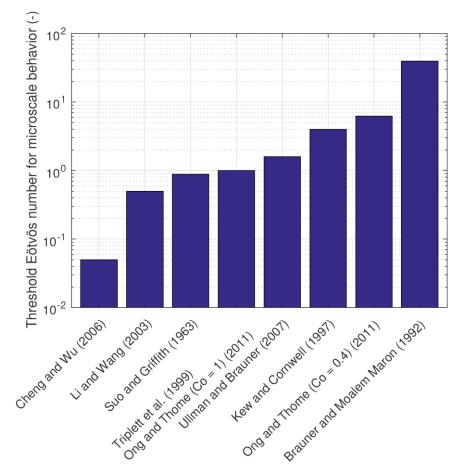

Gravity Effects in Microgap Flow Boiling

Franklin Robinson/NASA and Dr. Avram Bar-Cohen/UMD Session TI-3: Microgap Cooling & Evaporation/Condensation ITherm – May 31, 2017

Motivation

- Electronic devices thermallylimited by remote cooling
- Embedded cooling facilitates contact between device and two-phase coolant flow
- Gravity can dominate twophase system behavior
- Limited, conflicting data on flow boiling in reduced gravity

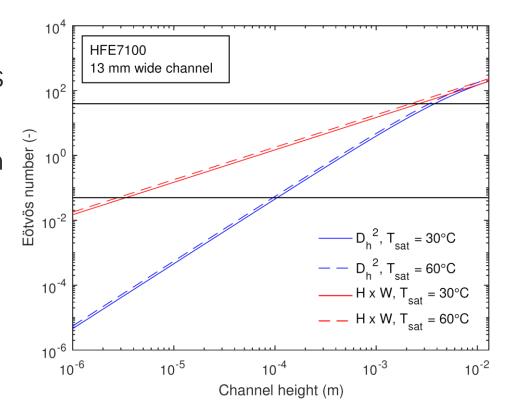


Microscale Eötvös Number

- Microscale \rightarrow g-insensitive
- Most microscale criteria simplify to the Eötvös number

$$Eo = \frac{\Delta \rho \cdot g \cdot D^2}{\sigma}$$

- Criteria based on absence of stratification or uniformity of film thickness
- Possible regime-dependence



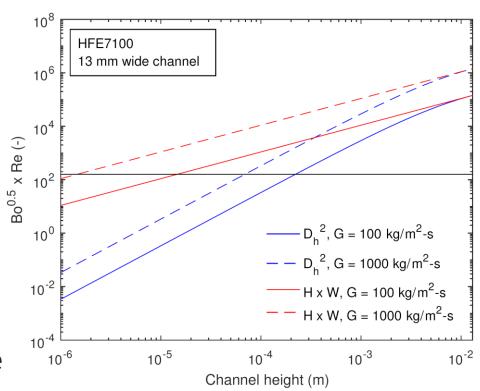
Eötvös Number Considerations

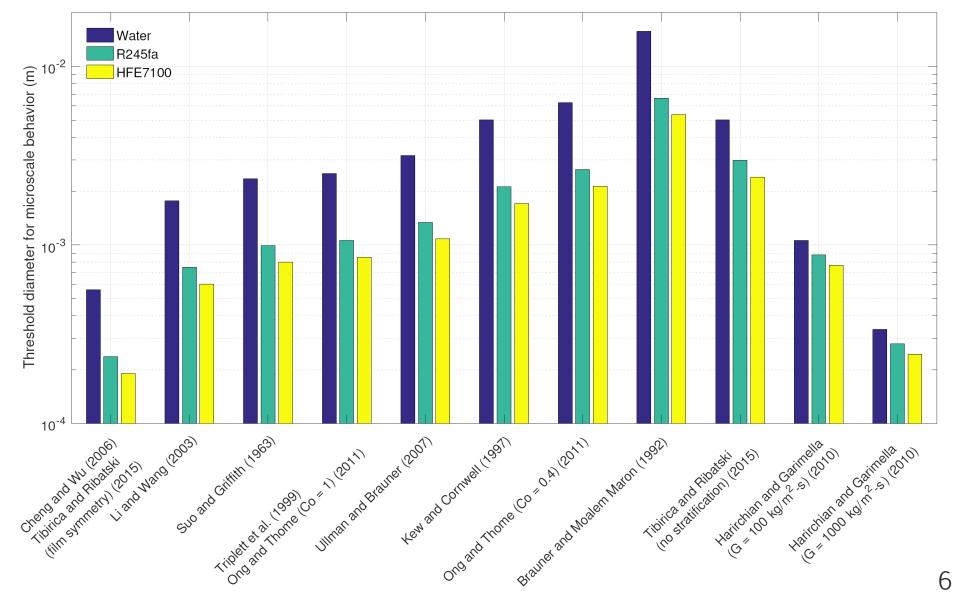
- Different formulation may be required for rectangular ducts
 - Gravity term scales with height
 - Surface tension scales with width

$$Eo = \frac{\Delta \rho \cdot g \cdot H \cdot W}{\sigma}$$

 Uncertainty in microscale height based on Eötvös number criteria, formulation

Convective Confinement Number

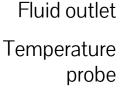

 Convective confinement number accounts for velocity


$$Bo^{0.5} \cdot Re < 160$$

$$Bo = \frac{\Delta \rho \cdot g \cdot D^2}{\sigma}$$

$$Re = \frac{G \cdot D}{\mu_I} \qquad D = \sqrt{A_c}$$

 All channels exhibit microscale behavior at low velocities

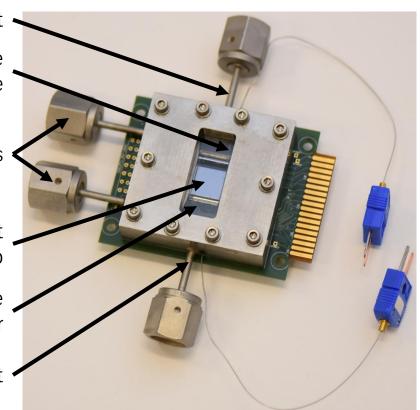


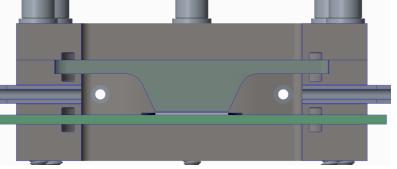
Objectives

Variation in microscale criteria + unresolved issue of appropriate length scales for rectangular ducts creates need for a research program to:

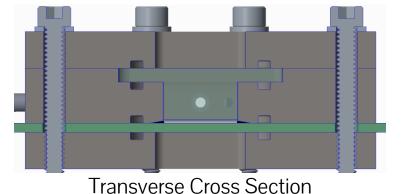
- Characterize the parameters (channel size, velocity, fluid properties, heat flux, flow regime) that provide gravityindependent flow boiling performance
- 2. Determine the appropriate metric for assessing gravity-independence (flow regimes, measurements, instabilities)

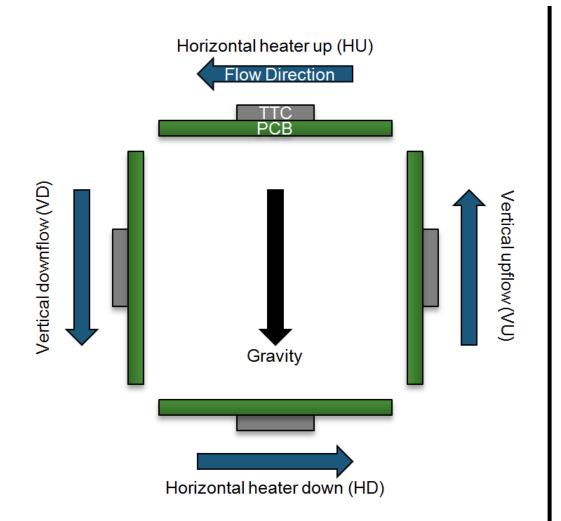
Microgap Cooler Assembly

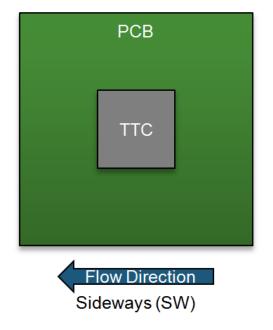



Pressure taps

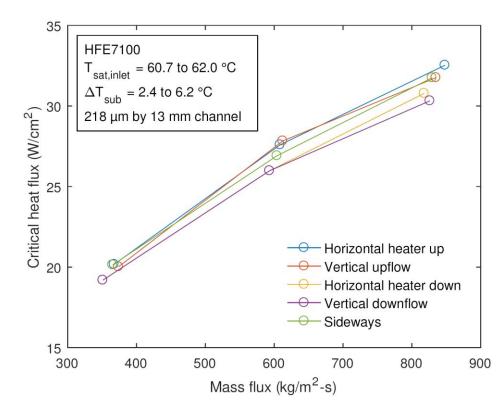
Thermal test chip

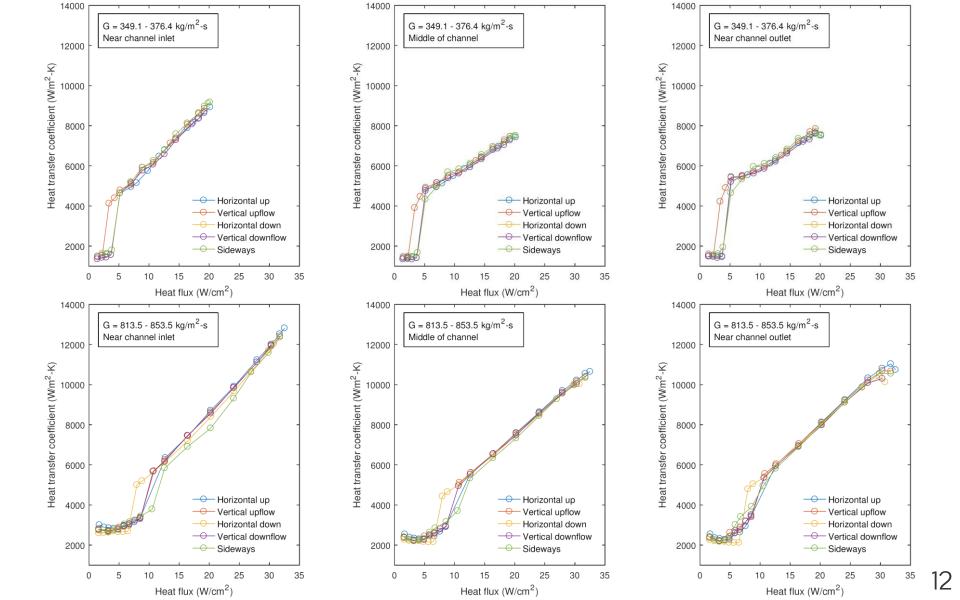

Polycarbonate cover

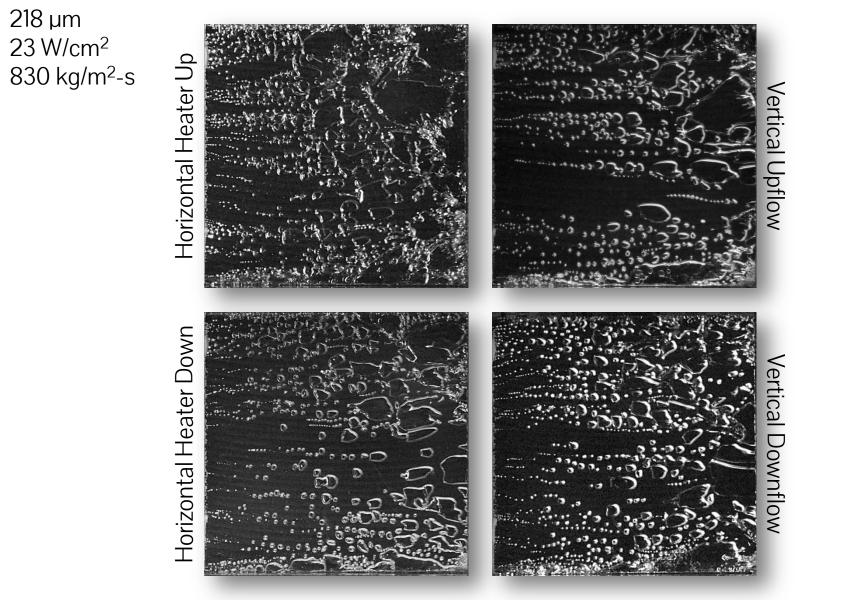

Fluid inlet

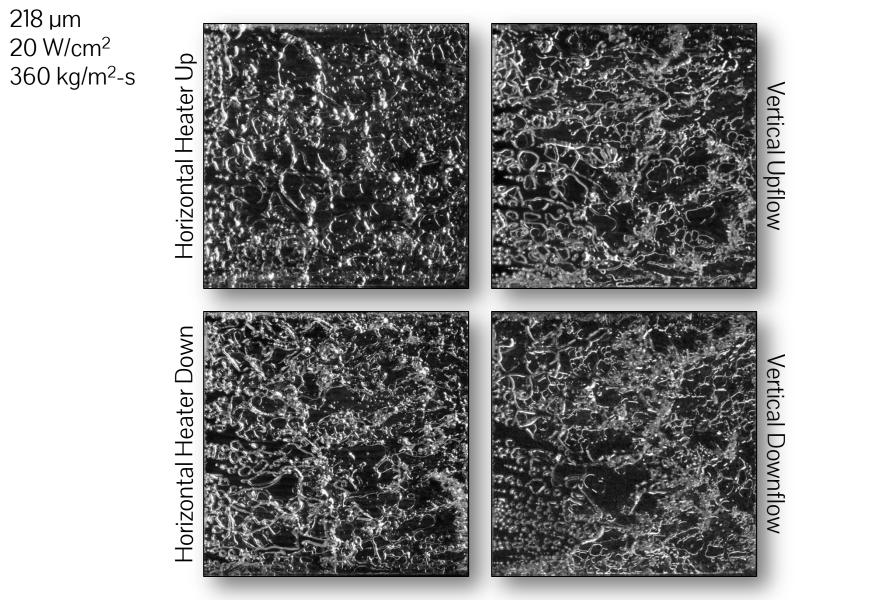


Axial Cross Section

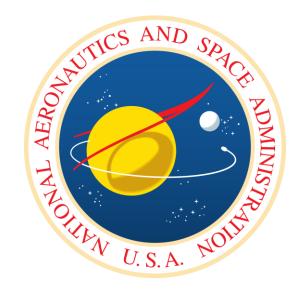





Orientation		Eötvös Number	
HU			$\Delta \rho \cdot g \cdot H \cdot W$
HD			= 3.9
VU	$\frac{\Delta \rho \cdot g \cdot D_h^2}{}$	$\Delta \rho \cdot g \cdot H \cdot W$	$\Delta \rho \cdot g \cdot L \cdot W$
VD	= 0.25	= 3.9	=227
SW			$\frac{\Delta \rho \cdot g \cdot W \cdot W}{\sigma}$ = 233


Critical Heat Flux

- CHF variation of < 6% at each mass flux across five evaporator orientations
- Some CHF variation attributable to mass flux variation (up to 6%)
- Tighter control of mass flux, inlet fluid condition desired in future experiments



Concluding Remarks

- Previous efforts to determine microscale transition have focused on ratio of gravitational forces to surface tension forces
 - Other parameters may be important (e.g., velocity, flow regime, heat flux)
- In present study, five orientations resulted in range of Eötvös numbers from 0.25 to 233 for a 218 µm by 13 mm channel
- Orientation change had minimal effect on CHF and HTCs
- Ongoing studies with range of channel heights will help identify additional parameters relevant to gravity effects discussion
- Validation in microgravity environment is planned

Acknowledgements

The authors gratefully acknowledge financial support from the NASA Headquarters Center Innovation Fund and technical contributions from Keith Coulson and Mario Martins.

Questions?

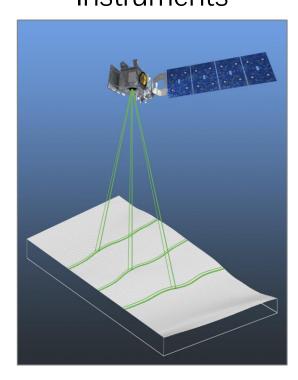
Thank you for your attention!

Slide (first use)	Reference		
2	Dhir, V. K., and Warrier, G. R., 2011, "Nucleate pool boiling experiment (NPBX)," International Space Station Program Science Office, https://www.nasa.gov/mission_pages/station/research/experiments/229.html#images.		
	Cheng, P., and Wu, H. Y., 2006, "Mesoscale and microscale phase-change heat transfer," Advances Heat Transfer, 39, pp. 461-563.		
	Li, J-M., and Wang, B-X., 2003, "Size effect on two-phase regime for condensation in micro/mini tubes," Heat Transfer - Asian Research, 32(1), pp. 65-71.		
	Triplett, K. A., Ghiaasiaan, S. M., Abdel-Khalik, S. I., and Sadowski, D. L., 1999, "Gas-liquid two-phase flow in microchannels Part I: two-phase flow patterns," Int. J. Multiphase Flow, 25, pp. 377-394.		
	Triplett, K. A., Ghiaasiaan, S. M., Abdel-Khalik, S. I., LeMouel, A., and McCord, B. N., 1999, "Gas-liquid two-phase flow in microchannels Part II: void fraction and pressure drop," Int. J. Multiphase Flow, 25, pp. 395-410.		
3	Ullmann, A., and Brauner, N., 2007, "The prediction of flow pattern maps in minichannels," Multiphase Sci. Tech., 19(1), pp. 49-73.		
	Ong, C. L., and Thome, J. R., 2011, "Macro-to-microchannel transition in two-phase flow: Part 1 – Two-phase flow patterns and film thickness measurements," Exp. Thermal Fluid Sci., 35, pp. 37-47.		
	Suo, M., and Griffith, P., 1964, "Two-phase flow in capillary tubes," J. Basic Eng., 86(3), pp. 576-582.		
	Kew, P. A., and Cornwell, K., 1997, "Correlations for the prediction of boiling heat transfer in small-diameter channels," Applied Thermal Eng., 17(8-10), pp. 705-715.		
	Brauner, N., and Moalem Maron, D., 1992, "Identification of the range of 'small diameters' conduits, regarding two-phase flow pattern transitions," Int. Comm. Heat Mass Transfer, 19, pp. 29-39.		
5	Harirchian, T., and Garimella, S. V., 2010, "A comprehensive flow regime map for microchannel flow boiling with quantitative transition criteria," Int. J. Heat Mass Transfer, 53, pp. 2694-2702.		
6	Tibirica, C. B., and Ribatski, G., 2015, "Flow boiling phenomenological differences between micro- and macroscale channels," Heat Transfer Eng., 36, pp. 937-942.		

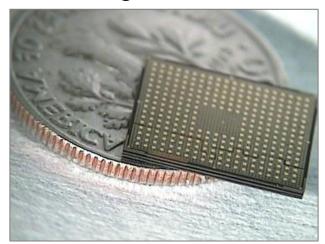
Supplemental Information

NASA Technology Roadmap

Number	Technology	Description	Performance Goals
14.2.1.2	High flux heat acquisition with constant temperature	Acquisition and removal of high heat fluxes over small areas with tight temperature control	Heat fluxes > 100 W/cm ² Temperature control to ± 1 °C
14.2.2.10	Micro- and nano- scale heat transfer surfaces	Heat transfer surfaces and flow channels with micro- and nano- features to enhance two-phase heat transfer with higher heat fluxes and enhanced flow stability	Heat fluxes up to 1000 W/cm ² Temperature differentials < 20 K Pressure drops < 20 kPa
14.2.3.2	Two-phase pumped loop systems	High-capacity, two-phase heat transport systems for thermal control of large heat loads (e.g., Rankine cycle power plants)	Two orders of magnitude improvement in heat transfer per unit of system mass


Two-Phase Flow Regimes

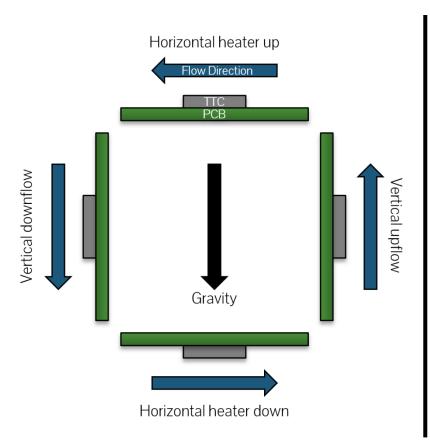
 Flow regimes describe distribution and extent of agglomeration of liquid and vapor phases

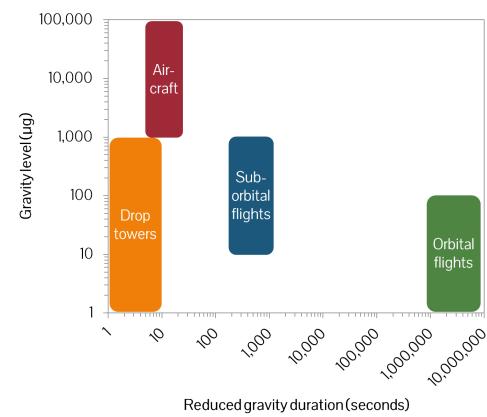


- Annular flow prevalent in small channels
- Knowledge of flow regime can inform correlation selection and improve predictive accuracy

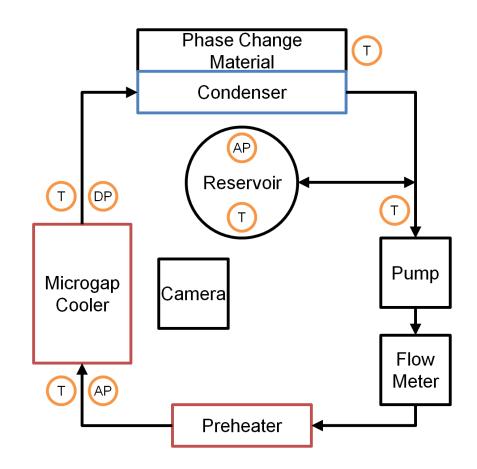
Lidar and Radar Instruments

3D Integrated Circuits


Fuel Cells



Rovers (RITEGs)


Methods for Assessing Gravity Effects

Flight Test

- Suborbital flight
 - 100 km apogee
 - 3+ minutes of < 0.001g
 - Launch loads of 3-4g
- Compact flow loop due to constraints on payload
 - 11 kg
 - 50 by 40 by 20 cm³
 - 200 W

Slide (first use)	Reference			
19	National Aeronautics and Space Administration, 2015, "NASA Technology Roadmaps TA 14: Thermal Management Systems," http://www.nasa.gov/sites/default/files/atoms/files/2015_nasa_technology_roadmaps_ta_14_thermal_management_final.pdf.			
20	Carey, V. P., 1992, Liquid-vapor phase-change phenomena, Hemisphere, Washington, DC.			
21	NASA, 2017, "ICESat-2: Instrument," https://icesat.gsfc.nasa.gov/icesat2/instrument.php .			
	Aurora Semiconductor, 2017, "3D Stacking with Heterogeneous MCMS," https://www.aurorasemi.com/mcm .			
	Teledyne Energy Systems, 2017, "Energy Storage A Study on UUV Fuel Cells," http://www.teledynees.com/our-products/energy-storage/a-study-on-uuv-fuel-cells.			
	JPL, 2012, "PIA 16239: High-Resolution Self-Portrait by Curiosity Rover Arm Camera," https://photojournal.jpl.nasa.gov/catalog/PIA16239 .			
20	NASA, 2016, "2.2 Second Drop Tower," http://facilities.grc.nasa.gov/drop/capabilities.html.			
	NASA, 2016, "Zero Gravity Research Facility at NASA Glenn Research Center," http://facilities.grc.nasa.gov/documents/TOPS/TopZERO.pdf			
	Lambot, T., and Ord, S. F., 2016, "Analysis of the quality of parabolic flight," Next-Generation Suborbital Researchers Conf., Denver, CO.			
	Moro-Aquilar, R., 2014, "The new commercial suborbital vehicles: an opportunity for scientific and microgravity research," <i>Microgravity Sci. Tech.</i> , 26, pp. 219-227.			