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TECHNICAL MEMORANDUM

EXTRACTING DAMPING RATIO FROM DYNAMIC DATA 
AND NUMERICAL SOLUTIONS

1.  INTRODUCTION

 There are many ways to extract damping parameters from data or models. This Technical 
Memorandum provides a quick reference for some of the more common approaches used in 
dynamics analysis. Described are six methods of extracting damping from data: the half-power 
method, logarithmic decrement (decay rate) method, an autocorrelation/power spectral density fit-
ting method, a frequency response fitting method, a random decrement fitting method, and a newly 
developed half-quadratic gain method. Additionally, state-space models and finite element method 
modeling tools, such as COMSOL Multiphysics (COMSOL), provide a theoretical damping via 
complex frequency. Each method has its advantages which are briefly noted. There are also likely 
many other advanced techniques in extracting damping within the operational modal analysis dis-
cipline, where an input excitation is unknown; however, these approaches discussed here are objec-
tive, direct, and can be implemented in a consistent manner.

 Damping ratio, ζ, is characterized since it is commonly used in many disciplines. Though, 
it should be noted that all linear damping parameters can be related to a single parameter such as 
damping ratio. There are many ways to describe damping, e.g., damping ratio, quality factor, spa-
tial absorption coefficient, temporal damping coefficient, complex frequency, and many others. By 
characterizing one parameter, the goal is to have a consistent way to compare damping from data 
and models.

 There are many ways to show or derive the damping ratio relationships described in table 1, 
but the common assumption is that the system response behaves as a single-degree-of-freedom 
(SDOF) time harmonic oscillator such as described in equation (1):

 !!x + 2ζωn !x +ωn
2x = F (t) /m , (1)

where x is the dependent variable, wn is the angular undamped natural frequency, F (t) is the time-
dependent force, and m is a representation of system mass. Many systems can be represented in this 
form including damped acoustic systems.1 (p. 8), 2 (pp. 22–26), 3 (p. 20)

 Several other damping parameters are also related to damping ratio so that each method 
can be consistently compared, whether by extracting damping from test data or from a theoretical 
model. Table 1 provides a quick reference. 
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Table 1.  Relationship for damping ratio.

Data Extraction Method Damping Ratio Relationship Notes

Half-power method
ζ ≈

fu − fl
2 f p

for ζ < 0.05
Convenient estimate from spectrum. 
Approximate for low damping ratio

Half-quadratic gain method

ζ = 1
2
− 4+ 4

fu − fl
f p

⎛

⎝
⎜

⎞

⎠
⎟

2

−
fu − fl
f p

⎛

⎝
⎜

⎞

⎠
⎟

4⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1 Simple estimate from spectrum. 
Exact for force-excited SDOF 
response

General logarithmic decrement 
method ζ =

ln At1
At2( )

2π fdτ( )2 + ln At1
At2( )2

For a linear exponential decay  
of an amplitude envelope. Exact  
for unforced SDOF decay

Power spectral density /  
autocorrelation method

Fitting method—see text Used with PSD and autocorrelation 
and allows for function fitting

Frequency response method Fitting method—see text Used on complex FFT and allows  
for function fitting

Random decrement method Fitting method—see text Estimates a signal proportional to 
autocorrelation and allows for func-
tion fitting

Other Damping Ratio 
Relationships Relationship Notes

Complex frequency
ζ =

fi

fr
2 + fi

2

Output from state-space models 
and finite element method models

Logarithmic decrement Traditional estimate. Evaluated  
by selecting successive peaks.  
Exact for unforced SDOF decay

Temporal absorption coefficient
ζ = β

2π fn

Common estimate of physical  
models—appendix C

Spatial absorption coefficient ζ = α ⋅c
2π fn

Classic characterization in acoustics 
and other branches of physics
—appendix C

Quality factor
ζ = 1

2Q

Classic figure of merit—appendix A

ζ = δ

2π( )2 +δ 2
, where δ = 1

n
ln Pt1

Ptn( )
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 Separately, it is noted that a comparison of damping ratio between a state-space model, or 
COMSOL output, and test data would also serve as a quantitative metric that may be used as a 
level of validation of linearly stable systems. In evaluating combustion dynamics of a combustor, 
for example, a damping parameter can be obtained from stationary and linearly stable test data, 
at the onset of an instability where a clear linear growth is observed, or in the best case, during an 
unforced free response decay. A linearized model cannot be compared to a nonlinear instability 
using these metrics as the physics must follow the form of equation (1). Real systems do not behave 
linearly in and near the ‘unstable’ regime where behavior includes limit cycles, nonlinearly coupled 
harmonics and modulations, and complex chaotic behavior. In the combustion dynamics example, 
equation (1) does not hold in this ‘unstable’ regime, i.e., damping parameters from data can only be 
compared to a linearized model while in a stable regime.

1.1  Half-Power Method 

 The half-power method assumes an SDOF time harmonic oscillator and is best applied to 
stationary data. The half-power method is commonly used in obtaining estimates of modal damp-
ing for structural vibrations.4 (pp. 110–120) 

 Quality factor, Q, is given exactly as equation (2) and is developed in appendix A: 

 Q = 1
2ζ

.  (2)

Quality factor can be estimated with equation (3),5 (p.16) also developed in appendix A:

 Q ≈
f
p

f
u
− f

l

for ζ < 0.05 .  (3)

The half-power method consists of selecting measured frequencies from a spectrum. The measured 
peak center frequency of a response, fp, is selected assuming it is the frequency with maximum  
power. This is an approximation because the maximum power for an SDOF occurs at the 
undamped natural frequency. Frequencies are also selected above the peak, fu  ,  and below the peak, 
fl  , assuming they occur at the half-power level. With the assumption that the square of the SDOF 
frequency response function (which is proportional to a power spectral density (PSD)) is propor-
tional to power, a PSD can be used to obtain the frequencies at the half-power level where the 
amplitude is one-half  the maximum peak and a fast Fourier transform (FFT) can be used to obtain 
the frequencies at the half-power level where the amplitude is 1/ 2 the maximum peak. In reality, 
this is true only as damping approaches zero. The quality factor approximation is only accurate at 
low damping values, i.e., ζ <  0.05. 

 Combining equations (2) and (3) gives a convenient way of estimating damping ratio shown 
in equation (4):

 ζ ≈
fu − fl
2 fp

for ζ < 0.05 .  (4)
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The approximations and associated error are discussed further in appendix A, which can be helpful 
in understanding the acceptability of an estimated damping ratio or quality factor.

1.2  Half-Quadratic Gain Method

 The half-quadratic gain method is developed in appendix A. It is an exact formula for 
a  forced, SDOF system and is given as equation (5):

 ζ = 1
2
− 4+ 4

fu − fl
fp

⎛

⎝
⎜

⎞

⎠
⎟

2

−
fu − fl
fp

⎛

⎝
⎜

⎞

⎠
⎟

4⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

.  (5)

Instead of approximating the power curve with the square of the frequency response function (or 
PSD) as in the half-power method, the half-quadratic gain method uses the square of the frequency 
response function directly in estimating damping. This provides an exact method of extracting 
damping ratio from an FFT or PSD since for an SDOF system, an FFT spectrum is proportional 
to the transfer function gain and a PSD is proportional to the square of the transfer function gain. 

 Unlike in the half-power method, the measured peak center frequency, fp, is equal to the fre-
quency of peak amplitude response for an SDOF and does not necessarily occur at the frequency 
with maximum power. A PSD can be used to obtain the frequencies at the half-quadratic gain 
level where the amplitudes are one-half  the maximum peak and an FFT can be used to obtain the 
frequencies at the half-quadratic gain level where the amplitudes are 1 2  the maximum peak. The 
frequencies at the half-quadratic gain level are exactly the frequency selected above the peak, fu , 
and below the peak, fl , of  the measured spectrum. 

1.3  Logarithmic Decrement Method

 The logarithmic decrement method assumes an SDOF time harmonic oscillator and is best 
applied to underdamped exponentially decaying data. It is commonly used in obtaining modal 
damping for structural vibrations.4 (pp. 87–98), 6 (pp. 52,53) However, given an impulse response from  
an aperiodic transient, such as a combustion stability bomb in the combustion dynamics example,  
a similar approach can be used to estimate the decay rate at a given frequency, assuming there is an 
acoustically exponential decay of the amplitude envelope. First, a general approach will be described 
followed by the classic logarithmic decrement.

 For an underdamped system, 0  <  ζ  <  1, the particular solution (no force) of equation (1) is 
the underdamped response and given by equation (6):7 (p. 245)

 p(t) = p(0)

1−ζ 2
⋅X ⋅e−ζ ωnt cos ωd t − tan

−1 φ( )( ) . (6)

Pressure, p, is the dependent variable, wd , is the angular damped natural frequency, and p (0) is the 
initial pressure amplitude condition. The factor X and the phase angle φ are discussed in appendix B.
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 The angular damped natural frequency can be written as equation (7) for an SDOF. This is 
the frequency that is observed during an SDOF free decay as indicated by the cosine argument in 
equation (6):

 ωd =ωn 1−ζ 2 .  (7)

 The decaying amplitude envelope of equation (6) is given as equation (8):7 (p. 249)

 A(t) = p(0) ⋅X

1−ζ 2
e−ζωnt ,  (8)

where A(t) is the amplitude envelope. Analytically, using the Hilbert transform of the pressure, 
H{p(t)}, it can also be shown that the amplitude envelope follows the form as expressed 
in equation (9):8

 A(t) = p(t)+ iH p(t){ } = p(0) ⋅X

1−ζ 2
e−ζωnt .  (9)

It is common to apply the Hilbert transform numerically to a data set to remove the oscillatory 
components and reduce a time history to an amplitude envelope.

 The decaying exponent can be defined using a parameter called the temporal absorption 
coefficient, also referred to as the decay rate, shown in equation (10):

 β ≡ ζωn .  (10)

 A ratio of  two amplitudes on the decaying exponential curve can be written using equa-
tion (8) and is shown as equation (11) where t1 and t2 are subsequent times at any given amplitude 
envelope value:

 
A(t2 )

A(t1)
= e

−β t2−t1( )
.  (11)

 Equations (12) and (13) result when using A t1( ) = At1, and A t2( ) = At2 , where At1 and At2
  

are measured amplitude envelope values at t1 and t2: 

 At2
= At1e

−βτ
 (12)

and

 β = 1
τ
ln

At1
At2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
.  (13)
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Also, t = t2 – t1 where the parameter t is the measured duration between the time of the measured 
amplitude envelope values.

 The response curve, equation (6), is tangent to the amplitude envelope curve, equation (8), 
and the tangents do not occur at the oscillation peaks, i.e., the local oscillation maxima are not 
values that occur on the amplitude envelope curve.6 (pp. 52,53), 7 (p. 249) However, it is important to 
note that while values from the exact amplitude envelope are needed to produce an exponential fit 
to the entire equation (8), the damping ratio can still be determined exactly using the local oscilla-
tion maxima to produce an exponential fit since the same decay rate is retained. Only the amplitude 
of equation (8) would be incorrect with a fit to the local oscillation maxima; however, an amplitude 
correction can be applied. This is discussed further in appendix B.

 Equations (2) and (10) can be used to express the temporal absorption coefficient in terms 
of damping ratio, shown in equation (14):

 ζ = β
2π fn

.  (14)

However, the observed oscillations occur at the damped natural frequency for a decaying transient, 
so equation (7) can be used to put the damping ratio in terms of measurable quantities:

 ζ = β

2π fd( )2 + β2
.  (15)

 Simplifying further in terms of measurable parameters using equation (13) gives equation (16):

 ζ =
ln At1

At2( )
2π fdτ( )2 + ln At1

At2( )2
.  (16)

This is exact for a free decay and can be applied over any duration given values for the amplitude 
envelope. For the linear period at the onset of a growing signal the formulation can only be used as 
an approximation of a growth rate since the previous derivations are based on an ‘unforced’ decay 
or free damped vibration.

 In theory, while an actual envelope needs to be estimated for the general logarithmic decre-
ment approach described in equation (16), as noted previously, the local oscillation maxima values 
can also be used to obtain the damping ratio. Using successive oscillation peaks to calculate damp-
ing is an approach known classically as the logarithmic decrement method. It is shown in appen-
dix B that this procedure also provides an exact value for damping ratio and that local oscillation 
maxima values follow the same decay rate as the amplitude envelope. The logarithmic decrement, 
d, is given as equation (17) where the sinusoidal peak amplitudes, Pt1

and Pt2
, are chosen between 

successive peaks:6 (pp. 52,53)
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 δ ≡ ln Pt1
Pt2( ) .  (17)

 The logarithmic decrement can be generalized to n cycles as equation (18):6 (pp. 55,56)

 δ = 1
n
ln Pt1

Ptn( ) ,  (18)

where Ptn
 represents the sinusoidal peak amplitude value after n cycles. Combining equations (6) 

and (17), where P(t1) = Pt1
 and P(t2) = Pt2

 results in equation (19) and is further discussed 
in appendix B:

 δ = ln
e−ζωn t1

e−ζωn t2

⎛

⎝
⎜

⎞

⎠
⎟ = ζωn t2 − t1( ) .  (19)

This can then be simplified in terms of damping ratio shown in equation (20):

 ζ = δ
2π fnτd

,  (20)

where td  is the period of a damped oscillation since this is the time duration between peaks of  
free damped vibrations. The period can simply be calculated from equation (7) and is written as  
equation (21):

 τd = 1

fn 1−ζ 2
.  (21)

Combining equations (20) and (21) and solving for damping ratio gives equation (22):

 ζ = δ

2π( )2 +δ 2
.  (22)

 Simplifying further in terms of measurable parameters, using the multiple-cycle form  
of logarithmic decrement equation (18), gives equation (23):

 ζ =
ln Pt1

Ptn( )
2πn( )2 + ln Pt1

Ptn( )2
.  (23)
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Since the exponential decay rate through the local maxima is the same as the decay rate of the 
amplitude envelope, it can be observed that equation (23) is equivalent to the general logarithmic 
decrement equation (16) applied over the duration of n cycles.

1.4  Autocorrelation and Power Spectral Density Method

 This method assumes an SDOF time harmonic oscillator that has a constant power spectrum 
input (white noise) and is applicable for stationary data. For the combustion dynamics example, 
constant power spectrum input is approximate for combustion noise across a narrow bandwidth of 
interest. In most applications, the excitation is sufficiently broad so as not to introduce significant 
errors. The PSD and autocorrelation functions are known functions for an SDOF mechanical sys-
tem with a stationary process.9 (pp. 124–126) These are given as equations (24) and (25), respectively:

 
Gyy(τ ) =

G / ks
2

1− f fn( )2⎡
⎣⎢

⎤
⎦⎥
2
+ 2ζ f fn⎡⎣ ⎤⎦

2  (24)

and

 Ryy(τ ) =
πG fne

−2π fnζ τ

4ζ ks
2 cos 2π fd τ( )+ ζ

1−ζ 2
sin 2π fd τ( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,  (25)

where Gyy is the one-sided output PSD, G is the input PSD amplitude (constant in this case with 
white noise), ks is the representative stiffness, f is the frequency, fn is the undamped natural fre-
quency, fd is the damped natural frequency, Ryy is the autocorrelation function, and t is the auto-
correlation time delay. The measured data can be reduced using the PSD and autocorrelation 
functions and then fit to these forms to extract a damping ratio. To aid in fitting, equation (26) 
gives the variance of the output spectrum:

 Ryy(0) =σ y
2 =

πG fn
4ζ ks

2 .  (26)

This is discussed further in references 9 (pp. 124 – 126) and 10.

1.5  Frequency Response Function Method

 This method is similar to section 1.4 but directly fits data to a second-order system response. 
The frequency response function gain, maximum gain, and phase for a second-order system 
with harmonic excitation are known functions and given as equations (27) through (29), respec-
tively.9 (pp. 18–21) Normally, these would be fit using linear cross spectrum (transfer function) given 
an input and output measurement. This model assumes an SDOF time harmonic oscillator and 
is best applied to stationary data; however, in general, a frequency sweep input excitation can be 
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performed at sweep rates slow enough to capture the full response. Assuming the input is harmonic 
over the spectrum, or in the case of white noise with superposition of harmonic components at 
various frequencies, a damping ratio approximation can be obtained.   

  H ( f ) = F k

1− f fn( ) 2⎡
⎣⎢

⎤
⎦⎥
2
+ 2ζ f fn⎡⎣ ⎤⎦

2
,  (27)

 H max =
F k

2ζ 1−ζ 2
,  (28)

and

 φ( f ) = tan−1
2ζ f fn

1− f fn( )2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
.

 

(29)

It is noted that some software tools may plot the fast Fourier transform (FFT) phase using the two-

argument arctangent which covers the entire circular range and equation (29) would be written as  

φ( f ) = tan2−1 2ζ f fn, 1− f fn( )2( ) .  Measured data can be reduced using the complex FFT and 

fitting the data to the FFT phase and gain functions to extract a damping ratio.  Its advantage is 
the ability to optimize an estimate by fitting both gain and phase; however, it is also possible to fit 
the form using just the gain or just the phase.

1.6  Random Decrement Method

 The concept of random decrement is based on averaging enough samples of the same data 
set to remove the random part and retain the deterministic part.11 (p. 20) The deterministic part for 
an SDOF response will be exactly proportional to the autocorrelation function under stationary 
and Gaussian white noise conditions.12 Under these conditions, the autocorrelation function is also 
exactly proportional to the free decay response of the SDOF system. So the recovered deterministic 
part, referred to as the Randomdec signature, can be used to interrogate the free decay of an SDOF 
system.

 An amplitude value is set at a level where the data fluctuations regularly exceed, filtered for 
a specific mode. The filter signal captures the response of just the single mode. For each instant of 
time the data set reaches this set amplitude level, a new time history is created by shifting the data 
back to the initial time that the data first reached the set amplitude level. All of the time history 
data sets are then averaged together. This signal is the Randomdec signature and is simply a trace 
formed by a waveform averaging of a number of specially selected segments from an observed time 
history.12 
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 Damping ratio can be found by fitting the Randomdec signature using a Gaussian white 
noise SDOF relationship such as equation (25) or applying a logarithmic decrement approach  
as in equations (16) or (23). A simple approach is to fit the amplitude envelope curve of the Ran-
domdec data to the exponential form of equation (8).

1.7  Numerical Models

 Eigenanalysis, or modal analysis, can be used to extract dynamic properties of systems 
including damping ratio. This can be done traditionally using state-space modeling or for more 
complex systems using the finite element method. First, the traditional state-space representative 
approach is described and then an approach using COMSOL Multiphysics is described. COMSOL 
Multiphysics is a finite element analysis, solver, and simulation software package for various phys-
ics and engineering applications, especially coupled phenomena, or multiphysics. Care must be 
made when examining the solution in COMSOL. In the COMSOL eigen-solver, COMSOL does 
not use the traditional definition of an eigenvalue.

1.7.1  Traditional Approach

 A damped acoustic system is assumed to behave as the model in equation (1)1 (p. 8),  

2 (pp. 22–26), 3 (p.20) and a pressure solution is described by equation (30), where P is the complex 
pressure amplitude:2 (pp. 22–26), 5 (p. 212)

 p = Peiω t .  (30)

The traditional state-space system defines the eigenvalue as λ̂ = iω̂  and so, the frequency, in terms 

of the eigenvalue, is expressed as fλ = −λ̂i 2π . The complex eigenvalue is defined as equation (31):

 λtrad = a + bi , (31)

where a and b are the real and imaginary parts of the traditional complex eigenvalue, ltrad. For 
a second-order system, the eigenvalues (or system poles) are found such that the real and imaginary 
parts are a =  – ζ wn and b = ±wd. The angular natural frequency and damping ratio can then be writ-
ten as equations (32) and (33), respectively:

 ωn = a2 + b2  (32)
and

 ζ = −a

a2 + b2
.  (33)

Equations (32) and (33) can also be observed clearly by examining an underdamped second-order 
system in the complex plane.
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 The angular damped natural frequency is given as equation (34):

 ωd =ωn 1−ζ 2 = b  (34)

and the angular damped resonant frequency, or angular peak center frequency, wp, 
is given as9 (pp. 18–21) equation (35):

 ω p =ωn 1− 2ζ 2 = b2 − a2 .  (35)

 Using the traditional definition of the eigenvalue, λ̂ = i2π f̂ , and the definition from equa-
tion (31), the complex eigenfrequencies can easily be determined as equation (36): 

 ftrad = fr + fi i =
b
2π

− a
2π

i ,  (36)

where fr and fi are the real and imaginary part of the complex eigenfrequency. So equation (36)
gives a = –2 p fi and b = 2 p fr . These can be substituted into equations (32)–(35) which gives the 
natural frequency, damping ratio, damped natural frequency, and peak frequency in terms of  
the complex eigenfrequency shown in equations (37)–(40), respectively;

 fn = fr
2 + fi

2 ,  (37)

 ζ =
fi

fr
2 + fi

2
, (38)

 fd = fr ,   (39)

and

 fp = fr
2 − fi

2 ,  . (40)

1.7.2  COMSOL Approach

 Opposed to the traditional definition, COMSOL defines the eigenvalues as λ̂ = −iω̂  for 
a pressure solution of the form in equation (30) in the acoustic eigensolver and so, the frequency,  
in terms of the eigenvalue, is expressed as fλ = λ̂i 2π .  This is a subtle difference from the tradi-
tional definition, but is important in the interpretation of the COMSOL results.  
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 The COMSOL complex eigenvalue is described in equation (41):

 λCOMSOL = λ r + λ i i .  (41)

Because the COMSOL defined notation is λCOMSOL = −λ trad ,  equation (31) gives the COMSOL 
eignevalues real and imaginary parts as lr = –a and li = –b. Using these relationships in equa-
tions (32) and (33) gives the natural frequency and damping ratio in the COMSOL framework 
as equations (42) and (43), respectively:

 ωn = λ r
2 + λi

2
 (42)

and

 ζ =
λr

λr
2 + λi

2
. (43)

 Substituting these relationships into equations (34) and (35) as well gives the angular 
damped natural frequency and angular damped resonant frequency as equations (44) and (45):

 ωd =ωn 1−ζ 2 = λi  (44)

and

 ω p =ωn 1−2ζ 2 = λi
2 − λr

2 .  (45)

 Using the COMSOL defined eigenvalue, λ̂ = −i2π f̂ ,  and equation (41), the COMSOL  
complex eigenfrequenies can easily be determined:

 fCOMSOL = fr + fi i = −
λ i
2π

+
λr
2π

i .  (46)

So equation (46) gives li = –2 p fr and lr = 2 p fi  . These can be substituted into equations (42)–(45). 
This gives the natural frequency, damping ratio, damped natural frequency, and peak center  
frequency, in terms of the complex eigenfrequency shown in equations (47)–(50), respectively:

 fn = fr
2 + fi

2 ,  (47)

 ζ =
fi

fr
2 + fi

2
,  (48)
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 fd = fr ,  (49)

and

 fp = fr
2 − fi

2 .  (50)

 While the actual eigenvalues in COMSOL are negative of the traditional eigenvalues, the 
key parameters, undamped natural frequency, damping ratio, damped natural frequency, and peak 
frequency, are all estimated in the same manner in COMSOL as in the traditional approach. In 
other words, equations using the traditional approach, equations (37)–(40), are identical to equa-
tions using the COMSOL approach, equations (47)–(50).

 The damping ratio can be calculated from eigenvalues using equation (33) for traditional 
state-space models and from equation (43) for COMSOL. The damping ratio can also be calculated 
from complex frequency; equation (38) for a state-space model is identical to equation (48) for 
COMSOL. 
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APPENDIX A — QUALITY FACTOR, HALF-POWER METHOD,
AND HALF-QUADRATIC GAIN METHOD

A.1  Quality Factor

 Quality factor is defined for a harmonic excitation at the undamped natural frequency  
as the total energy stored, Estored, divided by the total energy lost, Elost, in one cycle:13 (pp. 3–13)

 Q ≡ 2π
Estored
Elost

.  (51)

As described in reference 13, the total energy stored for the SDOF mechanical system can be  
written as equation (52) using the response functions described in section 1.5:

 Estored = 1
2
kxmax

2 = k
2
H ( f ) 2 ,  (52)

where xmax is the maximum value of the dependent variable, e.g., position or pressure, and the 
energy dissipated over one cycle is equivalent to the work done by the applied force over one cycle:

 Elost = F (t)dx
1 cycle
∫ = F (t) !x

0

2π /ω

∫ (t) dt .  (53)

For an applied harmonic force of F  sin(w t), the SDOF solution can be found and the terms in 
equation (53) can then be written as equation (54):

 Elost = F sin(ωt)
0

2π /ω

∫ H ( f )ω cos ωt −φ ( f )( )( )dt .  (54)

Using equation (29), this is simplified to equation (55):

 Elost = 2πζ k f
fn

⎛

⎝⎜
⎞

⎠⎟
H ( f ) 2 .  (55)
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Substituting equation (52) and equation (55) into equation (51) gives equation (56):

 Q = 1

2ζ f fn( ) .  (56)

With maximum power at the undamped natural frequency, the quality factor is given by  
equation (57):

 Q = 1
2ζ

.  (57)

A.2  Half-Power Method

 The time-averaged power over one period, given by equation (58), is similar to the energy 
dissipated over one cycle described by equation (53):

 P = ω
2π

F (t) !x(t)dt
0

2π /ω

∫ .  (58)

The average power over one cycle is then given as equation (59):

 P = 2π fζ k f
fn

⎛

⎝⎜
⎞

⎠⎟
H ( f ) 2 .  (59)

Immediately, it is seen that power is not a scalar multiple of gain squared since there is also  
a functional dependence on frequency and damping ratio.

 Expanding power by incorporating equation (27) gives equation (60):

 P =
2π fζ f fn( )F 2

k 1− f fn( )2⎡
⎣⎢

⎤
⎦⎥
2
+ 2ζ f fn⎡⎣ ⎤⎦

2⎛
⎝⎜

⎞
⎠⎟

.  (60)

It can be shown by differentiating equation (60) that the maxima occurs at equation (61). There-
fore, the maximum power—no matter the damping ratio—occurs at the undamped natural  
frequency5 (pp. 14,15)

 f = fn   . (61)
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The maximum power is found as equation (62) by substituting equation (61) into equation (60):

 Pmax =
π fnF

2

2kζ
.  (62)

 Equations (60) and (62) can be used to solve for frequencies at half  the maximum power. 
With P = Pmax/2, the upper and lower frequencies are found by solving for damping ratio and given 
as equations (63) and (64), respectively:

 fu,P = ζ + ζ 2 +1( ) fn  (63)

and

 fl,P = −ζ + ζ 2 +1( ) fn ,  (64)

where fu,P and fl,P are the upper and lower frequencies at the half-power level on the SDOF power 
curve. These are also referred to as the upper and lower half-power point, respectively. Subtracting 
equation (64) from equation (63) gives equation (65):

 fu,P − fl,P = 2ζ fn .  (65)

 Equation (66) is found by rearranging equation (65): 

 ζ =
fu,P − fl,P

2 fn
.  (66)

Therefore, it is verified that, when using the power curve, the half-power method is exact. Given the 
undamped natural frequency and the power response curve, a damping ratio can then be estimated 
exactly.  

 However, the undamped natural frequency and the power response are not usually known, 
especially when extracting information from measured data. In the half-power method, an approxi-
mation is made that the square of the frequency response curve is the same functional form as 
the power curve. With this approximation, the frequency at the peak amplitude of a spectrum is 
assumed to be equivalent to the undamped natural frequency. Additionally, the frequency at the 
half-power level on the power response curve is assumed to occur at half  the quadratic gain level 
on the frequency response function curve. With these approximations, the half  power method can 
be written approximately as 

 ζ ≈
fu − fl
2 fp

for ζ < 0.05 , (67)
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where the frequencies can be extracted from the square of the frequency response function as 
described in section 1.1.

 Quality factor can also be approximated from equations (57) and (67) and written as 
equation (68):

 Q ≈
fp

fu − fl
for ζ < 0.05 .  (68)

A.2.1  Half-Power Method Error

 The error associated with the half-power method assumptions are eliminated as damping 
approaches zero. This error can be visualized and estimated by comparing the power curve directly 
to the square of the frequency response curve.

 First, normalizing the power curve by the maximum power, using equations (60) and (62)  
gives equation (69):

 Pnorm = P
Pmax

=
2ζ f fn( )2

1− f fn( )2( )2 + 2ζ f fn( )2
.  (69)

The frequency response function is previously given by equation (27) and rewritten here as equa-
tion (70). It can be shown by differentiating equation (70) that the maxima occurs at equation (71), 
which was also mentioned as equation (35). The maximum value was previously given as equation 
(28) and is rewritten here as equation (72):

 H ( f ) = F / k

1− f fn( )2⎡
⎣⎢

⎤
⎦⎥
2
+ 2ζ f fn⎡⎣ ⎤⎦

2
,  (70)

 f = 1− 2ζ fn ≡ fp ,  (71)

and

 H ( fp ) max
= F / k

2ζ 1−ζ 2
.  (72)
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 Next, normalizing the frequency response curve by the maximum power gives equation (73):

 H ( f ) norm =
H ( f )

H ( fp ) max

= 2ζ
1−ζ 2

1− f fn( )2( )
2
+ 2ζ f fn( )2

.  (73)

Then, squaring equation (73) gives equation (74), the normalized form of the quadratic gain:

 H ( f ) 2
norm

=
4 ζ 2 −ζ 4( )

1− f fn( )2( )2 + 2ζ f fn( )2
.  (74)

Comparing equation (69) to equation (74) directly shows that there is a notable difference. The 
error and fractional error can be given as equations (75) and (76), respectively; and represents the 
error associated with applying the half-power method to a PSD:

 ε = Pnorm − H ( f ) 2norm =
2ζ f fn( )2 + 4ζ 2 ζ 2 −1( )

1− f fn( )2( )2 + 2ζ f fn( )2
 (75)

and

 εfrac =
Pnorm − H ( f ) 2norm

Pnorm
= 1− 1−ζ( ) fn

f
⎛
⎝⎜

⎞
⎠⎟
2

.  (76)

 Figure 1 shows three comparative plots of the normalized power curve, equation (69), 
and the normalized square of the frequency response function (normalized quadratic gain), 
equation (74), for undamped natural frequency of fn = 1,000 Hz and damping ratio of ζ = 0.05, 
ζ = 0.10, and ζ = 0.20. The intersection of the curve with the dashed line at an amplitude level of 
0.5 represents the half-power point or the half-quadratic gain level. The separation of these points 
represents a margin of error.

 Another way to visualize the error is to examine what is the amplitude of the square of the 
frequency response function (quadratic gain) when the frequency is at the half-power level based 
on the power curve; i.e., using equations (63) and (64) in equation (74). This frequency always 
occurs at half  the power no matter what the damping. The error in using the normalized square 
of the frequency response function can be visualized by observing the deviation of the value from 
one-half. Figure 2 shows a representation of error margin associated with using the upper and 
lower frequency half-power point. It is seen that as the damping value approaches zero, it becomes 
acceptable to use the frequency response function at the half-quadratic gain level in the half-power 
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method. But for values where ζ > 0.05, the amplitude level on the quadratic gain curve at the 
half-power point occur at values that diverge significantly from one-half. This is clearly observed 
in figure 2. Since the gain-squared response curve shifts left from the power curve, as observed in 
figure 1, the amplitude level at the upper frequency decreases and the amplitude level at the lower 
frequency increases from the one-half-power amplitude level at the half-power point.
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Figure 1.  Power and quadratic gain function plots using an undamped natural frequency
  of fn = 1,000 Hz and three different damping ratios:  (a) ζ  =  0.05, (b) ζ  =  0.10, 
  and (c) ζ  =  0.20.
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A.3  Half-Quadratic Gain Method

 The half-power method is a convenient method to estimate damping for low damping ratio. 
However, an exact method can be developed so the spectra can be used directly to estimate damp-
ing. Instead of assuming that the square of the frequency response function is proportional to the 
power, the square of the frequency response function can be used directly to derive a formula to 
estimate damping. The half-quadratic gain method considers that the system behaves as an SDOF 
described by equation (1). Since a PSD is directly proportional to the square of the frequency 
response function, it can be used at a specified level to estimate damping exactly. The formulation 
is based on using the frequencies that are associated with half  the peak amplitude of the square of 
the frequency response function.

 Solving equation (77) using equations (70) and (72) gives the frequencies at half  the gain 
squared value:

 
H ( fp )

2

max
2

= H ( f ) 2 . (77)

The upper and lower frequencies, f
u,H2 and f

l,H2 ,at the half-gain-squared (half-quadratic gain) 

level for an SDOF are found to be equations (78) and (79) in terms of the undamped natural fre-

quency:

 f
u,H2 = 1−2ζ 2 + 2ζ 1−ζ 2 fn  (78)

and

 f
l,H2 = 1−2ζ 2 − 2ζ 1−ζ 2 fn .  (79)

The frequency at the peak amplitude of an SDOF is known in terms of the undamped natural 
frequency from equation (71) and can be substituted into equations (78) and (79). This results in 
equations (80) and (81):

 f
u,H2 = 1+

2ζ 1−ζ 2

1−2ζ 2 fp  (80)

and

 f
l,H2 = 1−

2ζ 1−ζ 2

1−2ζ 2 fp .  (81)
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 Although the expressions are much more complex, a similar approach as that used in the 
half-power method to obtain equation (65), is used to obtain a half-quadratic gain formula.  
Subtracting equation (81) from equation (80) gives equation (82):

 f
u,H2 − f

l,H2 = 1+
2ζ 1−ζ 2

1−2ζ 2 − 1−
2ζ 1−ζ 2

1−2ζ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
fp .  (82)

Solving this for damping ratio gives equation (83), and since a PSD of an SDOF is a scalar 
multiple of the frequency response function squared, the following can be substituted:  
f
u,H2 = fu and f

l,H2 = fl :

 ζ = 1
2
− 4+ 4

fu − fl( )
fp

⎛

⎝
⎜

⎞

⎠
⎟

2

−
fu − fl( )
fp

⎛

⎝
⎜

⎞

⎠
⎟

4⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

.  (83)
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APPENDIX B — FITTING A DECAYING EXPONENTIAL TO OSCILLATION MAXIMA

 Appendix B shows that the decay rate of a decaying envelope of an SDOF underdamped 
response is identical to the decay rate of a curve through the SDOF underdamped response local 
maxima. This allows for determination of damping ratio based on an exponential fit through the 
local maxima and also shows that the logarithmic decrement method is exact. 

 For an underdamped system, 0 < ζ < 1, the particular solution of equation (1) with pressure 
as the dependent variable is given by equation (84):7 (p. 245)

 p(t) = e
−ζ ωn t ζ

1−ζ 2
p(0)+ 1

ωd
!p(0)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
sin ωd t( )+ p(0)cos ωd t( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. (84)

The initial conditions are given as the initial pressure amplitude, p(0), and initial rate of change 
of pressure, !p(0). Equation (84) can be simplified using a linear combination of sinusoids, 

acos(x) + bsin(x) = a2 + b2 cos(x – tan2–1(b,a)), where tan2–1 is the two-argument arctangent and  
covers the entire circular range.

 By factoring equation (84) in such a way to obtain equation (85), the signum function of the 
initial pressure amplitude emerges:

 p(t) = p(0) ⋅sgn( p(0))

1−ζ 2
⋅X ⋅e

−ζ ωn t cos ωd t − tan2
−1 ζ

1−ζ 2
p(0)+ 1

ωd
!p(0), p(0)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
.  (85)

However, equation (85) can be further reduced to equation (86) since, in this form, a sign change is 
nullified by the difference in phase between the two-argument arctangent and the standard arctan-
gent. Thus, the two-argument arctangent reverts back to the standard arctangent upon factoring 
p(0) out of the a2 + b2 term. The initial amplitude, p(0), was originally factured out of X to retain 
p(0) as an independent factor in equation (85). The simplified form is given as equations (86)–(88). 
Equation (86) was previously written as equation (6):

 p(t) = p(0)

1−ζ 2
⋅X ⋅e

−ζ ωn t cos ωd t − tan
−1(φ)( ) , (86)

 X = 1+ 2ζ 1−ζ 2 !p(0)
p(0)ωd

+ 1−ζ 2( ) !p(0)
2

p(0)2ωd
2 , (87)

and
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 φ = ζ

1−ζ 2
+
!p(0)

p(0)ωd
.  (88)

The amplitude envelope of equation (86) was given previously in equation (8). 

 For a zero initial rate of change of pressure, commonly examined in most textbooks,  
equation (86) simply becomes equation (89),7 (p. 245) and then the initial pressure at t = 0  
is exactly a local maximum for positive p(0):

 p(t) = p(0)

1−ζ 2
⋅e−ζωnt cos ωd t − tan

−1 ζ 1−ζ 2( )⎛
⎝

⎞
⎠ .  (89)

It is noted previously that the envelope of a damped free response is given as an exponential decay.  
As shown in figure 3, the amplitude envelope (red curve), described in equation (8), is actually tan-
gent to the equation time history (blue curve) at locations near the oscillation maxima.

 It can be shown analytically that the decay rate is identical for the decaying amplitude enve-
lope (red curve) and for an exponential decay through the response maxima (black dashed curve). 
There is only an amplitude correction needed if  the exponential decay envelope is desired. How-
ever, since the decay rates are identical, either the envelope or an exponential decay through the 
maxima can be used to give the damping ratio exactly.

 The local oscillation maxima of the decaying response function, equation (86), can be found 
by calculating the derivative and solving the inequality equation (90). This will explicitly give  
a range where the pressure is increasing beginning at a local minima and ending at a local maxima. 

 ∂p(t)
∂t

> 0. (90)
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Simplifying the derivative, knowing that X  ≥  0 for 0  ≤   ζ   ≤  1, gives the following range  
of t for n = 0,1,2,...

 

∂p(t)
∂t

> 0 when

1
ωd

tan−1(Ψ )+ 2n −1( )π
ωd

< t < 1
ωd

tan−1(Ψ )+ 2nπ
ωd

,
p(0) > 0 and !p (0) ≥ 0

p(0) < 0, !p (0) > 0, and p(0) / !p (0) ≥ −ζ 1−ζ 2 ωd

⎧
⎨
⎪

⎩⎪

1
ωd

tan−1(Ψ )+ 2nπ
ωd

< t < 1
ωd

tan−1(Ψ )+ 2n +1( )π
ωd

,

p (0) < 0 and !p (0) ≤ 0

p(0) < 0, !p (0) > 0, and p(0) / !p (0) < −ζ 1−ζ 2 ωd

p(0) > 0, !p (0) < 0, and p(0) / !p (0) > −ζ 1−ζ 2 ωd

⎧

⎨
⎪⎪

⎩
⎪
⎪

1
ωd

tan−1(Ψ )+ 2n +1( )π
ωd

< t < 1
ωd

tan−1(Ψ )+ 2n + 2( )π
ωd

, p(0) > 0, !p (0) < 0, and p(0) / !p (0) ≤ −ζ 1−ζ 2 ωd .{

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

  
  (91)

 The phase angle, Ψ, in equation (91) is obtained when simplifying the derivative using the 
arctangent difference trigonometric identity: tan–1(a)  –  tan–1(b)  = tan2–1(a – b, 1 + a · b) and is given 
as equation (92):

 

Ψ =
φ 1−ζ 2 −ζ

1−ζ 2 +φζ
=

!p(0) ⋅ 1−ζ 2( )
!p(0)ζ 1−ζ 2 + p(0)ωd

.  (92)

The standard arctangent is used in equation (91), as appropriate conditions and periodicity are 
incorporated throughout. From the ranges of an increasing response given in equation (91), the 
local oscillation maxima can be determined to occur at tmax,n for n = 0,1,2,...

 

tmax,n =

1
ωd

tan−1(Ψ )+ 2nπ
ωd

,
p(0) > 0 and !p(0) ≥ 0

p(0) < 0, !p(0) > 0, and p(0) / !p(0) ≥ −ζ 1−ζ 2 ωd

⎧
⎨
⎪

⎩⎪

1
ωd

tan−1(Ψ )+ 2n +1( )π
ωd

,

p(0) < 0 and !p(0) ≤ 0

p(0) < 0, !p(0) > 0, and p(0) / !p(0) < −ζ 1−ζ 2 ωd

p(0) > 0, !p(0) < 0, and p(0) / !p(0) > −ζ 1−ζ 2 ωd

⎧

⎨
⎪⎪

⎩
⎪
⎪

1
ωd

tan−1(Ψ )+ 2n + 2( )π
ωd

, p(0) > 0, !p(0) < 0, and p(0) / !p(0) ≤ −ζ 1−ζ 2 ωd .{

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

  
  (93)
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Substituting equation (93) into equation (86) and simplifying gives the values at the maxima  
for n = 0,1,2,...

 

p tmax, n( ) =

p(0)

1−ζ 2
⋅X ⋅e

− ζ
1−ζ 2

2⋅n⋅π + tan−1(Ψ )( )
cos 2⋅n⋅π +tan−1(Ψ )−tan−1(φ)( ) ,

p(0) > 0 and !p (0) ≥ 0

p(0) < 0, !p (0) > 0, and p(0) / !p (0) ≥ −ζ 1−ζ 2 ωd

⎧
⎨
⎪

⎩⎪

p(0)

1−ζ 2
⋅X ⋅e

− ζ
1−ζ 2

2⋅n+1( )⋅π + tan−1(Ψ )( )
cos 2⋅n+1( )⋅π +tan−1(Ψ )−tan−1(φ)( ) ,

p (0) < 0 and !p (0) ≤ 0

p(0) < 0, !p (0) > 0, and p(0) / !p (0) < −ζ 1−ζ 2 ωd

p(0) > 0, !p (0) < 0, and p(0) / !p (0) > −ζ 1−ζ 2 ωd

⎧

⎨
⎪⎪

⎩
⎪
⎪

p(0)

1−ζ 2
⋅X ⋅e

− ζ
1−ζ 2

2⋅n+2( )⋅π + tan−1(Ψ )( )
cos 2⋅n+ 2( )⋅π +tan−1(Ψ )−tan−1(φ)( ) , p(0) > 0, !p (0) < 0, and p(0) / !p (0) ≤ −ζ 1−ζ 2 ωd .{

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 
  (94)

The arctangent functions are not combined into the two-argument arctangent in equation (94); 
however, the expression tan2−1 Ψ −φ, 1+φΨ( ) = tan−1(Ψ )− tan−1(φ) can be used to replace the 
arctangent terms.

 The value of the amplitude envelope at this time is different from the value at the response 
function at the maxima and found by substituting equation (93) into equation (8) for n = 0,1,2,...

 

A tmax, n( ) = p tmax, n( ) =

p(0)

1−ζ 2
⋅X ⋅e

− ζ

1−ζ 2
2⋅n⋅π +tan−1(Ψ )( )

,
p(0) > 0 and !p (0) ≥ 0

p(0) < 0, !p (0) > 0, and p(0) / !p (0) ≥ −ζ 1−ζ 2 ωd

⎧
⎨
⎪

⎩⎪

p(0)

1−ζ 2
⋅X ⋅e

− ζ

1−ζ 2
2⋅n+1( )⋅π +tan−1(Ψ )( )

,

p (0) < 0 and !p (0) ≤ 0

p(0) < 0, !p (0) > 0, and p(0) / !p (0) < −ζ 1−ζ 2 ωd

p(0) > 0, !p (0) < 0, and p(0) / !p (0) > −ζ 1−ζ 2 ωd

⎧

⎨
⎪⎪

⎩
⎪
⎪

p(0)

1−ζ 2
⋅X ⋅e

− ζ

1−ζ 2
2⋅n+2( )⋅π +tan−1(Ψ )( )

, p(0) > 0, !p (0) < 0, and p(0) / !p (0) ≤ −ζ 1−ζ 2 ωd .{

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

  
  (95)
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 There are several ways to show that both the decaying response amplitude envelope and the 
decaying response through the oscillation maxima follow the same decay. The simplest approach 
is to examine the ratio of the amplitude envelope and the decaying response at all the times the 
decaying response has a maximum. This ratio is equal to equation (96) for n = 0,1,2,...

 

A tmax, n( )
p tmax, n( ) =

sec 2 ⋅n ⋅π + tan−1(Ψ )− tan−1(φ)( ) ,
p(0) > 0 and !p (0) ≥ 0

p(0) < 0, !p (0) > 0, and p(0) / !p (0) ≥ −ζ 1−ζ 2 ωd

⎧
⎨
⎪

⎩⎪

sec 2 ⋅n +1( ) ⋅π + tan−1(Ψ )− tan−1(φ)( ) ,
p (0) < 0 and !p (0) ≤ 0

p(0) < 0, !p (0) > 0, and p(0) / !p (0) < −ζ 1−ζ 2 ωd

p(0) > 0, !p (0) < 0, and p(0) / !p (0) > −ζ 1−ζ 2 ωd

⎧

⎨
⎪⎪

⎩
⎪
⎪

sec 2 ⋅n + 2( ) ⋅π + tan−1(Ψ )− tan−1(φ)( ) , p(0) > 0, !p (0) < 0, and p(0) / !p (0) ≤ −ζ 1−ζ 2 ωd .{

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

  (96)

For all the maxima, i.e., all the integer values of n, with some manipulation, this simplifies to equa-
tion (97):

 
A tmax,n( )
p tmax,n( ) =

1

1−ζ 2
.  (97)

The ratio is a constant for a given damping ratio and not dependent on frequency. This confirms 
that the exponential decay rate for the amplitude envelope is identical to the decay rate of the 
response maxima. Equation (97) also provides an amplitude correction factor to obtain the ampli-
tude envelope if  a fitting expression is found based on the local maxima. An exponential fitting 
exercise comparing the amplitude envelope and the exponential decay through the oscillation 
maxima also verifies this solution.
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 For completion, the time of tangent intersection is found by equating equations (8) and (86)  
and solving for the time for n = 0,1,2,...

 

tintersection, n =

1
ωd

tan−1(φ)+ 2nπ
ωd

,
p(0) > 0 and !p (0) ≥ 0

p(0) < 0, !p (0) > 0, and p(0) / !p (0) ≥ −ζ 1−ζ 2 ωd

⎧
⎨
⎪

⎩⎪

1
ωd

tan−1(φ)+
2n +1( )π
ωd

,

p (0) < 0 and !p (0) ≤ 0

p(0) < 0, !p (0) > 0, and p(0) / !p (0) < −ζ 1−ζ 2 ωd

p(0) > 0, !p (0) < 0, and p(0) / !p (0) > −ζ 1−ζ 2 ωd

⎧

⎨
⎪⎪

⎩
⎪
⎪

1
ωd

tan−1(φ)+
2n + 2( )π
ωd

, p(0) > 0, !p (0) < 0, and p(0) / !p (0) ≤ −ζ 1−ζ 2 ωd .{

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

 (98)

Substituting this into equations (8) or (86) and simplifying gives the values at the intersection  
for n = 0,1,2,...

 

A tintersection, n( ) =

p(0)

1−ζ 2
⋅X ⋅e

− ζ

1−ζ 2
2⋅n⋅π +tan−1(φ )( )

,
p(0) > 0 and !p (0) ≥ 0

p(0) < 0, !p (0) > 0, and p(0) / !p (0) ≥ −ζ 1−ζ 2 ωd

⎧
⎨
⎪

⎩⎪

p(0)

1−ζ 2
⋅X ⋅e

− ζ

1−ζ 2
2⋅n+1( )⋅π +tan−1(φ )( )

,

p (0) < 0 and !p (0) ≤ 0

p(0) < 0, !p (0) > 0, and p(0) / !p (0) < −ζ 1−ζ 2 ωd

p(0) > 0, !p (0) < 0, and p(0) / !p (0) > −ζ 1−ζ 2 ωd

⎧

⎨
⎪⎪

⎩
⎪
⎪

p(0)

1−ζ 2
⋅X ⋅e

− ζ

1−ζ 2
2⋅n+2( )⋅π +tan−1(φ )( )

, p(0) > 0, !p (0) < 0, and p(0) / !p (0) ≤ −ζ 1−ζ 2 ωd .{

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

  (99)
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APPENDIX C — OTHER RELATIONSHIPS

 A damped time harmonic pressure wave can be written as equation (100):2 (p. 17), 5 (p. 212)

  

 p(x,t) = P eiω te−i kx( )e−αx = P eiω te−i kx( )e−αct = P eiω te−i kx( )e−βt , (100)

where c is the sound speed, P is the pressure amplitude, p is the pressure, x is the spatial coordinate, 
t is the time coordinate, k is the wave number, and w is the angular frequency. 

 The temporal absorption coefficient in equation (100), b, is defined in equation (10).5 (pp. 8–11,17) 

This parameter is commonly used in physical models including acoustics and combustion  
stability for example. It can also be represented as the spatial absorption coefficient  
by equation (101):3 (p. 299),5 (p. 217) 

 β =α ⋅c . (101)

The temporal and spatial absorption coefficient can be written in terms of quality factor using 
equations (10), (57), and (101):5 (pp. 8–11,17)

 Q =
π fn
β

=
π fn
α ⋅c

. (102)

In terms of damping ratio, using equations (57) and (102):

 
ζ = β

2π fn
= α ⋅c
2π fn

.  (103)

These are listed in table 1 and can be compared to experimentally extracted values. 
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