
ENHANCING APPLICATION PERFORMANCE USING MINI-APPS:
COMPARISON OF HYBRID PARALLEL PROGRAMMING PARADIGMS

Gary Lawson
Michael Poteat

Masha Sosonkina

Department of Modeling,
Simulation and Visualization Engineering

Old Dominion University
Norfolk, VA, USA

Robert Baurle∗

Dana Hammond+

Hypersonic Air Breathing Propulsion Branch∗

Computational Aero-Sciences Branch+

NASA Langley Research Center
Poquoson, VA, USA

ABSTRACT

In many fields, real-world applications for High Performance Computing have already been developed. For
these applications to stay up-to-date, new parallel strategies must be explored to yield the best performance;
however, restructuring or modifying a real-world application may be daunting depending on the size of the
code. In this case, a mini-app may be employed to quickly explore such options without modifying the entire
code. In this work, several mini-apps have been created to enhance a real-world application performance,
namely the VULCAN code for complex flow analysis developed at the NASA Langley Research Center.
These mini-apps explore hybrid parallel programming paradigms with Message Passing Interface (MPI)
for distributed memory access and either Shared MPI (SMPI) or OpenMP for shared memory accesses.
Performance testing shows that MPI+SMPI yields the best execution performance, while requiring the largest
number of code changes. A maximum speedup of 23× was measured for MPI+SMPI, but only 10× was
measured for MPI+OpenMP.

Keywords: Mini-apps, Performance, VULCAN, Shared Memory, MPI, OpenMP

1 INTRODUCTION

In many fields, real-world applications have already been developed. For established applications to stay
up-to-date, new parallel strategies must be explored to determine which may yield the best performance,
especially with advances in computing hardware. However, restructuring or modifying a real-world applica-
tion incurs increased cost depending on the size of the code and changes to be made. A mini-app may be
created to quickly explore such options without modifying the entire code. Mini-apps reduce the overhead of
applying new strategies, thus various strategies may be implemented and compared. This work presents the
authors experiences when following this strategy for a real-world application developed by NASA.

VULCAN (Viscous Upwind Algorithm for Complex Flow Analysis) is a turbulent, nonequilibrium, finite-
rate chemical kinetics, Navier-Stokes flow solver for structured, cell-centered, multiblock grids that is
maintained and distributed by the Hypersonic Air Breathing Propulsion Branch of the NASA Langley
Research Center (NASA 2016). The mini-app developed in this work uses the Householder Reflector kernel
for solving systems of linear equations. This kernel is used often by different workloads, and is a good
candidate to decide what strategy type to apply to VULCAN. VULCAN is built on a single-layer of MPI and

Author emails: { glaws003, mpote001, msosonki } @ odu.edu and {robert.a.baurle, dana.p.hammond } @ nasa.gov

1



the code has been optimized to obtain perfect vectorization, therefore two-levels of parallelism are currently
used. This work investigates two flavors of shared-memory parallelism, OpenMP and Shared MPI, which will
provide the third-level of parallelism for the application. A third-level of parallelism increases performance,
which decreases the time-to-solution.

MPI has extended the standard to MPI version 3.0, which includes the Shared Memory (SHM) model (Mikhail
B. (Intel) 2015, Message Passing Interface Forum 2012), known in this work as Shared MPI (SMPI). This
extension allows MPI to create memory windows that are shared between MPI tasks on the same physical
node. In this way, MPI tasks are equivalent to threads, except Shared MPI is more difficult for a programmer
to implement. OpenMP is the most common shared-memory library used to date because of its ease-of-
use (OpenMP 2016). In most cases, only a few OpenMP pragmas are required to parallelize a loop; however,
OpenMP is subject to increased overhead, which may decrease performance if not properly tuned.

The major contributions of this work are as follows:

◦ Created mini-apps to solve AX = B using the Householder reflector kernel from NASA VULCAN
real-world code

◦ Applied MPI+OpenMP scheme to create the OpenMP mini-app
◦ Applied MPI+SMPI scheme to create the Shared MPI mini-app
◦ Validated numerical output of each mini-app
◦ Compared execution performance of all mini-apps

1.1 Related Work

As early as the year 2000, the authors in (Cappello and Etiemble 2000) found that latency sensitive codes
seem to benefit from pure MPI implementations whereas bandwidth sensitive codes benefit from hybrid
MPI+OpenMP. Also, the authors found that faster processors will benefit hybrid MPI+OpenMP codes if data
movement is not an overwhelming bottleneck (Cappello and Etiemble 2000).

Since this time, hybrid MPI+OpenMP implementations have improved, but not without difficulties. In (Drosi-
nos and Koziris 2004, Chorley and Walker 2010), it was found that OpenMP incurs many performance
reductions, including: overhead (fork/join, atomics, etc), false sharing, imbalanced message passing, and
a sensitivity to processor mapping. However, OpenMP overhead may be hidden when using more threads.
In (Rabenseifner, Hager, and Jost 2009), the authors found that simply using OpenMP could incur per-
formance penalties because the compiler avoids optimizing OpenMP loops – verified up to version 10.1.
Although compilers have advanced considerably since this time, application users that still compile using
older versions may be at risk if using OpenMP. In (Drosinos and Koziris 2004, Chorley and Walker 2010)
the authors found that the hybrid MPI+OpenMP approach outperforms the pure MPI approach because the
hybrid strategy diversifies the path to parallel execution.

More recently, MPI extended its standard to include the SHM model (Mikhail B. (Intel) 2015). The
authors in (Hoefler, Dinan, Thakur, Barrett, Balaji, Gropp, and Underwood 2015) present MPI RMA theory
and examples, which are the basis of the SHM model. In (Gerstenberger, Besta, and Hoefler 2013), the
authors conduct a thorough performance evaluation of MPI RMA, including an investigation of different
synchronization techniques for memory windows. In (Hoefler, Dinan, Buntinas, Balaji, Barrett, Brightwell,
Gropp, Kale, and Thakur 2013), the authors investigate the viability of MPI+SMPI execution, as well
as compare it to MPI+OpenMP execution. It was found that an underlying limitation of OpenMP is the
shared-by-default model for memory, which does not couple well with MPI since the memory model is
private-by-default. For this reason, MPI+SMPI codes are expected to perform better, since shared memory is
explicit and the memory model for the entire code is private-by-default.

2



Most recently, a new MPI communication model has been introduced in (Gropp, Olson, and Samfass 2016),
which better captures multinode communication performance, and offers an open-source benchmarking tool
to capture the model parameters for a given system. Independent of the shared memory layer, MPI is the de
facto standard in data movement between nodes and such a model can help any MPI program. The remainder
of this paper is organized into the following sections: 2 introduces the Householder mini-apps, 3 presents the
performance testing results for the mini-apps considered, and 4 concludes this paper.

2 HOUSEHOLDER MINI-APP

The mini-apps use the householder computation kernel from VULCAN, which is used in solving systems
of linear equations. The householder routine is an algorithm that is used to transform a square matrix
into triangular form, without increasing the magnitude of each element significantly (Hansen 1992). The
Householder routine is numerically stable, in that it does not lose a significant amount of accuracy due to
very small or very large intermediate values used in the computation.

The routine works through an iterative process of utilizing Householder transformations to annihilate elements
from the column-vectors of the input matrix. The Householder reflector H is applied to a system as:

(HA)x = Hb, where H = (I −2vvT )ai. (1)

The Householder operates on ai, which is a column of A, and v, which is a unit-vector perpendicular to the
plane by which the transform is applied. A more detailed discussion of the Householder routine can be found
in (Hansen 1992). In this work, the problem to be solved is AX = B, where A is a 3-dimensional matrix of
size m×n×n, and X and B are 2-dimensional matrices of size m×n. Each system, represented by m, is
independent of all other systems; therefore, this algorithm is embarrassingly parallel.

2.1 Mini-App Design

Mini-apps are designed to perform specific functions. In this work, the important features are as follows:

◦ Accept generic input,
◦ Validate the numerical result of the optimized routine,
◦ Measure performance of the original and optimized routines,
◦ Tune optimizations.

The generic input is read in from a file, where the file must contain at least one matrix A and resulting vector b.
Should only one matrix and vector be supplied, the input will be duplicated for all instances of m. Validation
of the optimized routine is performed by taking the difference of the output from the original and optimized
routines. The mini-app will first compute the solution of the input using the original routine, and then the
optimized routine. This way the output may be compared directly, and relative performance may also be
measured using execution time. Should the optimized routine feature one or more parameters that may be
varied, they are to be investigated such that the optimization may be tuned to the hardware. In this work,
there is always at least one tunable parameter.

One feature that should have been factored into the mini-app design was modularizing the different versions
of the Householder routine. In this work, two mini-apps were designed because each implements a different
version of the parallel Householder routine; however, it would have been better to design a single mini-app
that uses modules to include other versions of the parallel Householder kernel. With this functionality, it
would be less cumbersome to work on each version of the kernel.

3



2.2 Parallel Householder

To parallelize the Householder routine, m is decomposed into separate, but equal chunks that are then solved
by each thread – shared MPI tasks are equivalent to threads in this work for brevity. However, the original
routine varies over m inside the inner-most computational loop (an optimization that benefits vectorization
and caching), but the parallel loop must be the outer-most loop for best performance. Therefore, loop blocking
has been invoked for the parallel sections of the code. Loop blocking is a technique commonly used to reduce
the memory footprint of a computation such that it fits inside the cache for a given hardware. Therefore, the
parallel Householder routine has at least one tunable parameter, block size.

In this work, two flavors of the shared memory model are investigated: OpenMP and SMPI. The difference
between OpenMP and SMPI lies in how memory is managed. OpenMP uses a public-memory model where
all data is available to all threads by default. Public-memory makes it easy to add parallel statements, since
the threads will all share this data, but threads are then susceptible to false-sharing, where variables that
should otherwise be private are inadvertently shared. Shared MPI uses a private-memory model where data
must be explicitly shared between threads, and all data is private by default. Private-memory makes any
parallel implementation more complicated, because threads must be instructed to access specific memory for
computation. Further, OpenMP creates and destroys threads over the course of execution which is handled
internally and is costly to performance. SMPI threads are created upon execution start and persist throughout.
This makes managing SMPI threads more difficult, since each parallel phase must be explicitly managed by
the programmer. However, the extra work by the programmer may pay off in terms of performance, since
less overhead is incurred by SMPI.

3 PERFORMANCE EVALUATION

This section presents the procedure and results of performance testing for the MPI+OpenMP and MPI+Shared
MPI Householder Reflector kernel optimizations. For performance testing, it was of interest to vary the
number of nodes used for the calculation because many nodes are often used when executing VULCAN with
real-world simulations. Up to four nodes have been investigated in this work on a multinode HPC cluster.
The number of MPI tasks and OpenMP threads are varied, as well as block size for loop-blocking in the
parallel section.

For each mini-app, the optimized version of the Householder routine was validated against the original
version by calculating the numerical difference in output. The validation found OpenMP to provide exact
numerical solutions (a difference of zero) and SMPI had small numerical discrepancies (10−9).

Computing Platforms The performance evaluation has been conducted on a multinode HPC system
Turing located at Old Dominion University (HPC Group 2016). Each node on Turing has dual-socket
E5-2670 v2 (Ivy-Bridge) CPU’s, each socket has 10 cores @ 2.5 GHz and 25 MB cache. A total of 64
GB RAM memory is available on each node. Up to four nodes are used and the network interconnect is
Infiniband FDR (Fourteen Data Rate).

Results and Evaluation The performance evaluation varies the size n for the input matrix and the number
m of linear systems investigated. Two values of n, 10 and 23, are investigated, which are common sizes based
on the VULCAN sample inputs. A third input, nicknamed Cauchy, for n is investigated, which is a square
Cauchy matrix (Fiedler 2010) of size 10. The number of linear systems m depends on the number of nodes.
For the single-node performance tests, m is set to 10k, 100k, 1m, and 5m. For the multinode performance
tests, m is set to 100k, 1m, 5m, 10m, 50m, and 100m. The number of threads was varied using powers of
two: 1, 2, 4, 8, 16, and 20, because each node on Turing has a total number of 20 cores. The block size is
varied using the values 10, 25, 50, 75, 100, 250, 500, 750, and 1000, in order to observe effects on the cache
performance and memory latency.

4



(a) MPI+OpenMP - 1 Node (b) MPI+SMPI - 1 Node

Figure 1: 1 Node Performance Evaluation: Speedup of the optimized mini-apps vs. the original routine with
only 1 MPI task.

(a) MPI+OpenMP - 2 Nodes (b) MPI+SMPI - 2 Nodes

Figure 2: 2 Node Performance Evaluation: Speedup of the optimized mini-apps vs. the original routine with
only 1 MPI task per node.

The speedup for the single-node performance tests are shown in Fig. 1. Fig. 1a presents the MPI+OpenMP
speedup and Fig. 1b presents the MPI+SMPI speedup where m, n, and Block Size are varied. Speedup
is shown on the y-axis, block size on the x-axis, n is represented using a triangle for 10, square for 23,
and diamond for Cauchy, and m is represented using colors as shown in the plot legend. Speedup for the
multi-node performance tests is shown in: Fig. 2 (2-node) and Fig. 3 (4-node). Notice that the workloads (m)
are different for the multi-node tests than for the single-node tests; 100k-50m vs. 10k-5m respectively.

Speedup is a measure of execution performance. A value of one means both versions have equal performance.
A value less than one means the optimized version is worse than the original routine, and a value greater than
one means the optimized version is better.

The workload, m=10k, is only investigated for the single-node case. Notice in Fig. 1 that speedup is
consistently one or less. Therefore, the parallel Householder routine must have a sufficient workload to attain
any speedup.

5



(a) MPI+OpenMP - 4 Nodes (b) MPI+SMPI - 4 Nodes

Figure 3: 4 Node Performance Evaluation: Speedup of the optimized mini-apps vs. the original routine with
only 1 MPI task per node.

In all performance tests conducted, Figs. 1 to 3, Shared MPI consistently attains the greatest speedup over the
original Householder routine. Speedup is normalized against the one thread per node performance for each
respective workload (n and m) and block size. The maximum speedup for OpenMP is 12×, 9×, and 10×,
and Shared MPI is 18×, 19×, and 23× for 1, 2, and 4 nodes, respectively. From the performance results, it is
apparent that SMPI benefits from less overhead as a result of increased cost to the programmer.

It is interesting to note that the best performing input n varies for SMPI as the number of nodes varies. For
one-node and the maximum number of threads, n of 10 has the best speedup. For two nodes, n of 23 has
the best speedup, and n of Cauchy has the best speedup for the four-node case. This was an unexpected
result, and one that is not obtained when using OpenMP. Further investigation is needed to determine if this
is coincidence or a meaningful result.

Blocking performance, without shared memory parallelism, is captured by the one thread tests in Figs. 1 to 3.
A max speedup of 3× is consistently measured no matter the mini-app and number of nodes. This finding
shows that optimizing the algorithm for cache performance is mildly beneficial and should be considered for
performance-bounded computational kernels.

4 CONCLUSION

In this work, mini-apps were developed to optimize the Householder Reflector kernel within NASA real-world
application, VULCAN. Two programming paradigms for shared memory parallelism were investigated,
OpenMP and Shared MPI, and performance testing was conducted on a multi-node system Turing for up to
four nodes. Speedup, the measure of performance, was found to be higher for the Shared MPI version of the
Householder mini-app than that for the OpenMP version. Specifically, the speedup for SMPI was up to 1.9×
that of OpenMP. With the maximum number of threads, SMPI obtains perfect speedup with sufficiently large
workloads (m=50m). OpenMP was only able to achieve a speedup of 10×, which is half of the expected
speedup based on the number of threads used.

ACKNOWLEDGMENT

This effort was supported by NIA subaward activity 2B87 funded through the NASA Langley Computational
Digital Transformation initiative and, in part, by the Turing High Performance Computing cluster at Old
Dominion University.

6



REFERENCES

Cappello, F., and D. Etiemble. 2000, Nov. “MPI versus MPI+OpenMP on the IBM SP for the NAS Bench-
marks”. In Supercomputing, ACM/IEEE 2000 Conference, pp. 12–12.

Chorley, M. J., and D. W. Walker. 2010. “Performance analysis of a hybrid MPI/OpenMP application on
multi-core clusters”. Journal of Computational Science vol. 1 (3), pp. 168 – 174.

Drosinos, N., and N. Koziris. 2004, April. “Performance comparison of pure MPI vs hybrid MPI-OpenMP
parallelization models on SMP clusters”. In 18th International Parallel and Distributed Processing
Symposium, 2004. Proceedings., pp. 15–.

Fiedler, M. 2010. “Notes on Hilbert and Cauchy matrices”. Linear Algebra and its Applications vol. 432 (1),
pp. 351 – 356.

Gerstenberger, R., M. Besta, and T. Hoefler. 2013. “Enabling Highly-scalable Remote Memory Access Pro-
gramming with MPI-3 One Sided”. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’13, pp. 53:1–53:12. New York, NY, USA, ACM.

Gropp, W., L. Olson, and P. Samfass. 2016, 9. Modeling MPI communication performance on SMP nodes: Is
it time to retire the ping pong test, Volume 25-28-September-2016, pp. 41–50. Association for Computing
Machinery.

Hansen, P. B. 1992, June. “Householder Reduction of Linear Equations”. ACM Comput. Surv. vol. 24 (2), pp.
185–194.

Hoefler, T., J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, and R. Thakur.
2013, December. “MPI + MPI: A New Hybrid Approach to Parallel Programming with MPI Plus Shared
Memory”. Computing vol. 95 (12), pp. 1121–1136.

Hoefler, T., J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, and K. Underwood. 2015, June. “Remote
Memory Access Programming in MPI-3”. ACM Trans. Parallel Comput. vol. 2 (2), pp. 9:1–9:26.

HPC Group 2016. “Turing Community Cluster General Information”. https://www.odu.edu/facultystaff/
research/resources/computing/high-performance-computing.

Message Passing Interface Forum 2012. “MPI: A Message-Passing Interface Standard Version 3.0”. http:
//mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

Mikhail B. (Intel) 2015. “An Introduction to MPI-3 Shared Memory Programming”. https://software.intel.
com/en-us/articles/an-introduction-to-mpi-3-shared-memory-programming.

NASA 2016. “VULCAN-CFD”. https://vulcan-cfd.larc.nasa.gov/.

OpenMP 2016. “OpenMP: The OpenMP API specification for parallel programming”. http://www.openmp.
org/.

Rabenseifner, R., G. Hager, and G. Jost. 2009, Feb. “Hybrid MPI/OpenMP Parallel Programming on Clusters
of Multi-Core SMP Nodes”. In 2009 17th Euromicro International Conference on Parallel, Distributed
and Network-based Processing, pp. 427–436.

7

https://www.odu.edu/facultystaff/research/resources/computing/high-performance-computing
https://www.odu.edu/facultystaff/research/resources/computing/high-performance-computing
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://software.intel.com/en-us/articles/an-introduction-to-mpi-3-shared-memory-programming
https://software.intel.com/en-us/articles/an-introduction-to-mpi-3-shared-memory-programming
https://vulcan-cfd.larc.nasa.gov/
http://www.openmp.org/
http://www.openmp.org/

	Introduction
	Related Work

	Householder Mini-App
	Mini-App Design
	Parallel Householder

	Performance Evaluation
	Conclusion

