Elliot, Hall et al., and Clemens & Mungal. 						
Turbulent Inflow Conditions						
(1) full LES of upstream boundary layers						
(2) Recycling/Rescaling						
(3) Hybrid RANS/LES						
(4) synthetic turbulence inflow boundaries						

Compre Mach N	essib umbe	ility Ef er	fects	at	High C	on	vectiv	/e	NASA
			T/	ACP - 1	Transformatio	nal To	ols & Tech	nolog	ies Proje
Leveraging number, w number ca	g the p e subs se.	ractices of equently	develo invest	ped igate	for the loved the hig	w co h co	nvectiv nvectiv	re M e M	ach ach
	Case	Methodo	logy		Grid Size		Width		
	J		SEM-LES		2049 x 425 x 42		6mm		
	К		SEM-LES		2049 x 425 x 74		12mm		
L		SEM-LES		2049 x 425 x 138		24mm			
		Case 2	M _c =0.4	Case 4 M _c =0.87					
Para	Parameter		Secon	dary	Primary	Se	Secondary		
		Flow	Flov	N	Flow	Flo	W		
М		1.91	1.3		2.35	0.3	0.30		
U (m	<i>U</i> (m/s)				616	10	100		
<i>T_t</i> (K)		578	295		360	290	290		
<i>P</i> (kPa)		49	49		36	36	36		
$\delta^* (mm)$			0.4	4	0.70	0.2	0.24		

Conclusions TACP - Transformational Tools & Technologies Proje • LES of a compressible shear layer for: $M_c = 0.46$ (case 2), and $M_c = 0.87$ (case 4). · Spanwise turbulent stresses and mixing layer thickness were suppressed if the domain is too narrow (6mm). 1. Fixed inflow neglects inflow turbulence 2. SEM inflow accounts for inflow turbulence. For $M_c = 0.46$, Fixed-LES showed large laminar structures in the initial portion of the shear layer and a delayed transition to turbulent mixing. • SEM-LES eliminated the organized vortical structures and transition to turbulent mixing occurred immediately following the splitter tip. SEM-LES better replicated the experimental trends in turbulent stresses. • For $M_c = 0.87$, similar trends were found when investigating spanwise width. • The experimentally observed mixing rate was overpredicted by LES which agreed with RANS-EASM. Neither RANS nor LES have yet to capture the reduced growth rate trend with increasing convective Mach number. The key finding was that accounting for inflow turbulence through SEM-LES is a viable option alongside recycling/rescaling LES

