# Center for Advanced Turbomachinery and Energy Research Vasu Lab

# Thermal Stability Investigation using Ellipsometry

Leigh Nash<sup>1</sup>, Jennifer Klettlinger<sup>2</sup>, Subith Vasu<sup>1</sup>

<sup>1</sup> Center for Advanced Turbomachinery and Energy Research, Mechanical and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816

NASA Glenn Research Center
 2100 Brookpark Road, Cleveland, OH 44135





#### **Outline**

- Introduction Replacement of the JFTOT color standard
- Methods Principles of Ellipsometry
- Results Discussion of repeatability, increasing temperature, and increasing naphthalene concentration
- Conclusion

### **Introduction – Thermal Stability**

- Defined as the degree to which a fuel breaks down when heated
- Poor thermal stability leads to engine component fouling and decreased fuel flow
- Important to understand to anticipate maintenance schedules and component wear

#### **Introduction – Jet Fuel Thermal Oxidation Test**

- ASTM Standard D3241 "Standard Test Method for Thermal Oxidation Stability of Aviation Turbine Fuels"
- -Resistively heat tubes to 260 °C
- -Flow fuel for 2.5 hours
- -Perform color and pressure tests
- –Increase temperature by 5 °C and repeat until failure



#### **Introduction – Jet Fuel Thermal Oxidation Test**

#### Color standard



Browne, S. T., Wong, H., Hinderer, C. B., and Klettlinger, J. "Enhancement of Aviation Fuel Thermal Stability Characterization Through Application of Ellipsometry," 2012.

3 or greater is failing







#### **Introduction – Implementation of Ellipsometry**

- Ellipsometry added to ASTM D3241
- Benefits
- –Quantitative

-Sensitive to small changes

- -Nondestructive
- -Versatile







### Introduction – Sasol IPK and Naphthalene

- Sasol Iso-Paraffinic Kerosene: Fisher-Tropsch synthetic jet fuel
- -Mostly  $C_{10}$  and  $C_{12}$  isoparaffins (>95%)
- -Far fewer components than traditional jet fuels

Naphthalene: 2 ringed aromatic additive

# **Introduction – Fuel Composition**

| Fuel      | Aromatics v% | Mercaptan Sulfur m% | Total Sulfur m% | Hydrogen Content m% |
|-----------|--------------|---------------------|-----------------|---------------------|
| Sasol IPK | 0.5          | <0.001              | <0.001          | 15.1                |
| S-8       | 0.0          | 0.000               | 0.002           | 15.4                |
| Jet A     | 18.7         | 0.001               | 0.21            | 14.09               |
| JP-8      | 16.5         | 0.000               | 0.060           | 13.8                |

Moses, C. A. "Comparative evaluation of semi-synthetic jet fuels," Contract Vol. 33415, No. 02-D, 2008, p. 229





### **Methods – Tube Preparation with HLPS**

- Tubes prepared with Hot Liquid Process Simulator
- Used JFTOT specifications except for tube substrate



# **Methods – Principles of Ellipsometry**

 At an interface light reflects and refracts according to Snell's Law



$$n_0 \sin(\phi_i) = n_1 \sin(\phi_1)$$





### **Methods – Principles of Ellipsometry**

Reflection and refraction occurs at each interface





# **Methods – Principles of Ellipsometry**

 Fresnel Relations used to track intensity and phase through each interface and calculates thickness

$$R^{p} = \frac{r_{12}^{p} + r_{23}^{p} \exp(-j2\beta)}{1 + r_{12}^{p} r_{23}^{p} \exp(-j2\beta)}$$

$$R^{s} = \frac{r_{12}^{s} + r_{23}^{s} \exp(-j2\beta)}{1 + r_{12}^{s} r_{23}^{s} \exp(-j2\beta)}$$





# Methods – Modeling

 New amorphous dispersion formula used to model n and k change with wavelength

$$k(\omega) = \sum_{j=1}^{N} \frac{f_j(\omega - \omega_g)^2}{(\omega - \omega_j)^2 + \Gamma_j^2} \text{ for } \omega > \omega_g \qquad n(\omega) = n_\infty + \sum_{j=1}^{N} \frac{B_j(\omega - \omega_j) + C_j}{(\omega - \omega_j)^2 + \Gamma_j^2}$$

$$k(\omega) = 0$$
 for  $\omega \leq \omega_g$ 

$$B_{j} = \frac{f_{j}}{\Gamma_{j}} \left[ \Gamma_{j}^{2} - \left( \omega_{j} - \omega_{g} \right)^{2} \right]$$

$$C_j = 2f_j \Gamma_j (\omega_j - \omega_g)$$



Horiba New Amorphous Dispersion Formula.







# **Results – Repeatability**

- Tubes 1311 and 1329
- -Sasol IPK with 99% naphthalene
- -385 K
- -1334.87 and 1278.22 Å (4.2% difference)







# **Results – Increasing Temperature**

Deposit thickness increases with increasing temperature









#### **Results – Increasing Naphthalene Concentration**

 Increasing naphthalene concentration increases deposit thickness

| <b>Tube Number</b> | Temperature<br>(K) | Percent<br>Naphthalene | Average Deposit Thickness (Å) |
|--------------------|--------------------|------------------------|-------------------------------|
| 1309               | 385                | 0                      | 1037.438                      |
| 1329               | 385                | 1                      | 1278.222                      |
| 1332               | 385                | 3                      | 1307.806                      |
| 1333               | 385                | 5                      | 1796.44                       |

Opposite effect seen in aluminum tubes







#### **Future Work**

- Measure thermal stability of other fuels and additives using the same technique
- Perform more tests at identical conditions to better asses repeatability
- Create predictive model for deposit thickness





#### **Conclusion**

- Ellipsometry has been added to the thermal stability standard
- This method was shown to be repeatable
- Increasing temperature increases the deposit thickness
- Increasing naphthalene concentration increases deposit thickness





### Acknowledgements

- NASA Harriet G. Jenkins Fellowship
- Michelle Sestak and Celine Eypert from Horiba Scientific





# Questions?



