
Mary Jo W. Shalkhauser and Rigoberto Roche
Glenn Research Center, Cleveland, Ohio

Waveform Developer’s Guide for the Integrated
Power, Avionics, and Software (iPAS) Space
Telecommunications Radio System (STRS) Radio

NASA/TM—2017-219476

May 2017

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space science.
The NASA Scientifi c and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server—Registered
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS) thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientifi c and
technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658

• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

Mary Jo W. Shalkhauser and Rigoberto Roche
Glenn Research Center, Cleveland, Ohio

Waveform Developer’s Guide for the Integrated
Power, Avionics, and Software (iPAS) Space
Telecommunications Radio System (STRS) Radio

NASA/TM—2017-219476

May 2017

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Available from

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

NASA/TM—2017-219476 1

Waveform Developer’s Guide for the Integrated Power, Avionics,
and Software (iPAS) Space Telecommunications Radio System

(STRS) Radio

Mary Jo W. Shalkhauser and Rigoberto Roche
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Summary
The Space Telecommunications Radio System (STRS) provides a common, consistent framework for

software defined radios (SDRs) to abstract the application software from the radio platform hardware.
The STRS standard aims to reduce the cost and risk of using complex, configurable, and reprogrammable
radio systems across NASA missions. To promote the use of the STRS architecture for future NASA
advanced exploration missions, NASA Glenn Research Center developed an STRS-compliant SDR on a
radio platform used by the Advanced Exploration System program at NASA Johnson Space Center in
their Integrated Power, Avionics, and Software (iPAS) laboratory.

Introduction
The Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System

(STRS) radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System
(RIACS) platform, currently being used for radio development at NASA Johnson Space Center. The
platform consists of a Xilinx® Virtex®-6 ML605 Evaluation Kit, an Analog Devices AD–FMCOMMS1–
EBZ radiofrequency (RF) front-end board, and an Axiomtek™ eBOX620–110–FL embedded personal
computer (PC) running the Ubuntu® 12.04 LTS operating system. Figure 1 shows the RIACS platform
hardware. The result of this development is a low-cost–STRS-compliant platform that can be used for
waveform development for multiple applications.

The purpose of this document is to describe how to develop a new waveform using the RIACS
platform, the Very High Speed Integrated Circuits (VHSICs) Hardware Description Language (VHDL)
field-programmable gate array (FPGA) wrapper code, and the STRS implementation on the embedded PC
(eBOX620–110–FL).

This document was written under the assumption that the reader has access to the iPAS STRS radio
software and FPGA code. It is recommended that waveform developers obtain copies of the following
iPAS STRS radio documentation: iPAS STRS Radio User’s Guide (Ref. 1), iPAS STRS Radio Hardware
Interface Description (HID) (Ref. 2), and the Programmable Logic Device (PLD) Design Description for
the iPAS STRS Radio (Ref. 3). All of these documents are publically available NASA Technical
Memorandum (TM).

Design Overview
This section provides a design overview of the STRS. Throughout this document, VHDL signal

names are always shown in italics and file names are shown in a monospaced, typewriter-style Courier
font. VHDL constants are always shown in all capital letters.

NASA/TM—2017-219476 2

Figure 1.—Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform

components. ADC, analog-to-digital converter; DAC, digital-to-analog converter; FPGA,
field-programmable gate array; RF, radiofrequency; Rx, receive; Tx, transmit.

Space Telecommunications Radio System (STRS) Software

The STRS architecture is a framework for the design, development, operation, and upgrade of
space-based software defined radios (SDRs), where processing resources are constrained, including the
application programming interface (API) between the operating environment (OE) and the waveform
application. This document provides detailed instructions on the process necessary to write code on the
SDR using the preloaded STRS API and all the hooks for low-level control functions in the iPAS STRS
project. This guide also presents a description of how the radio operates, the internal APIs, the
configuration files, constraints, and the execution process. This information is necessary for a potential
software developer to understand how the code is organized in a logical hierarchy and how the example
waveform control code can be modified to implement unique functionality outside of the examples
provided. This example waveform control code (iPAS waveform) is referred to as “WFIPAS2”
throughout this document.

Field-Programmable Gate Array (FPGA)

The purpose of the FPGA design is the implementation of the signal processing functions of the STRS
radio architecture in the iPAS RIACS platform. The FPGA design consists of two parts—the FPGA
wrapper and the test waveform. The FPGA wrapper implements each of the following platform interfaces:

• Ethernet communication to the embedded processor for commanding and data streaming
• Digital-to-analog converter (DAC) and analog-to-digital converter (ADC) interface to the RF board
• RF board control and configuration
• FPGA clocking

The test waveform does not fully implement all the signal processing functionality for a radio, but it
exercises and demonstrates each interface in the FPGA wrapper. A future user of the platform for an
STRS radio would use the FPGA wrapper and replace the test waveform with customized radio signal
processing functions.

NASA/TM—2017-219476 3

The FPGA design is required to receive and process commands from an embedded processor and
provide command control to the test waveform. The FPGA must also receive and transmit streaming data
from and to the embedded processor. To test transmit-side (Tx-side) streaming, it can perform bit error
rate (BER) testing on Tx-side pseudorandom bit sequence (PRBS) streaming data. It can also generate
PRBS streaming data packets for a receive-side (Rx-side) streaming data source. The test waveform
generates sine waves for the in-phase (I) and quadrature (Q) inputs to the RF transceiver. Sampled I and
Q outputs of the RF transceiver can be streamed to the embedded processor, where the outputs can be
plotted to demonstrate proper functionality of the RF board and its interfaces.

Top-Level Design Description

Figure 2 shows how the STRS standard was implemented on the RIACS platform. The general
purpose module (GPM) is the implementation of the STRS command infrastructure on the iPAS radio. It
houses the OE and presents a communication conduit for commands and data to and from the signal
processing module (SPM). The GPM is where the general purpose processor (GPP) hardware is contained
and accessed by the operating system running the STRS project files.

The SPM encompasses the FPGA design, which consists of the following:

(1) The FPGA wrapper that implements all the interfaces to the FPGA and abstracts them from the

waveform.
(2) The waveform, which is the FPGA implementation of the radio signal processing functions.

The test waveform created for the iPAS STRS radio does not fully implement all the signal
processing functionality for a radio, but it exercises and demonstrates each interface in the FPGA
wrapper. A future user of the platform for an STRS radio would reuse the FPGA wrapper and replace the
test waveform with customized radio signal processing functions.

Figure 2.—Space Telecommunications Radio System (STRS) implementation on the Reconfigurable,

Intelligently-Adaptive Communication System (RIACS) platform. ADC, analog-to-digital converter; APIs, application
programming interfaces; DAC, digital-to-analog converter; FMC, FPGA Mezzanine Card; FPGA, field-
programmable gate array; GUI, graphical user interface; HAL, hardware abstraction layer; PC, personal computer;
RF, radiofrequency; Rx, receive; Tx, transmit; UDP, User Datagram Protocol.

NASA/TM—2017-219476 4

The RF module (RFM) provides the analog and RF signal processing for the iPAS STRS radio. On
the Tx side, the RF front-end board (AD–FMCOMMS1–EBZ) board takes complex I and Q inputs
(16 bits) into a high-speed, DAC to create an analog signal. The DAC output signal is up-converted to the
desired RF frequency by a quadrature modulator. On the Rx side, the received RF signal is demodulated
using direct-conversion to create I and Q analog signals. The analog signals are digitized using a 14-bit
ADC.

Concept of Operation

The flight computer graphical user interface (GUI) simulates the STRS commands that
would originate from a typical flight computer. The GPM is implemented on the embedded PC
(eBOX620–110–FL) and includes the STRS operating environment and waveform application software.
The STRS OE communicates with the waveform application through standard STRS APIs to control and
configure the waveform.

The SPM functions are encompassed in the Xilinx® ML605 FPGA board design. The FPGA wrapper
abstracts the hardware interfaces from the waveform developer. The test waveform utilizes each of the
hardware interfaces within the wrapper to demonstrate that the wrapper is correctly implemented. The
GPM sends commands over an Ethernet port to the FPGA to control and configure the waveform. The
GPM also streams packetized data to the FPGA and receives packetized streaming data from the FPGA
over the same Ethernet port.

The RF front-end board (AD–FMCOMMS1–EBZ) contains a DAC, up-converter, down-converter,
and ADC. The FPGA configures the RF board using the Xilinx® Microblaze™ 32-bit Reduced Instruction
Set Computer soft processor and sends I and Q data to the DAC. The FPGA also receives down-
converted and sampled I and Q data from the RF board.

The test waveform will be able to demonstrate STRS commands for configuration and control of the
test waveform, Tx-side streaming data operation, RF front-end board configuration, receive-side
streaming data, and STRS telemetry querying.

Space Telecommunications Radio System (STRS)
Software Design Description

This section contains a description of the STRS software design.

Software Identification

This software design is implemented on an eBOX620-110-FL embedded PC, which contains an
AMD G-Series APU T56N 1.65 GHz processor. This embedded PC has a 200 GB hard drive and is
running the Ubuntu® 12.04 LTS operating system.

Development Tools

This GPM design uses the Eclipse Indigo development tool with all the internal compilers for C/C++,
as well as other Linux tools, such as GNU Make and Bash Scripting.

Detailed Architecture Design and Block Diagrams

This section describes the conventions needed to understand the design between system components,
the internal subsystems, and the STRS class definition in more detail. The subsystems interact to provide
the functionality to operate the radio. The components shown in orange represent the high-level
subsystems needed to control waveform and applications within the radio platform. The high-level
architecture model is shown in Figure 3.

NASA/TM—2017-219476 5

The STRS SDR must have a GPP for waveform control, processing flight computer commands,
health and fault monitoring, etc. Using object-oriented design, the STRS Reference Implementation
design for the software on the GPP has evolved with various classes that encapsulate the required
functionality for the radio.

The internal APIs are shown in orange (Figs. 3 and 4). The APIs used by a STRS application (i.e., a
waveform or service) are colored in dark purple. The APIs implemented by a STRS application (i.e., a
waveform or service) are colored in light purple. The green indicates a waveform or service that is not
part of the STRS infrastructure. The turquoise blue color indicates the flight computer simulator, which
will evolve into a flight computer simulator and flight computer interface device on another platform.

The key to understanding the STRS class, object, and subsystem diagrams in Figures 3 and 4 is
shown in Table 2.

Figure 3.—Top-level Space Telecommunications Radio System (STRS) architecture in Unified Modeling Language

(UML). API, application programming interface; FPGA, field-programmable gate array; HAL, hardware abstraction
layer; HW, hardware; POSIX, Portable Operating System Interface; RTOS, real-time operating system.

NASA/TM—2017-219476 6

Figure 4.—High-level class diagram for the Space Telecommunications Radio System (STRS) reference implementation.

API, application programming interface.

NASA/TM—2017-219476 7

TABLE 2.—CLASS DIAGRAM UNIFIED MODELING LANGUAGE (UML) KEY
Diagram element Name Explanation

 Composition A contains X items of type B; B is a part of the aggregate A; B does
not exist independently from A; X may be a number or a range from m
to n depicted by “m..n” where n may be an asterisk to indicate no
upper limit

 Generalization
or

inheritance

B is a kind of A; B inherits all properties of A; A is a more general
case of B

 Interface C is an interface provided by B; that is, C contains means to invoke
behavior that resides in B; A uses interface C to access B

Association A is associated with B; optional description “uses” indicates that A is
associated with B such that A “uses” B

 Association D acts upon A and A responds to D or possibly vice versa; D is
normally an actor outside system

Field-Programmable Gate Array (FPGA) Design Description
This section contains a description of the FPGA design.

Hardware Identification

This FPGA design is implemented on a Xilinx® ML605 Rev D evaluation board, which contains a
Xilinx® Virtex®-6 XC6VLX240T–1FFG1156C FPGA. An RF front-end board (AD–FMCOMMS1–EBZ)
is used for the RF front end.

Development Tools

The development tool used for this FPGA design is Xilinx® Integrated Synthesis Environment (ISE®)
Design Suite: System Edition, version 14.4, which includes the Embedded Development Kit (EDK) and
Software Development Kit (SDK). The Xilinx® ISE® Simulator (ISim) was used for design simulation of
most of the VHDL modules.

NASA/TM—2017-219476 8

Detailed Architecture Design and Block Diagrams

Figure 5 contains a block diagram of the Tx side of the FPGA design. Most of the blocks in the
diagram (and subsequent block diagrams) represent hardware description language (HDL) code modules
and are labeled with the module or instance name, so that these functions can be easily located in the
code. Each block in this diagram (and also in Fig. 6) represents a VHDL module. Each of these blocks
and their submodules are described in the Programmable Logic Device (PLD) Detailed Design section of
the “PLD Design Description for the iPAS STRS Radio” document (Ref. 3). Figure 5 shows Tx-side
wrapper functions, which include the following: clock generation, reset signal generation, and the
modules used to receive streaming and command packets and remove Ethernet headers. The block
diagram also shows the Tx-side waveform functions, which include command parsing and decoding,
conversion of streaming packet data into continuous streaming data, PRBS generation, and I and Q signal
generation (sine waves or modulated PRBS data).

Figure 6 contains the block diagram of the Rx side of the FPGA design. The Rx-side waveform
performs BER testing of PRBS or streaming data. The Rx-side wrapper packetizes command responses
and Rx-side streaming data and controls their transmission over the Ethernet port.

Details of the FPGA wrapper and test waveform can be found in the “PLD Design Description for the
iPAS STRS Radio” document (Ref. 3).

Figure 5.—Transmit-side wrapper and waveform. EMAC, Ethernet Media Access Controller; LEDs, light-emitting diodes.

NASA/TM—2017-219476 9

Figure 6.—Receive-side wrapper and waveform. ADC, analog-to-digital converter; BERT, bit error rate tester; EMAC,

Ethernet Media Access Controller; MUX, multiplexer; PRBS, pseudorandom bit sequence; Rx, receive; Tx, transmit.

Radiofrequency Module (RFM) Design Description
This section contains a description of the RFM interfaces.

Hardware Identification

The RFM consists of an RF front-end board (AD–FMCOMMS1–EBZ). The RFM was designed to
provide the analog front end for FPGA-based radio applications. Detailed information about the RF
front-end board (AD–FMCOMMS1–EBZ) can be found in the Analog Devices wiki at https://wiki.
analog.com/resources/eval/user-guides/ad-fmcomms1-ebz/hardware/functional_overview.

The RF front-end board (AD–FMCOMMS1–EBZ) is a mezzanine board compatible with the Xilinx®
ML605 Rev D evaluation board that can plug into either FPGA Mezzanine Card (FMC) connector on the
Xilinx® ML605 Rev D evaluation board. The iPAS STRS radio requires the RF front-end board (AD–
FMCOMMS1–EBZ) to be inserted in only the FMC–Low Pin Count (LPC) connector. The Tx side of the
high-speed analog board contains a 16-bit DAC, followed by an up-converter and a 20 dB linear
amplifier. The Rx side of the board contains a down-converter, followed by a variable gain amplifier and
an ADC. The board also contains clock generators and synchronizers as well as frequency synthesizers
needed for the operation of the analog components. The RF front-end board (AD–FMCOMMS1–EBZ) is
configured by the FPGA board through an Inter-Integrated Circuit (IIC) interface. The IIC interface is
converted to a Serial Peripheral Interface (SPI), which is used to configure the components on the RF
front-end board (AD–FMCOMMS1–EBZ).

Using the Radiofrequency (RF) Board

The MicroBlaze™ processor is a soft processor core for the Xilinx® Virtex®-6 FPGA that is used
in the iPAS STRS radio design to configure the RF front-end board (AD–FMCOMMS1–EBZ).
Analog Devices provides a reference design to help developers interface their RF front-end board

https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms1-ebz/hardware/functional_overview
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms1-ebz/hardware/functional_overview

NASA/TM—2017-219476 10

(AD–FMCOMMS1–EBZ) with the Xilinx® ML605 FPGA board. The reference design guide is available
through their online wiki (http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms1-ebz). The
reference design guide contains functionality that was not needed for the iPAS STRS radio, so that
functionality was removed from the MicroBlaze.xmp Xilinx® Platform Studio portion of the reference
design. This left only the functionality necessary to configure and provide clocking to the RF board and
the universal asynchronous receiver/transmitter (UART). This provides the waveform developer with the
ability to directly connect to the RF board’s DAC and ADC with VHDL.

The SDK portion of the reference design SDK was retained in the iPAS STRS radio. The main.c
file was edited to configure the ADC sampling rate (196.608 MHz), the DAC sampling rate
(196.608 MHz), and the Rx RF gain (10,000). The default SDK configuration is provided in the
CompiledDefaultProgram.elf file.

The MicroBlaze™ processor uses a UART peripheral to display the configuration of the RF front-end
board (AD–FMCOMMS1–EBZ). When the MicroBlaze™ processor starts up after a power-on or a reset,
the UART will send the following information to a terminal—ADC and DAC sampling rates, variable-
gain amplifier gain, and RF signal frequency. The UART configuration necessary for the PC-based
receiver is as follows: 57,600 baud, 8-bit data, no parity bit, 1 stop bit, and no flow control. Use of the
UART requires the installation of a driver on the PC for the Silicon Labs CP210x Universal Serial Bus
(USB) to UART Bridge Virtual COM Port driver located on the Xilinx® ML605 FPGA board. The driver
is provided with the Xilinx® Virtex®-6 ML605 Evaluation Kit.

The main.c program in the SDK files of the reference design contains the assignments to a structure
variable called defInit (line 70 of main.c). The waveform developer can easily customize the reference
design by editing this variable. The developer can change the ADC sampling rate, DAC sampling rate, RF
gain, and RF signal frequency. The defInit variable for the iPAS STRS radio wrapper is configured as
follows:

XCOMM_DefaultInit defInit = { FMC_LPC, // fmcPort
 XILINX_ML605, // carrierBoard
 200000000, // adcSamplingRate
 200000000, // dacSamplingRate
 10000, // rxGain1000
 2400000000ull, // rxFrequency
 2400000000ull}; // txFrequency

Waveform Development Process
This section contains a description of the waveform development process.

Overview

Figure 7 shows an example of the configuration that a waveform developer can use to develop new
waveforms on the STRS platform. A Windows PC is needed to run the flight computer simulator GUI.
This GUI makes it easier for the developer to query status of and send STRS commands to and from the
waveform. Alternately, STRS commands can be typed into a terminal on the monitor connected to the
embedded PC (eBOX620–110–FL).

http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms1-ebz

NASA/TM—2017-219476 11

Figure 7.—Hardware configuration for waveform development. FMC, FPGA Mezzanine

Card; FPGA, field-programmable gate array; GUI, graphical user interface; JTAG, Joint
Test Action Group; PC, personal computer; RF, radiofrequency; USB, Universal Serial
Bus; VGA, Video Graphics Array.

The Axiomtek™ monitor is also necessary to modify and develop GPM software. The Eclipse
Integrated Development Environment (IDE) was used for the original development, but any similar Linux
compatible software IDE can be used. The monitor can also aid in testing and debugging by using a
terminal window and the Linux tcpdump command (or Wireshark, etc.) to view the Ethernet traffic
between the Axiomtek™ monitor and the FPGA board.

The FPGA code was developed using Xilinx® ISE Design Suite: System Edition version 14.4. A
developer of new FPGA waveforms will need a licensed copy of Xilinx® ISE® Design Suite: Logic
Edition and Embedded Edition at a minimum, on a development computer.

Space Telecommunications Radio System (STRS) Application Development

To develop the C/C++ code needed for this platform, two template waveforms have been
provided—WF1 for C and WF2 for C++. It is assumed that a waveform developer is familiar with writing
code in both C and C++. Developers are encouraged to use these waveforms as templates for creating
customized code. The provided waveform WFIPAS2 can be used as a template for developers to modify
and use the current FPGA example waveform and wrapper, written specifically to demonstrate the
capabilities of this platform.

It is recommended that a waveform developer, writing code for the GPM in either C or C++, follow
these steps:

(1) Write the control functions in a separate project and unit test those functions with the hardware
outside of the architecture. This practice will ensure that any bugs or issues present in the customized
applications are resolved before integration with the standard interface.

(2) It is recommended that the control functions are written as plug and play modules, not system
dependent, and that the developer should use the example functions provided in the
NASA–STD–4009 standard a basis for their development cycle.

(3) Obtain WF1, WF2, or WFIPAS2 from the repository. These waveforms, all packaged with the
Reference Implementation, have containers and implementers that can be used as wrappers for
creating the new waveform. WFIPAS2 has specific control applications already integrated to control
the FPGA in this specific platform so it is recommended the developer use WFIPAS2.

(4) Compile and run. The project has make files ready to build any new code that is entered into the
system. There is no need to modify these files; add the source into a container (WF1, WF2, or
WFIPAS2) and build the application.

NASA/TM—2017-219476 12

The following is an illustrated example of adding a modification for WFIPAS2 for a change in
source/sink configuration for the radio. This is a common practice for benchtop testing on new hardware.
This is pseudocode to illustrate a point, not actual code. It has been tested and run within the GPM
(no FPGA–RF controls), but it is not part of the standard build provided.

(1) Write separate source and testing (Fig. 8).

Figure 8.—Source code for writing and testing changes to the hardware configuration.

(2) Change the source to be plug and play to allow the code to be reused without modification (Fig. 9).

Figure 9.—Source change.

(3) Obtain the source container (WFIPAS2.cpp in this case) (Fig. 10).

Figure 10.—Obtaining source container.

(4) Build the application (Fig. 11).

Figure 11.—Application build.

NASA/TM—2017-219476 13

The example path in this document is not the one within the GPM of the SDR, but the path of the
development system. Use the path specified in the iPAS STRS Radio User’s Guide (Ref. 1) to develop the
application directly on the SDR GPM. However, developers will likely build and modify the control code
on a workstation separate from the SDR. In this case, the path is not required because the application is
not developed on the SDR. As it was shown in this example, the application was built outside the SDR.

To run the modified code, follow the steps in the iPAS STRS Radio User’s Guide (Ref. 1).

Field-Programmable Gate Array (FPGA) Waveform Development

A new waveform developer using the RIACS platform is encouraged to become familiar with the
FPGA wrapper code by operating and testing the FPGA design with the test waveform included. Once the
waveform developer is comfortable with the wrapper, the test waveform can be removed and replaced
with the new custom waveform. Portions of the test waveform may be reused if desired.

The detailed design description of the wrapper and the test waveform can be found in the
“Programmable Logic Device (PLD) Design Description for the Integrated Power, Avionics, and
Software (iPAS) Space Telecommunications Radio System (STRS) Radio” document (Ref. 3). Use this
document as a reference to understand the wrapper implementation.

Integrated Synthesis Environment (ISE®) Project

The FPGA design VHDL implementation is included in the ISE® project in the folder called
IPAS_STRS_Radio.

The project folder contains the following key subfolders:

• ipcores—contains the generated Xilinx® Intellectual Property and the core generator project file
(coregen.cgp).

• TestBenchWaveConf—contains the ISim wave configuration files for each module that has a test
bench.

• vhdl—contains all the custom VHDL files, the User Constraints File (ucf) file, and a subfolder called
TestBenches that contains all the test benches for the custom VHDL.

• ChipScopeProjects—contains the waveform setup for the Xilinx® ChipScope™ Pro tool for each
VHDL module where the ChipScope™ Pro tool had been used previously.

• TestBenchTextFiles—contains the text files used for input data to various test benches.
• ISE_files—contains the VHDL files necessary for the interface to the RF front-end board

(AD–FMCOMMS1–EBZ). These files include the modules that interfaced to the ADC and DAC,
binary phase-shift keying (BPSK) modulator, and interpolation filter.

• SDK_files—contains the previously compiled MicroBlaze™ Executable and Linkable Format (ELF)
file (CompiledDefaultProgram.elf) and all the SDK C/C++ code and header files.

• EDK_files—contains the MicroBlaze.xmp Platform Studio file and the corresponding user constraints
file (MicroBlaze.ucf).

The top module is the FPGA wrapper, STRS_SDR_Wrapper, which implements all the FPGA
interfaces.

Design Flow

To build the delivered design in a new ISE® Project Navigator project, perform the following steps:

(1) Within ISE® 14.4 Design Suite, create a new project targeting the Xilinx® Virtex®-6 FPGA.
(2) Add MicroBlaze.xmp from the EDK_files folder. The embedded processor can be modified by

clicking the submodule icon, which opens the EDK.

NASA/TM—2017-219476 14

(3) Add the required ELF file (executable file for the MicroBlaze™ processor) to the ISE® project and
select both checkboxes (for implementation and simulation). This builds it into the bitstream output
by ISE® Design Suite. The configuration in the SDK_files folder is named
CompiledDefaultProgram.elf. It is configured as such:

• ADC sample rate: 196.608 MHz
• DAC sample rate: 196.608 MHz
• Rx gain: 10.605 dB

(4) Add the following files from the VHDL folder. When developing a custom waveform, do not add the

modules marked “(WF),” unless these test waveform files will be reused in waveform.

• ADC_FDI.vhd
• BertSyncher.vhd (WF)
• BPSKMod.vhd (WF)
• ClockDomainCrossing.vhd (WF)
• ClockEnables.vhd
• CommandDecoder.vhd (WF)
• CommandParse.vhd (WF)
• CreatePacketSM.vhd
• DAC_FDI.vhd
• DataMux.vhd (WF)
• Error_insert.vhd (WF)
• EthernetRx.vhd
• Eth_fifo_8.vhd
• Gmii_if.vhd
• KnightRider.vhd (WF)
• NrzL2M.vhd (WF)
• OutputDataMux.vhd
• Parallel2Serial.vhd (WF)
• PrbsRx23.vhd (WF)
• PrbsRx23Wrapper.vhd (WF)
• PrbsTx23.vhd (WF)
• PrbsTx23Wrapper.vhd (WF)
• PulseGenSM.vhd (WF)
• ReceiveSignal.vhd (WF)
• ResetGen.vhd
• RespFifoInputSM.vhd
• RxPackets.vhd
• RxStreamingData.vhd
• Rx_client_fifo_8.vhd
• SineWaveGen.vhd (WF)
• StatusResetGenSM.vhd (WF)
• StrDataFifoOutputSM.vhd
• StreamFifoInputSM.vhd
• StreamFifoOutputSM.vhd
• STRS_Radio.ucf
• STRS_Radio_Pkg.vhd

NASA/TM—2017-219476 15

• STRS_SDR_Wrapper.vhd
• STRS_Waveform.vhd (WF)
• TransmitSignal.vhd (WF)
• TxResponsePackets.vhd
• TxStreamData.vhd (WF)
• TxStreamFifoWriteSM (WF)
• Tx_client_fifo_8.vhd
• V6_emac_v1_5.vhd
• V6_emac_v1_5_block.vhd
• V6_emac_v1_5_example_design.vhd
• V6_emac_v1_5_locallink.vhd

(5) Add the following generated Intellectual Property from the ipcores folder (the Intellectual Property

cores may need to be regenerated). When developing a custom waveform, do not add the Intellectual
Property marked “(WF),” unless these test waveform files will be reused in the waveform.

• ClockWizard.xco
• FIFO262K.xco (WF)
• PSFx8a035.xco (WF)
• ResponseFifo.xco
• Rx_Streaming_Data_ROM.xco
• StreamingDataFifo.xco
• StreamingFifo.xco
• Tx_Response_Packet_ROM.xco

(6) Build the project. Select STRS_SDR_Wrapper as the top module and then double-click “Generate

Programming File.” If there is a failed timing constraint when building the project, try running the
Xilinx® ISE® SmartXplorer tool.

(a) Go to ToolsSmartXplorerLaunch SmartXplorer.
(b) Select the “User built-in SmartXplorer strategies for Timing Performance.”
(c) Set the Maximum number of runs to 7.
(d) Check the box next to “Automatically copy best result to working project directory when

SmartXplorer is complete.”

Once the bitstream is built, Xilinx® iMPACT can be used to program the FPGA. The ChipScope™ Pro
tool can be used to display direct DAC and ADC samples, if required.

Xilinx® ML605 Field-Programmable Gate Array (FPGA) Board Configuration

This section contains Xilinx® ML605 FPGA board configuration information.

Jumpers and Dip Switch Settings
To use the wrapper and test waveform as is, insert jumpers and set dip switches according to the

listings in Table 3. Some of the jumpers are in their default locations and are not be needed for the iPAS
STRS radio (i.e., Peripheral Component Interconnect Express (PCIe) lane size). If a jumper connector is
not listed, no jumper is needed.

NASA/TM—2017-219476 16

TABLE 3.—JUMPER AND SWITCH CONFIGURATION FOR DELIVERED PLATFORM
Jumper purpose or dip switch IDa Location Jumper connections or

switch position
Description

Ethernet PHYb configuration J66 Jumper pins 1 and 2 To use the GMIIc (1 GB) interface to
the Ethernet PHY. J67 Jumper pins 1 and 2

J68 No jumper
For JTAGd access to the board J17 Jumper pins 1 and 2 Enables JTAG access without FPGAe

Mezzanine Card (FMC) modules
installed.

J18 Jumper pins 1 and 2

System ACEf error LEDg disable
jumper

J69 Jumper pins 1 and 2 Enables the LED, which will flash if
there is an ACE problem.

SFPh module control

J54 Jumper pins 1 and 2 SFP_RT_SEL (full bandwidth)
J65 Jumper pins 1 and 2 SFP_TX_DISABLE (SFP enabled)

PCIei lane size J42 Jumper pins 5 and 6 X8 lane size
System monitor J19 Jumper pins 1 and 2 Use the on-chip reference

J35 Jumper pins 1 and 3 Not connected
Jumper pins 2 and 4 FPGA thermal diode access

Dip switch S1

S1 CFGAddr 0 - Off Selects which CFj images are
downloaded to the FPGA (selects
subfolder cfg 4)

S2 CFGAddr 1 - Off
S3 CFGAddr 2 - On
S4 SysAce Mode - On Enable ACE boot

Dip switch S2

S1 EXT CCLK - On Oscillator enable
S2 CS_SEL - On Boot EPROMk select
S3 M0 - Off FPGA mode (slave SelectMAP)
S4 M1 - On
S5 M2 - On
S6 Flash_A23 - Off Flash address select (lower)

aIdentification.
bPhysical layer.
cGigabit media-independent interface.
dJoint Test Action Group.
eField-programmable gate array.
fArchiver compression file.
gLight-emitting diode.
hSmall form-factor pluggable.
iPeripheral Component Interconnect Express.
jCompactFlash.
kErasable programmable read-only memory.

Joint Test Action Group (JTAG) Programming
During waveform development, the Xilinx® Virtex®-6 FPGA on the Xilinx® ML605 FPGA board can

be programmed using the iMPACT program, the ISE® Design Suite generated .bit file, a USB to mini
USB cable, and the USB–JTAG connector (J22) on the board.

Archiver Compression (ACE) File
Once the final .bit file is completed and fully tested, the CompactFlash card can be programmed with

an ACE file and the FPGA will automatically load the FPGA at power-on.
To create the ACE file, follow these steps:

(1) In ISE® Design Suite, right-click “Configure Target Device” and select “Process Properties.”
(2) Browse to select the correct iMPACT project file.
(3) Double-click “Generate Target PROM/ACE File.”
(4) When iMPACT opens, double-click “System ACE,” select “Novice” and configure the parameters.
(5) Double-click “Generate File.”
(6) The ACE file will be in the directory with the name specified.

NASA/TM—2017-219476 17

To program the CompactFlash card:

(1) Remove the CompactFlash card from the FPGA board and insert in the computer or CF adapter.
(2) Drag or copy the ACE file created above into the cfg4 directory (selected by S1, S2, and S3 on dip

switch S1) of the CompactFlash card. A different CompactFlash directory can be used, but must be
selected on dip switch S1 by the S1, S2, and S3 switches.

(3) Delete or remove (copy and save elsewhere) any other ACE file in the cfg4 directory.

Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL)
Signal Naming Conventions

The following signal and file naming conventions are used in the VHDL in this development. Signal
names throughout this document are shown in italics.

• A single with a _n at the end of the signal name like (Reset_n) is a low true (asserted low) signal.
• All test benches have the same name as the module they test with a _tb at the end

(ex. TxStreaming_tb.vhd).
• Constants are always in all capital letters.
• Most signal names with an O at the end (like DataValidO) are module output signals that were

renamed to be able to look at them using ChipScope™ Pro tool.
• Signals with an R at the end (like StatusBitsR) are registered versions of a signal.

Wrapper Description

STRS_SDR_Wrapper is the top-level module in the FPGA design. STRS requires that the FPGA
wrapper for an STRS radio encompasses all the possible radio FPGA interfaces. The wrapper abstracts
the interfaces to the FPGA from the waveform, so that the waveform developer does not need to
implement these interfaces. This approach also allows the platform developer to protect proprietary
information from a waveform developer. The wrapper can also include any other functionality that a radio
would require, like power-on-resets and clock generation, which would be common to all radios on the
platform.

The STRS_SDR_Wrapper module is the FPGA wrapper and contains the clock generation and reset
creation. This wrapper also has interfaces to onboard resources like switches and LEDs, as well as the
implementation of the interface to the Ethernet physical layer (PHY) for receiving commands and
streaming data from the GPM processor and for transmitting command responses and streaming data to
the processor. The wrapper also contains the interface to the RF front-end board.

The STRS_SDR_Wrapper module utilizes a Xilinx® LogiCORE™ Intellectual Property Clocking
Wizard to generate clocks necessary for the Ethernet Media Access Controller (EMAC). The source input
clock (200 MHz) for the LogiCORE™ Intellectual Property Clocking Wizard is single-ended and is
generated within the MicroBlaze™ processor. The LogiCORE™ Intellectual Property Clocking Wizard
creates the following clocks:

• RefClk—200 MHz clock used by the Ethernet Intellectual Property core.
• GtxClk—125 MHz single-ended clock which is used by the Ethernet interface.

The Locked output from the LogiCORE™ Intellectual Property Clocking Wizard is used as the power-
on-reset for the reset generator.

The waveform clocks originate in the DAC device on the RFM for the Tx side and the ADC device
on the RFM for the Rx side. These DAC and ADC clocks (both approximately 196 MHz) are used in the
wrapper to generate clock enable signals to control clocking within the waveform.

NASA/TM—2017-219476 18

The ClockEnables module is instantiated twice, once for the Tx-side clock enables and once for the
Rx-side clock enables. The ClockEnables module uses generics to set the three output clock-enable
frequencies. The waveform developer can customize the clock enables for their waveform design by
changing the generic values in the ClockEnables module instantiation.

In addition to the generation of the clocks and resets, the wrapper instantiates the EMAC interface
(v6_emac_v1_5_example_design.vhd) and the radio test waveform (STRS_Waveform.vhd).
The wrapper also includes the modules that provide the basic functionality to communicate in both
directions to the Ethernet interface. These modules include EthernetRx and RxPackets for receiving and
parsing Tx-side streaming data packets and command packets, and OutputDataMux for transmitting
Rx-side streaming and command response packets. Each of these modules are discussed in detail in the
PLD Detailed Design section of the “PLD Design Description for the iPAS STRS Radio” document (Ref. 3).

The ErrorFlag process in the wrapper registers and combines the error flags generated from the
wrapper submodules into a word called StatusBits that is used as an input to the waveform module. This
allows the status bits from the wrapper to be sent in response to a status request command, if the
waveform developer chooses to use them. See the Status Bits section for more information.

The wrapper input, output, and bidirectional signals are shown in Tables 4 to 6, with their signal
names, descriptions, and FPGA pin numbers.

TABLE 4.—WRAPPER MODULE INPUTS
Signal name Description FPGAa pin number

CLK_N Differential FPGA system clock (200 MHz)—negative H9
CLK_P Differential FPGA system clock (200 MHz)—positive J9
USER_CLOCK FPGA user clock (66 MHz) U23
GMII_RXD0 Ethernet receive data bit 0 (from PHYb) AN13
GMII_RXD1 Ethernet receive data bit 1 (from PHY) AF14
GMII_RXD2 Ethernet receive data bit 2 (from PHY) AE14
GMII_RXD3 Ethernet receive data bit 3 (from PHY) AN12
GMII_RXD4 Ethernet receive data bit 4 (from PHY) AM12
GMII_RXD5 Ethernet receive data bit 5 (from PHY) AD11
GMII_RXD6 Ethernet receive data bit 6 (from PHY) AC12
GMII_RXD7 Ethernet receive data bit 7 (from PHY) AC13
GMII_RX_DV Ethernet receive data valid (from PHY) AM13
GMII_RX_ER Ethernet receive error (from PHY) AG12
GMII_RX_CLK Ethernet receive clock (from PHY) AP11
RESET Reset signal from push button on FPGA board G26
GPIO_DIP_SW1 Dip switch 1 on FPGA board D22
GPIO_DIP_SW2 Dip switch 2 on FPGA board C22
GPIO_DIP_SW3 Dip switch 3 on FPGA board L21
GPIO_DIP_SW4 Dip switch 4 on FPGA board L20
GPIO_DIP_SW5 Dip switch 5 on FPGA board C18
GPIO_DIP_SW6 Dip switch 6 on FPGA board B18
GPIO_DIP_SW7 Dip switch 7 on FPGA board K22
GPIO_DIP_SW8 Dip switch 8 on FPGA board K21
DacClkInP 196.6 MHz clock from DACc (p) A10
DacClkInN 196.6 MHz clock from DAC (n) B10
UartRx UARTd receive data J24
AdcClkInP 196.6 MHz clock from ADCe; synchronous with ADC data (p) F33
AdcClkInN 196.6 MHz clock from ADC; synchronous with ADC data (n) G33
AdcOrInP Differential overrange indicator, positive (not used) K26
AdcOrInN Differential overrange indicator, negative (not used) K27
AdcDataInP0 ADC data in 0—positive L29
AdcDataInN0 ADC data in 0—negative J30
AdcDataInP1 ADC data in 1—positive C33
AdcDataInN1 ADC data in 1—negative B34

NASA/TM—2017-219476 19

TABLE 4.—Concluded.
Signal name Description FPGAa pin number

AdcDataInP2 ADC data in 2—positive D34
AdcDataInN2 ADC data in 2—negative C34
AdcDataInP3 ADC data in 3—positive J31
AdcDataInN3 ADC data in 3—negative J32
AdcDataInP4 ADC data in 4—positive H34
AdcDataInN4 ADC data in 4—negative H33
AdcDataInP5 ADC data in 5—positive F30
AdcDataInN5 ADC data in 5—negative G30
AdcDataInP6 ADC data in 6—positive E32
AdcDataInN6 ADC data in 6—negative E33
AdcDataInP7 ADC data in 7—positive G32
AdcDataInN7 ADC data in 7—negative H32
AdcDataInP8 ADC data in 8—positive G31
AdcDataInN8 ADC data in 8—negative H30
AdcDataInP9 ADC data in 9—positive K28
AdcDataInN9 ADC data in 9—negative J29
AdcDataInP10 ADC data in 10—positive L25
AdcDataInN10 ADC data in 10—negative L26
AdcDataInP11 ADC data in 11—positive J30
AdcDataInN11 ADC data in 11—negative K29
AdcDataInP12 ADC data in 12—positive K33
AdcDataInN12 ADC data in 12—negative J34
AdcDataInP13 ADC data in 13—positive F31
AdcDataInN13 ADC data in 13—negative E31

aField-programmable gate array.
bPhysical layer.
cDigital-to-analog converter.
dUniversal asynchronous receiver/transmitter.
eAnalog-to-digital converter.

TABLE 5.—WRAPPER MODULE OUTPUTS

Signal name Description FPGAa pin number
GMII_TXD0 Ethernet transmit data bit 0 (to PHYb) AM11
GMII_TXD1 Ethernet transmit data bit 1 (to PHY) AL11
GMII_TXD2 Ethernet transmit data bit 2 (to PHY) AG10
GMII_TXD3 Ethernet transmit data bit 3 (to PHY) AG11
GMII_TXD4 Ethernet transmit data bit 4 (to PHY) AL10
GMII_TXD5 Ethernet transmit data bit 5 (to PHY) AM10
GMII_TXD6 Ethernet transmit data bit 6 (to PHY) AE11
GMII_TXD7 Ethernet transmit data bit 7 (to PHY) AF11
GMII_TX_EN Ethernet transmit enable (to PHY) AJ10
GMII_TX_ER Ethernet transmit error (to PHY) AH10
GMII_TX_CLK Ethernet transmit clock (to PHY) AH12
PHY_RESET Reset signal to the Ethernet PHY chip AH13
GPIO_LED_0 LED 0 on FPGA board AC22
GPIO_LED_1 LED 1 on FPGA board AC24
GPIO_LED_2 LED 2 on FPGA board AE22
GPIO_LED_3 LED 3 on FPGA board AE23
GPIO_LED_4 LED 4 on FPGA board AB23
GPIO_LED_5 LED 5 on FPGA board AG23
GPIO_LED_6 LED 6 on FPGA board AE24
GPIO_LED_7 LED 7 on FPGA board AD24
DacClkOutP 196.6 MHz clock to DACc; synchronous with DAC data (p) A10
DacClkOutN 196.6 MHz clock to DAC; synchronous with DAC data (n) B10
DacFrameOutP Differential frame output (p) R26
DacFrameOutN Differential frame output (n) T26
DacDataOutP0 16-bit DAC output data 0—positive N25

NASA/TM—2017-219476 20

TABLE 5.—Concluded.
Signal name Description FPGAa pin number

DacDataOutN0 16-bit DAC output data 0—negative M25
DacDataOutP1 16-bit DAC output data 1—positive K32
DacDataOutN1 16-bit DAC output data 1—negative K31
DacDataOutP2 16-bit DAC output data 2—positive M26
DacDataOutN2 16-bit DAC output data 2—negative M27
DacDataOutP3 16-bit DAC output data 3—positive N33
DacDataOutN3 16-bit DAC output data 3—negative M33
DacDataOutP4 16-bit DAC output data 4—positive M31
DacDataOutN4 16-bit DAC output data 4—negative L31
DacDataOutP5 16-bit DAC output data 5—positive N34
DacDataOutN5 16-bit DAC output data 5—negative P34
DacDataOutP6 16-bit DAC output data 6—positive N32
DacDataOutN6 16-bit DAC output data 6—negative P32
DacDataOutP7 16-bit DAC output data 7—positive P31
DacDataOutN7 16-bit DAC output data 7—negative P30
DacDataOutP8 16-bit DAC output data 8—positive N27
DacDataOutN8 16-bit DAC output data 8—negative P27
DacDataOutP9 16-bit DAC output data 9—positive R31
DacDataOutN9 16-bit DAC output data 9—negative R32
DacDataOutP10 16-bit DAC output data 10—positive L33
DacDataOutN10 16-bit DAC output data 10—negative M32
DacDataOutP11 16-bit DAC output data 11—positive R28
DacDataOutN11 16-bit DAC output data 11—negative R27
DacDataOutP12 16-bit DAC output data 12—positive M30
DacDataOutN12 16-bit DAC output data 12—negative N30
DacDataOutP13 16-bit DAC output data 13—positive P29
DacDataOutN13 16-bit DAC output data 13—negative R29
DacDataOutP14 16-bit DAC output data 14—positive C32
DacDataOutN14 16-bit DAC output data 14—negative B32
DacDataOutP15 16-bit DAC output data 15—positive A33
DacDataOutN15 16-bit DAC output data 15—negative B33
RefClkP 30 MHz reference clock for RFd board (positive) N28
RefClkN 30 MHz reference clock for RF board (negative) N29
UartTx UARTe transmit data J25

aField-programmable gate array.
bPhysical layer.
cDigital-to-analog converter.
dRadiofrequency.
eUniversal asynchronous receiver/transmitter.

TABLE 6.—WRAPPER MODULE IN/OUTS
Signal name Description FPGAa pin number
IicSda IICb bus serial data line AG13
IicScl IIC bus serial clock line AF13

aField-programmable gate array.
bInter-Integrated Circuit.

NASA/TM—2017-219476 21

Figure 12.—Ethernet LocalLink interface timing.

Wrapper Interfaces

This section contains information about the wrapper interfaces.

Tri-Mode Ethernet Physical Layer (PHY)
The Xilinx® ML605 FPGA board utilizes a Marvell Alaska Gigabit Ethernet PHY transceiver

(88E1111) for Ethernet communication to the eBOX620–110–FL embedded PC. The FPGA
communicates with the PHY device through the v6_emac_v1_5_example_design generated by the
Xilinx® CORE Generator™ System for the v6_emac_v1_5 Intellectual Property. The Intellectual Property
core is setup to use the gigabit media-independent interface (GMII), 1 Gbps interface to the PHY. This
interface is used by the wrapper to receive command packets and Tx-side streaming data packets from the
eBOX620–110–FL embedded PC, and to send command response packets and Rx-side streaming packets
to the eBOX620–110–FL embedded PC.

The example design instantiates the EMAC wrapper and provides a Xilinx® LocalLink interface,
which places Tx and Rx client first in first outs (FIFOs) between the EMAC and the example design
wrapper interface to the user. A small address-swap module is used to loopback the LocalLink received
data to the LocalLink transmit data. To use the LocalLink interface in the STRS_SDR_Wrapper, the
address-swap module was removed from the example design and the LocalLink signals were passed up to
the v6_emac_v1_5_example_design top-level module as inputs and outputs to the wrapper. The
v6_emac_v1_5_example_design module is clocked by the 200 MHz RefClk and the 125 MHz Gtx_Clk.

The LocalLink interface timing is shown in Figure 12, and is essentially the same for both the Tx and
Rx sides. The primary LocalLink interface signals include 8-bit data (data), start-of-frame (sof_n), end-
of-frame (eof_n), and data source ready (src_rdy_n).

Radiofrequency (RF) Front-End Board
The RF front-end board (AD–FMCOMMS1–EBZ) must be configured using the MicroBlaze™

processor, but the FPGA wrapper contains two modules, DAC_FDI and ADC_FDI, that provide the
interface to the DAC and ADC, respectively. The waveform developer can connect the I and Q DAC
input signals to the appropriate inputs of the DAC_FDI module and the I and Q ADC output signals to the
appropriate outputs of the ADC_FDI module using the VHDL code within the STRS_SDR_Wrapper
module.

General Purpose Board Resources—Clocks, Light-Emitting Diodes (LEDs), and Switches
The Xilinx® ML605 FPGA board has a number of onboard resources that are available to the waveform

developer. Some of these resources include LEDs, dip switches, push button switches, and clocks.
The wrapper utilizes the 200 MHz differential clock for the primary clock of the design and a push

button switch for the user reset. The test waveform uses the dip switches and LEDs for a test command
(read dip switches and set LEDs) and for displaying some waveform status. Therefore, the wrapper must
pass the LED and dip switch values to and from the board resources for the test waveform. New
waveform developers who do not use the dip switches or LEDs may remove them from the UCF file and
from the inputs and outputs of the STRS_SDR_Wrapper module.

NASA/TM—2017-219476 22

Please refer to the ML605 Hardware User Guide (Ref. 4) for more information about the Xilinx®
ML605 FPGA onboard resources.

Test Waveform Description

The iPAS STRS radio implementation includes a test waveform (STRS_Waveform.vhd and its
submodules) to test and demonstrate the STRS FPGA wrapper. The test waveform does not fully
implement all the signal processing functionality for a radio, but it exercises and demonstrates each
interface in the FPGA wrapper.

The waveform developer is expected to remove the test waveform from the ISE® project and replace
it with a custom waveform. However, portions of the test waveform that are useful to the waveform
developer may be reused. Details of the test waveform design are in the “Programmable Logic Device
(PLD) Design Description for the Integrated Power, Avionics, and Software (iPAS) Space
Telecommunications Radio System (STRS) Radio” document (Ref. 3), starting with the
STRS_Waveform.vhd section in the Programmable Logic Device (PLD) Detailed Design section.

The inputs to the test waveform are listed in Table 7 and the outputs are listed in Table 8. The
waveform developer may choose to eliminate some of these input and output signals that are unnecessary
for the design.

There are some key signals in the test waveform that the developer will want to retain because they
will be important for all waveforms on the RIACS platform. The clock input signals (Clk125,
TxWFClock, and RxWFClock) are necessary for all waveforms, but the actual clock frequencies (and the
signal names) can be changed by the developer. The Reset signal should be used by all waveforms. Other
important inputs that all waveforms will need are RxCmdDataIn, RxCmdDataSrcRdy, RespSending_n,
StreamDataIn, and StreamDataValid. RxCmdDataIn is the command packet payload data (no headers) in
bytes and the RxCmdDataSrcRdy signal is high while the RxCmdDataIn data is valid. The RespSending_n
signal is low while a command response is being sent to the Ethernet port. StreamDataIn is the Tx-side
streaming data in bytes without any headers and StreamDataValid is high while StreamDataIn is valid.

TABLE 7.—TEST WAVEFORM MODULE INPUTS
Signal name Description

Clk125 125 MHz clock
TxWFClock Tx-sidea waveform clock (approx. 196.6 MHz, DACb clock)
TxWFClockEn1 Tx-side waveform clock enable (byte rate)
TxWFClockEn2 Tx-side waveform clock enable (word rate)
RxWFClock Rx-sidec waveform clock (approx. 196.6 MHz, DAC clock)
RxWFClockEn1 Rx-side waveform clock enable (byte rate)
RxWFClockEn2 Rx-side waveform clock enable (word rate)
SymbClockEn Symbol rate clock enable
Reset Reset signal from wrapper (power-on or reset and push-button)
DIP_SW 8 bits, onboard dip switches
RxCmdDataIn 8 bits, received command data
RxCmdDataSrcRdy Received command data valid signal
StreamDataIn 8 bits, received streaming data
StreamDataValid Received streaming data valid signal
EmacRxError EMACd PHYe receive error
StatusBitsIn 36 bits, status bits coming from the wrapper
RespSending_n Low while a command response is being sent
AdcDataInI ADCf Ig channel data
AdcDataInQ ADC Qh channel data

aTransmit-side.
bDigital-to-analog.
cReceive-side.
dEthernet Media Access Controller.
ePhysical layer.
fAnalog-to-digital converter.
gIn-phase.
hQuadrature.

NASA/TM—2017-219476 23

TABLE 8.—TEST WAVEFORM MODULE OUTPUTS
Signal name Description

DacDataOutI DACa Ib channel data
DacDataOutQ DAC Qc channel data
WFResetOut Waveform reset signal
FlagResetOut Status bits reset signal
SoftResetOut Commanded reset
CmdResponse 120-bit contents of the response to a command
TxSendReady Indicates that a command response can be sent
StreamEnRx Stream enable—stays high until streaming is stopped
RxParallelData 16 bits, data to be streamed
LED 8 bits, outputs to board LEDsd

aDigital-to-analog converter.
bIn-phase.
cQuadrature.
dLight-emitting diodes.

MAC header MAC destination address (6 bytes)

MAC source address (6 bytes) Ethernet type
(2 bytes)

IP datagram

Version
(4 bits)

IHL
(4 bits)

Type of
service
(8 bits)

Length (IP + UDP + payload, 2 bytes)

Identification (2 bytes) Flags (3 bits) Fragment offset
(13 bits)

Time to live
(1 byte)

Protocol
(1 byte)

IP header checksum (2 bytes)

Source IP address (4 bytes) Destination IP address (4 bytes)
UDP header Source port (2 bytes) Destination port (2 bytes)

Length (UDP + payload, 2 bytes) UDP checksum (2 bytes)
Payload Various lengths

Figure 13.—Ethernet packet definition. IHL, Internet header length; IP, Internet Protocol; MAC, media access control;
UDP, User Datagram Protocol.

Key test waveform output signals that all developers will most likely need are CmdResponse,

TxSendReady, StreamEnRx, and RxParallelData. The CmdResponse signal in the test waveform is a
120-bit word that contains the payload portion of a command response packet. All developers will need a
command response packet, but the size may vary and is selectable by the developer using a constant in the
STRS_Radio_Pkg.vhd. The TxSendReady signal is high when a command response is available to
transmit. RxParallelData is 16-bit data sample from the ADC output that can be used for the Rx-side
streaming packets. StreamEnRx is high while streaming is enabled.

Ethernet Packet Structure

Figure 13 shows the definition of the Ethernet header (media access control (MAC) header, Internet
Protocol (IP) datagram header, and User Datagram Protocol (UDP) header).

Packet Headers From Field-Programmable Gate Array (FPGA) to Processor

When packets are sent from the FPGA to the GPM processor, the packet headers must be inserted
when the packets are formed. In the test waveform, the headers are created at design time and stored in
read-only memory (ROM) to be read out and inserted in the packets. The UDP checksum field is optional
and set to zero for all packets created by the FPGA. The IP datagram header checksum must be
calculated, however. This calculation includes only the bytes in the IP datagram (i.e., not the MAC header
or the UDP datagram).

NASA/TM—2017-219476 24

Here are the steps for calculating the IP datagram header checksum field:

(1) Add up the values of the 16-bit words in the IP datagram, excluding the checksum field.
(2) Any binary digits above bit 15 (the carry bits) should be added to bits 0 to 15 of the sum above.
(3) Invert the result to get the checksum.

Example IP Header:

4500 002E 0000 4000 4011 XXXX C0A8 0002 COA8 0001 (where XXXX is the checksum)

The sum of each word is 0x24692

0x24692  10 | 0100 0110 1001 0010
Add the carry bits + 10

Sum  0100 0110 1001 0100
Invert  1011 1001 0110 1011 = 0xB96B = checksum

STRS_Radio_Pkg.vhd

STRS_Radio_Pkg is a VHDL package used to share objects among many of the design modules in
this implementation. This package contains a number of reusable constants and defines the ChipScope™
Pro Integrated CONtroller (ICON) and Integrated Logic Analyzer (ILA) components so they can be used
in multiple modules (Table 9). The package also contains the look-up table used in PrbsRx23.vhd to
add-up the number of errors in a received byte.

Waveform developers can modify the constants in this package according to the needs of their unique
waveform.

Status Bits

Status bits from numerous locations in the test waveform and wrapper are collected together into one
signal called StatusBits. These status bits are used to communicate potential issues to the processor, so
that the user can be aware of these issues while the radio is operating.

The status bits from the wrapper are transferred to the test waveform though a 36-bit StatusBits word.
The definition of the bits in StatusBits is defined in Table 10. Use of these status bits is at the discretion of
the waveform developer.

Generics

The modules within the STRS_SDR_Wrapper module utilize generics to make the wrapper more
reusable for new waveform developers. They will allow a developer to customize a waveform with
specific command packet sizes, Ethernet port numbers, command response packet sizes, etc. Change the
generics values in the STRS_Radio_Pkg.vhd file by changing the value assigned to the appropriate
constant. The generics are described in Table 11.

Clock Generation

The LogiCORE™ Intellectual Property Clocking Wizard component in the top-level VHDL module,
STRS_SDR_Wrapper, is used to generate the clocks for the wrapper. The
v6_emac_v1_5_example_design component in the wrapper requires a 200 MHz single-ended input clock
(RefClk) and a 125 MHz single-ended input clock (GtxClk). The waveform developer should retain the
LogiCORE™ Intellectual Property Clocking Wizard “as is” in the wrapper.

The waveform clocks are sourced at the RFM DAC for the Tx-side waveform and at the RFM ADC
for the Rx-side waveform. The wrapper contains two clock enable generators, one for the Tx side and one
for the Rx side, to generate the clock enables for the waveform. Each clock enable module creates up to
three enables. Three generics are available to set the frequency of the clock enables.

NASA/TM—2017-219476 25

TABLE 9.—DEFINITION OF CONSTANTS IN STRS_Radio_Pkg
Constant name Value Description Modules

PACKET_SIZE 60 Length of a command response packet EthernetRx,
TxResponsePackets,
RespFifoInputSM, and
RespFifoOutputSM

DATA_PACKET_SIZE 557 Length of a streaming data packet EthernetRx,
CreatePacketSM,
RxStreamingData, and as
BYTECNT in
StrDataFifoOutputSM

HEADER_SIZE 42 Length of a transmit header RespFifoInputSM and
CreatePacketSM

SOURCE_PORT_BYTE 33 Location of source port number in packet header EthernetRx
REMAINING_HEADER_SIZE 26 Length of remainder of header in Tx-sidea

packets after enable goes high
RxPackets

COMMAND_RESPONSE_SIZE 120 Length of a command response packet payload OutputDataMux and
TxResponsePackets

STREAM_PKT_BYTE1 0x8C Tx-side streaming UDPb packet source port
address–MSBc

EthernetRx

STREAM_PKT_BYTE2 0xA0 Tx-side streaming UDP packet source port
address–LSBd

EthernetRx

CMD_PKT_BYTE1 0x8C Command UDP packet source port address–MSB EthernetRx
CMD_PKT_BYTE2 0x35 Command UDP packet source port address–LSB EthernetRx
PACKET_BYTE_CNT 570 Number of bytes in an Rx-sidee streaming data

packet
StrDataFifoOutputSM

WAIT_CNT 500 Number of clock cycles between Rx-side
streaming data packets

StrDataFifoOutputSM

PACKET_NUM_CNT 4 Number of data packets sent in a group of packets StrDataFifoOutputSM
aTransmit-side.
bUser Datagram Protocol.
cMost significant byte.
dLeast significant byte.
eReceive-side.

NASA/TM—2017-219476 26

TABLE 10.—DEFINITION OF THE StatusBits SIGNAL IN STRS_SDR_WRAPPER
Bit Definition Description
0 '0'

 Reserved for waveform status bits

1 '0'

2 '0'

3 '0'

4 '0'

5 '0'

6 '0'

7 '0'

8 '0'

9 '0'

10 '0'

11 EthernetRx SM StuckFlag Indicates EthernetRx SMa is stuck

12 ResponsePktFifo_Full ResponsePktFifo overflow and underflow
indicators

13 StreamingFifo_Full StreamingFifo overflow and underflow
indicators 14 StreamingFifo_Empty

15 Streaming_Data_Fifo_Full Streaming_Data_Fifo overflow and underflow
indicators 16 Streaming_Data_Fifo_Empty

17 '0' StreamingDataFifo overflow and underflow
indicators 18 '0'

19 SMFailure_ResetGen Flags indicating particular SM (indicated in the
name of flag) erroneously entered “others” state 20 SMFailure_EthernetRx

21 SMFailure_RxCommandPackets

22 SMFailure_RxStreamingPackets

23 SMFailure_RespFifoOutputSM

24 SMFailure_StreamFifoInputSM

25 SMFailure_CreatePacketSM

26 SMFailure_StreamFifoOutputSM

27 SMFailure_StrDataFifoOutputSM

28 SMFailure_OutputDataMux

29 '0' Reserved for waveform status bits

30 '0'

31 '0'

32 '0'

33 '0'

34 '0'

35 SMFailure_RespFifoInputSM Flag indicating RespFifoInputSM erroneously
entered “others” state

aState machine.

NASA/TM—2017-219476 27

TABLE 11.—WRAPPER GENERICS
Module name Generic Description Value (in STRS_Radio_Pkg.vhd)

EthernetRx StreamPktByte1 Linux PCa port
address for
streaming data
packets–MSBb

STREAM_PKT_BYTE1
(0x8c)

StreamPktByte2 Linux PC port
address for
streaming data
packets–LSBc

STREAM_PKT_BYTE2 (0xA0)

CmdPktByte1 Linux PC port
address for
commands and
response
packets–MSB

CMD_PKT_BYTE1
(0x8C)

CmdPktByte2 Linux PC port
address for
commands and
response
packets–LSB

CMD_PKT_BYTE2
(0x35)

RxPackets
(Inst_RxCommandPackets)

HeaderLen Length of the
header in packets
received from
GPPd

RX_REMAINING_HEADER_SIZE (26)

RxPackets1 (Inst_RxStreamPackets) HeaderLen Length of header
in packets
received from
GPP

RX_REMAINING_HEADER_SIZE + 3
(26 + 3 = 29)

OutputDataMux CmdResponseSize Size of payload
portion of a
command
response packet

COMMAND_RESPONSE_SIZE (120)

TxResponsePackets CmdResponseSize Size of payload
portion of a
command
response packet

COMMAND_RESPONSE_SIZE (120)

RespFifoOutputSM

ByteCnt Total number of
bytes in response
Ethernet packet

PACKET_SIZE (60)

StrDataFifoOutputSM

ByteCnt Total length of a
streaming data
packet

DATA_PACKET_SIZE (557)

aPersonal computer.
bMost significant byte.
cLeast significant byte.
dGeneral purpose processor.

Commanding

All STRS radios need to use some sort of commanding approach to control the waveform and to
query status. The wrapper for the RIACS platform was designed to use UDP packets through the Ethernet
interface for commanding purposes, and therefore waveform developers will need to use UDP packets for
transmitting commands to the FPGA. See Figure 13 for the definition of the Ethernet headers. The
payload portion of the packet can be defined by the waveform developer, including length and content.
Figure 14 shows the command packet structure used for the wrapper test waveform.

NASA/TM—2017-219476 28

Waveform developers may also want to have command response packets, similar to those created in
the test waveform. Command response packets inform the processor if a command was rejected or may
return data in response to a query command. Figure 15 shows the command response packet structure
used for the wrapper test waveform.

The packet structures in Figures 14 and 15 represent the test waveform implementation and are
included as an example only. Waveform developers can define their own packet structure.

Streaming Data

Like commanding, the wrapper for the RIACS platform was designed to use UDP packets to stream
communication data to and from the FPGA. The waveform developer can customize the size of the
payload portion of streaming data packets and the length and content of the payload header. See Figure 13
for the definition of the Ethernet headers.

The streaming data packet structures in Figures 16 and 17 represent the test waveform
implementation and are included as an example only. Waveform developers can define their own
streaming data packet structure, if desired.

Figure 14.—Test waveform command packet structure. ID, identification.

Figure 15.—Test waveform command response packet structure. ID, identification.

Figure 16.—Test waveform receive-side streaming data packet structure. ID, identification.

Figure 17.—Test waveform transmit-side streaming data packet structure. ID, identification.

NASA/TM—2017-219476 29

TABLE 12.—WRAPPER TEST BENCHES
Module (.vhd) Test bench name

(.vhd)
Test bench description Wave

configuration file
(.wcfg)

ResetGen ResetGen_tb Tests module by starting with Enable signal low and then
going high; after a delay, two time-separated SwitchReset
signals are issued, followed by another delay and a SoftReset
signal

ResetGen

EthernetRx EthernetRx_tb Simulates incoming packets by reading data from a text file
called RxSourceData.txt

EthernetRx

RxPackets RxPackets_tb To test for command packets (Inst_RxCommandPackets), use
input file RxSourceData.txt; to test for command
packets (Inst_RxStreamPackets), use input file
StreamingData.txt; payload portion of each packet in
text files always starts with header byte 0xAA

RxPackets

OutputDataMux OutputDataMux_tb Instantiates a SineWaveGen component to simulate
streaming data and creates multiple command responses to
test how streaming data packets and command responses can
be interleaved; OutputDataMux sub-modules can also be
tested with this test bench

OutputDataMux

ClockEnables ClockEnables_tb Sets EndCount values for three clock enable generators in the
ClockEnable module and allows user to see generated
ClockEn signals

ClockEnables

aPhase-locked loop.

User Constraints File (UCF)

The UCF file, STRS_Radio.ucf, contains the timing constraints for the
v6_emac_v1_5_example_design, the wrapper, test waveform, and the signal connections to the FPGA
pins. Constraints are separated into those required by the wrapper and those required by the test
waveform. The developer can remove and modify the test waveform constraints, as necessary. See the
comments in the .ucf file.

Design Simulation

Test benches are included with the wrapper for simulation of most of the modules. The test benches
and their descriptions are shown in Table 12.

Conclusions
The Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System

(STRS) radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System
(RIACS) platform, currently being used for radio development at NASA Johnson Space Center. The
platform consists of a Xilinx® Virtex®-6 ML605 Evaluation Kit, an Analog Devices AD–FMCOMMS1–
EBZ radiofrequency (RF) front-end board, and an Axiomtek™ eBOX620–110–FL embedded personal
computer (PC) running the Ubuntu® 12.04 LTS operating system. The result of this development is a
low-cost–STRS-compliant platform that can be used for waveform development for multiple radio
applications. This document provides developers with information on how to develop a new waveform
using the RIACS platform. Details about the STRS reference implementation and how it interacts with
other software components is presented, along with information on how to use the software waveform
templates to develop new radio waveforms. The document guides a field-programmable gate array
(FPGA) waveform developer through the process to start a new Very High Speed Integrated Circuits
(VHSICs) Hardware Description Language (VHDL) project and create a custom waveform in place of the
provided test waveform. Details about the FPGA platform wrapper are provided to help the developer
understand how to interface to the platform and the FPGA wrapper.

NASA/TM—2017-219476 30

Acronyms and Abbreviations
The following abbreviations and acronyms are used within this document.

ACE archiver compression file
ADC analog-to-digital converter
API application programming interface
BER bit error rate
BERT bit error rate tester
BPSK binary phase-shift keying
CF CompactFlash
DAC digital-to-analog converter
EDK Embedded Development Kit
ELF Executable and Linkable Format
EMAC Ethernet Media Access Controller
EPROM erasable programmable read-only memory
FIFO first in first out
FMC FPGA Mezzanine Card
FPGA field-programmable gate array
GMII gigabit media-independent interface
GPM general purpose module
GPP general purpose processor
GUI graphical user interface
HAL hardware abstraction layer
HDL hardware description language
HID Hardware Interface Description
HW hardware
I in-phase
ICON Integrated Controller
ID identification
IDE integrated development environment
IHL Internet header length
IIC Inter-Integrated Circuit
ILA Integrated Logic Analyzer
IP Internet Protocol
iPAS Integrated Power, Avionics, and Software
ISE Integrated Synthesis Environment
ISim ISE Simulator
JTAG Joint Test Action Group
LPC Low Pin Count
LED light-emitting diode
LSB least significant bit/byte
MAC media access control
MSB most significant bit/byte
MUX multiplexer
OE operating environment
PC personal computer
PCIe Peripheral Component Interconnect Express
PHY physical layer
PLD programmable logic device
POSIX Portable Operating System Interface

NASA/TM—2017-219476 31

PRBS pseudorandom bit sequence
Q quadrature
RIACS Reconfigurable, Intelligently-Adaptive Communication System
RF radiofrequency
RFM radiofrequency module
ROM read-only memory
RTOS real-time operating system
Rx receive
SDK Software Development Kit
SDR software defined radio
SFP small form-factor pluggable
SM state machine
SPI Serial Peripheral Interface
SPM signal processing module
STRS Space Telecommunications Radio System
TM Technical Memorandum
Tx transmit
UART universal asynchronous receiver/transmitter
UCF User Constraints File
UDP User Datagram Protocol
UML Unified Modeling Language
USB Universal Serial Bus
VGA Video Graphics Array
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
WF waveform
WFiPAS iPAS waveform

NASA/TM—2017-219476 32

References
1. Roche, Rigoberto: iPAS STRS Radio User’s Guide. NASA/TM—2017-219496, to be published, 2017.
2. Roche, Rigoberto; and Shalkhauser, Mary Jo W.: Integrated Power, Avionics, and Software (iPAS)

Space Telecommunications Radio Standard (STRS) Radio Hardware Interface Description (HID).
NASA/TM—2017-219432, to be published, 2017.

3. Shalkhauser, Mary Jo W.: Programmable Logic Device (PLD) Design Description for the Integrated
Power, Avionics, and Software (iPAS) Space Telecommunications Radio Standard (STRS) Radio.
NASA/TM—2017-219429, to be published, 2017.

4. ML605 Hardware User Guide. Xilinx UG534, vol. 1.8, 2012.
https://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf Accessed March 31, 2017.

	E-19348TM_Proofreading Edits Incorporated.pdf
	Summary
	Introduction
	Design Overview
	Space Telecommunications Radio System (STRS) Software
	Field-Programmable Gate Array (FPGA)
	Top-Level Design Description
	Concept of Operation

	Space Telecommunications Radio System (STRS)Software Design Description
	Software Identification
	Development Tools
	Detailed Architecture Design and Block Diagrams

	Field-Programmable Gate Array (FPGA) Design Description
	Hardware Identification
	Development Tools
	Detailed Architecture Design and Block Diagrams

	Radiofrequency Module (RFM) Design Description
	Hardware Identification
	Using the Radiofrequency (RF) Board

	Waveform Development Process
	Overview
	Space Telecommunications Radio System (STRS) Application Development
	Field-Programmable Gate Array (FPGA) Waveform Development
	Integrated Synthesis Environment (ISE®) Project
	Design Flow
	Xilinx® ML605 Field-Programmable Gate Array (FPGA) Board Configuration
	Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL)Signal Naming Conventions
	Wrapper Description
	Wrapper Interfaces
	Test Waveform Description
	Ethernet Packet Structure
	Packet Headers From Field-Programmable Gate Array (FPGA) to Processor
	STRS_Radio_Pkg.vhd
	Status Bits
	Generics
	Clock Generation
	Commanding
	Streaming Data
	User Constraints File (UCF)
	Design Simulation

	Conclusions
	Acronyms and Abbreviations
	References

