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Abstract

Three random number generators, which produce Gaussian white noise sequences, were
compared to assess their suitability in aircraft dynamic modeling applications. The first gen-
erator considered was the MATLAB R� implementation of the Mersenne-Twister algorithm.
The second generator was a website called Random.org, which processes atmospheric noise
measured using radios to create the random numbers. The third generator was based on
synthesis of the Fourier series, where the random number sequences are constructed from
prescribed amplitude and phase spectra. A total of 200 sequences, each having 601 random
numbers, for each generator were collected and analyzed in terms of the mean, variance, nor-
mality, autocorrelation, and power spectral density. These sequences were then applied to
two problems in aircraft dynamic modeling, namely estimating stability and control deriva-
tives from simulated onboard sensor data, and simulating flight in atmospheric turbulence.
In general, each random number generator had good performance and is well-suited for air-
craft dynamic modeling applications. Specific strengths and weaknesses of each generator
are discussed. For Monte Carlo simulation, the Fourier synthesis method is recommended
because it most accurately and consistently approximated Gaussian white noise and can be
implemented with reasonable computational e↵ort.
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Nomenclature

Roman

az vertical accelerometer output, g
ck Fourier series amplitude
cov(.), var(.) covariance and variance
E[.] expectation operator
f frequency, Hz
fN Nyquist frequency, = 1/2�t Hz
Gvv one-sided power spectral density
g gravitational acceleration, = 32.174 ft/s2

i sample index variable
J cost function
j imaginary number, =

p
�1

k frequency index variable
l lag index variable
M number of frequencies
M↵, Mq, M�e pitching moment stability and control derivatives
N number of samples
N (0, 1) normal distribution having zero mean and unit variance
P (.) Probability
q pitch rate, rad/s
R2 coe�cient of determination
r.. autocorrelation function
s Laplace operator
s(.) standard error
T record length, s
t time, s
V airspeed, ft/s
v noise sequence
w vertical body-fixed velocity, ft/s
X regressor matrix
Z↵, Zq, Z�e vertical body-axis force stability and control derivatives
z dependent modeling variable

Greek

↵ angle of attack, rad
� perturbation quantity
�t sampling period, s
�e elevator deflection, deg
✓ model parameters
⇢ pairwise correlation coe�cient
� standard deviation
� cumulative distribution function
�k Fourier series phase angle, rad
! angular frequency, rad/s
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Superscripts

⇤ complex conjugate
˙ time derivative
ˆ estimated value
¯ mean value
�1 inverse

Subscripts

0 trim value

g gust
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1 Introduction

Random number sequences are often used in aircraft dynamic modeling applications
to approximate Gaussian, band-limited, white noise sequences having the following ideal
characteristics:

• Zero mean

• Unit variance

• Gaussian/normal distribution

• Uniform power spectrum

• No serial correlations

• Finite energy

For example, this type of noise is often added to simulated output signals to mimic
sensor measurement noise. White noise can also be used to drive a dynamic system to
simulate sources of process noise. Shaping or coloring filters use white noise as input to
produce random signals with a specified power spectral density, for example to simulate
neglected deterministic dynamics [1,2] or stochastic turbulence [3]. Drift in computer clocks,
such as in GPS receivers, or drift in sensor calibration parameters, for example due to
temperature sensitivities, can be modeled as a random walk using white noise [4]. In these
modeling applications, many di↵erent white noise sequences are used in repeated Monte
Carlo experiments to gain confidence in the predictive capability of a model, to evaluate
handling qualities or control law performance, or to develop and test new methods of analysis
before application to flight test data. In identification applications, the performance of
parameter estimation algorithms using the extended Kalman filter improve when artificial
white noise is used in the analysis to allow the parameter estimates to vary [5].

Given the ubiquity of random numbers in aircraft dynamic modeling problems, it is
important to have fast access to many random number sequences of high quality and po-
tentially long duration. Algorithms for generating random number sequences have been
improving since the advent of the modern computer [6]. During the 1980’s and 1990’s,
as Monte Carlo simulations of aerospace vehicles became more widespread, many methods
for generating random numbers were developed and evaluated. More recently, the focus
has been on generating random numbers from measurements of seemingly random physical
processes, especially for cryptography applications.

Despite this steady growth of research, no recent studies on evaluating random num-
ber generators for aircraft dynamic modeling applications were found in the literature. A
casual polling of colleagues indicated that most users had not investigated the quality of
their random number generators, but generally felt comfortable with the results for their
applications. On this topic of using random number generators to simulate noise, Hamming
writes [7]

Experience seems to indicate that the careless use of a random-number generator
will trap the unwary many more times than at first seems reasonable, but also
that with care random-number generators give very satisfactory results. It is a
field for the beginner to be wary and suspicious of and he should make a few
careful checks that all is going as he thinks it should before he plunges into the
details of using the simulation as a working tool of design optimization.

This report documents such an investigation. The purpose is to examine a few interesting
random number generators, using relevant statistical tools, and report on the suitability of
the generators for use in dynamic modeling applications.
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Three sources of random number sequences were considered. The first was the Mersenne-
Twister algorithm implemented as the default random number generator in the MATLAB R�

software suite. The second was the website Random.org, which streams random numbers
processed from atmospheric noise measured using radios. The third was a method involving
the construction of random sequences through Fourier synthesis.

The following section describes the random number generators. Results are then shown
for one sample record, to illustrate the characteristics of these sequences using statistical
tools commonly used for dynamic modeling. To examine the asymptotic nature of the
generators, results using ensembles of sequences are then presented. These same random
sequences are then applied to two example aircraft modeling applications in a Monte Carlo
simulation framework. The first example is estimating stability and control derivatives from
simulated onboard sensor data using linear regression. The second example is adding at-
mospheric turbulence to an aircraft flight dynamics simulation. Concluding remarks then
complete the report. In general, each random number generator performed well and was
considered suitable for Monte Carlo simulation. The method of Fourier synthesis performed
better than the other two methods in that it more consistently and more precisely approxi-
mated Gaussian white noise.

Software for the multisine input design and much of the analysis are available in a
MATLAB toolbox called System IDentification Programs for AirCraft, or SIDPAC [8], which
is associated with Ref. 9.
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2 Random Number Generators

MATLAB / Mersenne-Twister

The MATLAB [10] software suite has a built-in random number generator. The current
software version (R2016b) invokes the Mersenne-Twister method [11], which was developed
specifically for Monte Carlo simulation. The software creates a sequence of 32-bit random
integers, which are then transformed to the open interval (0, 1). The function randn.m takes
this uniformly-distributed sequence and maps it to a zero-mean, unit-variance, normally-
distributed sequence using the Ziggurat algorithm [12]. Other non-default settings for the
MATLAB random number generator were not investigated because they implement legacy
algorithms or other distributions.

This generator was considered in this report for several reasons. Because MATLAB
is widely used in the analysis of aerospace vehicles, its native random number generator
is used often. Mersenne-Twister is a deterministic algorithm known as a pseudo-random
number generator, and previously-used sequences can be regenerated or new sequences can
be generated. This is advantageous for debugging software, but it also means that the
sequences are not truly random, and that there is a finite period before the sequence repeats.
However, this method can create many long sequences of random numbers quickly, which
facilitates Monte Carlo simulation.

Random.org

The website Random.org [13] streams random numbers created from measurements of
atmospheric noise using radio receivers. The radios are set to unused frequencies to register
static noise, which is digitized as a sequence of 8-bit numbers. All bits in these numbers are
discarded, except the least significant bit, which has a high level of entropy. Retained bits
from many di↵erent recorded numbers are then combined to form a uniformly-distributed
number. For a Gaussian sequence, the Box-Muller method [14] is used to transform the
distribution.

This random number generator was considered because it is regarded as a true random
number generator, which should be free of the problems associated with pseudo-random
number generators. In addition, the website contains documentation by the Trinity College,
Dublin evaluating the quality of the results from the website. Therefore this generator
was expected to be of high quality and useful for comparison. Furthermore, access to the
website was free of charge, and the user interface provided enough control to facilitate a fair
comparison with other methods, e.g., distribution type, number of significant digits, etc.

A relatively large amount of time was needed to query the website for random num-
bers, and then to store and recall the results for analysis. As Monte Carlo simulations
involve repeated calculations and require relatively large amounts of time, any additional
delay due to obtaining or handling random numbers is not desirable. Another drawback
is that some true random number generators are susceptible to environmental factors that
degrade performance, such as the aging of electrical components that may bias the numbers.
Random.org guards against these factors by using multiple radios in di↵erent locations and
monitoring statistical metrics in real time.
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Fourier Synthesis

Lánczos and Bellai [15] expound on an earlier observation by Lánczos [16] that an ideal
Gaussian white noise sequence is characterized by a constant amplitude spectrum and a
random phase spectrum, and that such a sequence can be synthesized using the Fourier
series. Specifically, given N equidistant sample times

ti = (i� 1)�t, for i = 1, 2, . . . ,
T

�t
+ 1 (1)

and M harmonic frequencies up to but not including the Nyquist frequency

fk =
k

T
, for k = 1, 2, . . . ,

T

2�t
� 1 (2)

a Gaussian random noise sequence can be constructed using the finite Fourier series as

v(ti) =
MX

k=1

ck sin

✓
2⇡k

T
ti + �k

◆
(3)

The amplitudes ck are set equal to a constant to give a flat amplitude spectrum, charac-
teristic of white noise. Choosing this constant as

p
2/M yields a sequence with unit variance,

as shown in Appendix A. The phase angles �k are drawn from a uniform distribution over
the interval (0, 2⇡). Any method of obtaining uniformly-distributed random numbers can
be used for this step. In this report, the MATLAB function rand.m was used to implement
the Mersenne-Twister algorithm described in Section 2. The resulting sequences have, to
numerically accuracy, zero mean because the bias term in the Fourier series was omitted and
because the harmonic sinusoids had complete cycles over the time duration [0, T ]. When
the sequence is long enough that many harmonic sinusoids are present in the sequence, the
central limit theorem suggests the sequence attains a Gaussian distribution [15].

This generator was considered because of its excellent potential qualities. It also retains
the favorable properties of the pseudo-random number generator in that sequences can be
constructed quickly and can be regenerated for software debugging or randomized for Monte
Carlo simulation. Another benefit is that the Fourier series is used to both construct the
sequence and to analyze its spectral character. As discussed later, this results in an excellent
approximation of Gaussian white noise in the frequency domain. If this method is to be
used in real time, for example with flight simulators or parameter estimation using extended
Kalman filters, a large value of T can be selected to synthesize a noise sequence. If that
value of time is reached, a new sequence can be constructed using another random drawing
of phase angles.
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3 Single Sample Records

In this section, a single sample record from each random number generator is studied
to illustrate typical statistical characteristics of interest in dynamic modeling. The next
section examines the asymptotic qualities of the generators.

Standardized tests for random number generators are typically intended for uniform
distributions or binary number sequences, and evaluate a variety of characteristics such as
spectral content, pattern reoccurrence, total draws of 0’s and 1’s, and furthest drift incurred
from random walk processes [17, 18]. These tests are not all directly applicable or relevant
to the random number sequences studied here. Instead, this report uses analysis tools
commonplace in aircraft dynamic modeling applications to judge the precision in which these
sequences approximate Gaussian white noise. In this context, a successful generator will
closely match all the prescribed characteristics of Gaussian white noise mentioned previously.

Each sequence contains 601 random numbers in double-precision format. The length of
the sequence was selected to reflect typical aircraft modeling data records. Specifically, these
sequences correspond to 12 s of data recorded at 50 Hz, which could be a maneuver involving
the short period or dutch roll motions of an aircraft and standard onboard instrumentation.
Each set of random numbers was generated as a Gaussian, zero-mean, unit-variance, white
noise sequence. Figure 1 shows each of the three sample records. The plot markers are used
consistently throughout this paper to distinguish the random number generators. Summary
statistics for these sequences are listed in Table 1.

Mean and Variance

The random number sequences were intended to have a mean of zero and a variance
of unity. For the sample records shown, the MATLAB sequence had the largest error in
the mean, and the Random.org sequence had the largest error in the variance. The Fourier
synthesis sequence had almost no error in these regards, by design. The small amount
of error in the mean was due to numerical rounding errors, which could be removed by
enforcing boundary conditions.

Although the variances of the sample records are approximately the same, Fig. 1 shows
that there is a greater dispersion of the data in the sequences from Random.org and Fourier
synthesis than from MATLAB. These points are not statistical outliers, as discussed in the
following section. The comments given here applied in general, not just for these particular
sample records.

Normality

Normal probability plots show data and assumed theoretical distributions, drawn as
straight lines [19]. These plots are useful for detecting systematic and large deviations
from a theoretical distribution, and do not require any adjustments by the analyst, such as
selecting bin sizes and locations for histograms.

For a normal distribution, the transformed data are [9]

��1 [P (i)] (4)
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where

P (i) =

✓
i� 1

2

◆
/N (5a)

�(z) =
1p
2⇡

Z z

�1
e�u2/2dt (5b)

Here P (i) is the empirical quantile quantifying the fraction of data less than its argument,
and �(z) is the cumulative distribution function. When the transformed data are plotted
against the ordered data, the slope quantifies the variance and the intercept quantifies the
mean. The degree to which the transformed data diverge from the straight line describes
the inaccuracy of the assumed distribution.

Normal probability plots are shown in Fig. 2 for the sample records. Also shown with
the data is a straight line, corresponding to the normal distribution with zero mean and
unit variance. Agreement of these plots indicates that each sequence was approximately
Gaussian. Coe�cients of determination

R2 =
v̂Tv �Nv̄2

vTv �Nv̄2
(6)

listed in Table 1 indicate that fits to the theoretical distribution all had less than 0.4%
error. There were slight deviations from the theoretical distribution in the larger quartiles
of the data, but this is expected for distributions with small tails, such as the normal
distribution [19].

As remarked earlier from viewing the sample records, it is interesting that the sequences
from Random.org and Fourier Synthesis have a larger dispersion of data, although a similar
variance. These data correspond to the tails of the normal probability distribution function,
as illustrated in Fig. 2 by data in the fourth quartiles. Because these data still lie close
to the straight line, they are consistent with a normal distribution and are not statistical
outliers.

Autocorrelation

The autocorrelation of a sequence can be used to show serial correlations in the data
and evaluate whiteness. An estimate of the autocorrelation is [9]

r̂vv(l) =
1

N

N�lX

i=1

v(i)v(i+ l), for l = 0, 1, 2, . . . , N � 1 (7)

where l is a lag index. This estimate is biased, but is accurate for data with large N ,
which is common in aircraft modeling problems [9]. The standard error of this estimate is
approximated as [9, 20]

s[r̂vv(l)] =
r̂vv(0)p

N
, for l 6= 0 (8)

For white noise sequences, plotting the autocorrelation for various lag index values re-
sults in a peak at l = 0, equal to the variance of the sequence, and zero at all other lag
indices. Systematic and large deviations from this description indicate the presence of serial
correlations in the data. In that case, the data is representative of colored noise, not white
noise.
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Figure 3 shows the autocorrelations of the sample records, as well as two standard
error intervals, where s[r̂vv(l)] = 1/

p
601. Each sequence appears approximately white.

Table 1 indicates that the variance estimate attained from r̂vv(0) was less accurate for the
Random.org sequence than for the other two.

There are appreciable di↵erences between the autocorrelations of the sequences for non-
zero lag indices. The MATLAB sequence had 0.5% of the lagged autocorrelation values
outside the error bound, and the Random.org sequence had 2.16% of its values outside the
error bound. While these values are in statistical agreement with the 95% confidence in-
terval, these points could be confused with colored noise sequences or unmodeled dynamics
in dynamic modeling problems. The Fourier synthesis sequence had all of its lagged auto-
correlation values remain well within the error bounds. The reason for this is discussed in
Appendix B

Power Spectral Density

White noise has a uniform power spectral density (PSD), which can be computed as

Gvv(j!k) =
2

T
v⇤(j!k)v(j!k) (9)

where !k = 2⇡fk, v(j!k) is computed from the finite Fourier transform of the sequence
[9, 21], and v⇤(j!k) denotes the complex conjugate of v(j!k). The transform was evalu-
ated using the chirp z-transform at the frequencies given by Eq. (2), which were the same
frequencies used in the method of Fourier synthesis to create the noise sequence.

Figure 4 shows the PSD for each of the three sample records. These plots are multiplied
by the Nyquist frequency so that the values shown approximate the variance of the signal.
In addition, the means of these data (averaged over frequency) are shown, as well as two
standard deviation intervals about those mean values. On average, each of the three sample
records approximated unit variance white noise well in this regard; however, the performance
of the Fourier synthesis method was clearly superior. This was a result of designing the
random sequences in the frequency domain to have a uniform amplitude spectrum.

The variance of the amplitude spectrum was significantly lower for the sample record
generated using Fourier synthesis. This was in part due to its frequency-based design, and
also because the same harmonic frequencies used to construct the sequence were used in
the Fourier transform to analyze it. If, for example, the frequency resolution of the chirp
z-transform were increased by a factor of 2, more scatter would be seen in the PSD of the
Fourier synthesis data due to spectral leakage caused by using a finite duration of data.
This was investigated, and the mean over frequency decreased to 0.9968 and the standard
deviation increased to 0.5412. Comparison with the other methods in Table 1 shows this is
still a better approximation of white noise than the sample records obtained from MATLAB
and Random.org, from this perspective. One may attempt to improve the quality of the
noise sequence by using a finer spacing of frequencies in its construction, i.e., a frequency
resolution finer than 1/T in Eq. (2), but this forfeits the orthogonality property of the
sinusoid series and introduces serial correlations into the sequence. Instead, a longer noise
sequence could be designed and truncated to give the same result using a finer frequency
resolution.
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4 Ensembles of Sample Records

The results in the previous section examined a single sample record from each random
number generator. Analysis of ensembles of sequences are discussed in this section to ex-
amine the asymptotic nature of the random number generators. In total, 200 di↵erent
sequences of 601 random numbers were collected from each random number generator. The
MATLAB Mersenne-Twister sequences and the Fourier synthesis sequences were generated
at the time of analysis. The sequences from Random.org were queried thirty sequences at
a time over seven days, and at di↵erent times of day, to remain within the allowed website
quota and to attempt to remove any correlations due to time of day, weather, etc.

The results of the analysis generally followed the same trends as those exhibited from
the single sample records discussed in the previous section. Summary statistics are listed in
Table 2. The words “average” and “scatter” are used here to describe the mean and standard
deviation of the Monte Carlo ensembles, to distinguish them from the words “mean” and
“variance,” which were reserved for the evaluation of the individual sequences.

In addition, the pairwise correlation coe�cient between two sequences v1(ti) and v2(ti)

⇢ =

NX

i=1

[v1(ti)� v̄1] [v2(ti)� v̄2]

vuut
NX

i=1

[v1(ti)� v̄1]
2

vuut
NX

i=1

[v2(ti)� v̄2]
2

(10)

was investigated. This metric ranges between ±1 and is a measure of similarity between two
sequences, which could arise from periodicities in the data or similar starting seed values
for pseudo-random number generators, or from deterministic fluctuations manifesting in the
true random number generators. Metrics listed in Table 2 indicated this was not the case
and the sequences were not appreciably correlated with each other. Figure 5 shows two
sequences plotted against each other for each generator. Because these data do not form a
straight line, they visually indicate a low correlation. Each block of thirty sequences from
Random.org showed similar values of correlation as the full ensemble.

The MATLAB and Random.org generators achieve a normal distribution through an
explicit mapping of the random numbers. In contrast, the Fourier synthesis method only
suggests a Gaussian distribution via the central limit theorem. To investigate the asymptotic
convergence of the sample distribution, a separate Monte Carlo analysis was performed using
only the Fourier synthesis method. Sequences withN = 1, 2, . . . , 601 samples were generated
200 di↵erent times each, and the R2 values for the normal probability plots were evaluated.
Figure 6 shows the mean and two standard deviations of scatter in the results. A normal
sample distribution was achieved relatively quickly using Fourier synthesis. On average,
approximately 1% error was attained after using N = 100 (50 sinusoids), which represents
2 s of data sampled at 50 Hz.

Overall, all three of the random number generators performed well in approximating
Gaussian white noise. The method of Fourier synthesis most consistently simulated the
desired characteristics per the statistics shown. The Fourier synthesis method also e�ciently
attains a Gaussian distribution.
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5 Application to Parameter Estimation

One use of measured flight test data is to estimate aerodynamic stability and control
derivatives. These estimates can be used in a variety of applications, such as providing phys-
ical insight into the aircraft, constructing flight dynamics simulations, developing feedback
control laws, evaluating handling qualities, or computing performance metrics.

In the development and testing of a parameter estimation method, a simulation model
is often used first before applying the estimator to measured flight test data. As confidence
in the analysis is gained, various sources of error can be included to assess performance and
robustness in realistic conditions. It is therefore important to accurately replicate the e↵ects
expected in measured flight test data.

To investigate the e↵ect of di↵erent random number generators on parameter estimation,
a simple example was investigated. The simulation model was the short-period dynamics of
an aircraft about a reference flight condition, given in state-space form as [9, 22]


↵̇
q̇

�
=


Z↵ 1 + Zq

M↵ Mq

� 
�↵
�q

�
+


Z�e

M�e

�
��e (11a)

2

4
�↵
�q
�az

3

5 =

2

4
1 0
0 1

V0
g Z↵

V0
g Zq

3

5


�↵
�q

�
+

2

4
0
0

V0
g Z�e

3

5��e (11b)

where ↵ is the angle of attack, q is the pitch rate, �e is the elevator deflection, and az is
the vertical acceleration at the center of mass. The goal here is to estimate values of the
stability and control derivatives, such as Z↵ and M�e , from measurements of the input and
output data.

The model was simulated for 12 s and sampled at 50 Hz, which corresponded to N = 601
samples, as before. The elevator input included a 10 s multisine excitation [9] with frequency
content between 0.3 Hz and 2.1 Hz1. The model parameters for this simulation are listed
in Table 3, and pertain to the T-2 subscale aircraft, shown in Fig. 7, in a typical flight
condition. The frequency of the short period mode was 1.04 Hz. The time histories resulting
from simulating Eqs. (11) are shown in Fig. 8.

This estimation problem can be posed as the least squares problem

z = X✓ + v (12)

where z are the dependent variables, X are the explanatory variables, ✓ are the unknown
model parameters, and v is a Gaussian white noise sequence. Solving the least-squares cost
function

J(✓) =
1

2
(z�X✓)T (z�X✓) (13)

yields the optimal estimate
ˆ✓ =

�
X

T
X

��1
X

T
z (14)

The uncertainty in this estimate is quantified by the covariance matrix

cov(✓̂) =
�
X

T
X

��1
X

TE[vvT ]X
�
X

T
X

��1
(15)

1Note that these multisines are also described by Eq. (3), and therefore can also be thought of as a
truncated Fourier series expansion.
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where E[vvT ] is the autocorrelation matrix, formed using Eq. (7). The parameter covariance
matrix is therefore sensitive to serial correlations in the modeling residual sequence.

The estimation was performed twice for each Monte Carlo simulation. In the first case,
z were the measurements �az and ✓ included the Z derivatives. In the second case, z were
the measurements q̇, obtained by smooth numerical di↵erentiation [9] of the measured q,
and ✓ included the M derivatives. In each case the matrix X consisted of �↵, �q, and ��e
in column vectors.

A Monte Carlo simulation was performed using the same 200 random noise sequences
from each of the three random number generators. In each run, these noise sequences were
scaled to 20% of the root mean square variation of the corresponding signal, and added to
z. Because estimation of the Z derivatives is performed separately from the M derivatives,
the same noise sequences can be used without correlating the estimation results. Noise was
not added to X because these data should be smoothed before estimation to remove the
noise.

Model fits to one sample record of simulated �az and q̇ data for each random number
generator are shown in Figs. 9 and 10. The fits were generally good and had small residuals.
The summary statistics for the Monte Carlo simulations are listed in Table 4. Parameter
estimates were generally similar in value for each random number generator. Each set of
parameter estimates were in statistical agreement with the true values, and had scatter of
the parameters within the standard errors. The results using noise sequences generated
using Fourier synthesis had consistently lower scatter in the estimated standard errors than
the results using MATLAB and Random.org. The condensed scatter also indicates that the
method of Fourier synthesis produces sequences with lower serial correlations, as evident
from Table 2 and previous work [1, 2].
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6 Application to Simulation in Turbulence

Simplified models of atmospheric turbulence are useful engineering approximations for
evaluating handling qualities of piloted aircraft, assessing robustness of control laws and
identification algorithms, and other applications. One such model is the continuous stochas-
tic gust [3]. The gust history is modeled as a random variable with a specified PSD which
is dependent upon variables including turbulence level, altitude, and airspeed. The spectral
character of the random sequences is achieved by passing unit variance white noise through
a coloring filter.

In particular, the Dryden turbulence model for the body-fixed vertical velocity w has
the filter transfer function

�wg(s)

v(s)
= �w

r
2Lw

⇡V0

�
1 + 2

p
3Lws/V0

�

(1 + 2Lws/V0)
2 (16)

where Lw is the length scale and �w is the turbulence intensity. Parameters used for the
simulation are listed in Table 3. Each of the white noise sequences generated was passed
through the coloring filter to produce a vertical gust time history. For the first sample
records, the gust sequences are shown in Fig. 11 and the PSD estimates, again multiplied by
the Nyquist frequency, are shown in Fig. 12. The sequences from MATLAB and Random.org
had many data points with less power than prescribed. At the higher frequencies, the
PSD from Random.org appears to begin to diverge from the specified PSD. The sequence
generated using Fourier synthesis matched the specified PSD very closely and was therefore
a more precise implementation of the desired turbulence spectrum.

To investigate the extent to which using di↵erent random number generators a↵ected
the resulting motion, the vertical gusts were used in the aircraft flight dynamics simulation.
The vertical gusts can be transformed into an angle of attack gusts as

�↵g = arctan

✓
�wg

V0 cos↵0

◆
(17)

for small perturbations about the reference condition. The relative angle of attack �↵ �
�↵g manifests in the aerodynamic forces and moments [22] and the short period model is
augmented as


↵̇
q̇

�
=


Z↵ 1 + Zq

M↵ Mq

� 
�↵
�q

�
+


Z�e �Z↵

M�e �M↵

� 
��e
�↵g

�
(18a)

2

4
�↵
�q
�az

3

5 =

2

4
1 0
0 1

V0
g Z↵

V0
g Zq

3

5


�↵
�q

�
+

2

4
0 0
0 0

V0
g Z�e �V0

g Z↵

3

5


��e
�↵g

�
(18b)

This model was simulated using each generated white noise sequence. To create variabil-
ity in the initial conditions of the state variables, the turbulence sequences were run through
the model with zero elevator deflections. Monte Carlo results of the vertical accelerometer
perturbations for each di↵erent generator are shown in Fig. 13. The thick lines show the
ensemble means for the simulations, whereas the thin lines show two standard deviations of
scatter in the time histories. Similar trends were observed for the angle of attack and pitch
rate outputs. The spread in the time histories were similar for each random number genera-
tor. Although sequences from MATLAB and Random.org had less precise implementations
of the turbulence spectrum than Fourier synthesis, as shown in Fig. 12, these errors were
averaged out over many Monte Carlo simulations.
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7 Concluding Remarks

Three random number generators, used to create sequences of Gaussian white noise, were
compared. The first generator was the MATLAB implementation of the Mersenne-Twister
algorithm, which was included because of its widespread use. The second generator was a
website called Random.org, which processes measurements of atmospheric noise to create
random sequences. This generator was included because it claims to be a true random
number generator, creating the number sequences from measurements of physical processes
considered to be random. The third method was the method of Fourier synthesis by Lánczos
and Bellai. This method constructs noise from definitions of amplitude and phase spectra,
and was included because of its excellent advertised properties.

Ensembles of 200 sample records, each having 601 numbers, were obtained for each of
the three random number generators. These sequences were analyzed individually and as an
ensemble, and were used in dynamic modeling applications including parameter estimation
of stability and control derivatives and simulation of atmospheric turbulence. The same
sample records were used throughout this paper.

The main conclusions of this report can be summarized as follows:

1. Each random number generator was generally of good quality and su�cient for Monte
Carlo simulation in dynamic modeling problems.

2. The Fourier synthesis method was consistently more accurate in approximating Gaus-
sian white noise sequences, per the statistical tools applied.

The deficiencies of the generators exhibited in any single sample record were generally
averaged out over many Monte Carlo simulations, and therefore each generator is suitable
for Monte Carlo analysis in aircraft dynamic modeling applications. All three generators
performed similarly on average, where the di↵erences were negligible for the applications
considered. However, the Fourier synthesis method was significantly more consistent in
achieving Gaussian white noise sequences than the other two methods. This was true in
terms of the sequence mean and variance, normality, autocorrelation, and power spectral
density, all of which are tools relevant to the analysis of aircraft dynamic modeling.

It is therefore recommended to use Fourier synthesis for generating Gaussian white noise
sequences in Monte Carlo simulation. These sequences required negligibly more time than
the built-in MATLAB generator, and produced a better approximation to the white noise
sequences assumed in the analysis. Although the examples shown here are themselves
engineering approximations (e.g., measurement noise is not exactly white, stability and
control derivatives are Taylor series approximations, and turbulence can take on a di↵erent
character than the models predict), having better analysis tools that work as expected can
simplify software development and possibly lead to fewer needed Monte Carlo simulations.
More importantly, the analysis can be more precise and therefore the decisions based on that
analysis will be clearer, more accurate, and more reliable, because of the greater precision
in the white noise generation.
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A – Variance of the Finite Fourier Series

For ideal white noise, selecting ck =
p
2/M results in a unit-variance sequence. This

can be seen by considering the variance of the continuous, zero-mean variable v(t) over the
domain t 2 [0, T ]

var[v(t)] =
1

T

Z T

0
v2(t)dt

=
1

T

Z T

0

"
MX

k=1

ck sin (!kt+ �k)

#2

dt

where !k = 2⇡k/T is the radian frequency.

Expanding the squared expression results in terms proportional to sin2(!kt + �k) and
sin(!kt + �k) sin(!mt + �m). These latter terms sum to zero because the sinusoids are
harmonics, which are mutually orthogonal, regardless of the phase angles. This simplifies
the variance to

var[v(t)] =
1

T

Z T

0

MX

k=1

c2k sin
2(!kt+ �k)dt

which, due to linearity, can be rearranged as

var[v(t)] =
1

T

MX

k=1

c2k

Z T

0
sin2(!kt+ �k)dt

Employing double-angle identities, the above integral evaluates to

Z T

0
sin2(!kt+ �k)dt =

1

2

Z T

0
1� cos(2!kt+ 2�k)dt

=
T

2
� sin(2!kT + 2�k)

4!k
+

sin(2�k)

4!k

= T/2

because k is an integer and the sinusoids are periodic in T .

Substituting this result back into the variance,

var[v(t)] =
1

T

MX

k=1

c2k
T

2

=
1

2

MX

k=1

c2k

For white noise, ck is the same for each harmonic frequency. For unit variance white noise,
we require var[v(t)] = 1 so that

ck =

r
2

M

It is interesting that the orthogonality of the Fourier series means that the variance of the
signal is only dependent on the number of frequencies included, and not upon the random
phase angles that create constructive and destructive interference of the sinusoids.
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B – Autocorrelation of the Finite Fourier Series

The autocorrelation of the Fourier synthesis sequences were good approximations of
white noise. The reason for this can be seen by extrapolation from the sum of the first two
harmonic sinusoids,

v(ti) = v1(ti) + v2(ti)

= c1 sin

✓
2⇡

T
ti + �1

◆
+ c2 sin

✓
4⇡

T
ti + �2

◆

The autocorrelation function of this sequence can be expanded using the definition of
the autocorrelation, and then rearranged as

rvv(l) = E [v(ti)] [v(ti + l)]

= E [v1(ti) + v2(ti)] [v1(ti + l) + v2(ti + l)]

= E [v1(ti)v1(ti + l)] + E [v2(ti)v2(ti + l)] + E [v1(ti)v2(ti + l)] + E [v2(ti)v1(ti + l)]

= rv1v1(l) + rv2v2(l) + rv1v2(l) + rv2v1(l)

which is the sum of the autocorrelations and crosscorrelations of the first two harmonic
sinusoids. By extrapolation of this expression, the autocorrelation of the finite Fourier series
is equivalent to the sum of the autocorrelations and crosscorrelations of all the sinusoids.

The autocorrelation rv1v1 and the crosscorrelation rv1v2 for a single sample record ob-
tained using Fourier synthesis is shown in Fig. 14. The autocorrelation has a coherent peak
at lag index l = 0, and decaying oscillations elsewhere. The crosscorrelation is zero at l = 0,
and has oscillations at other lag indices. When many sinusoids are used in the finite Fourier
series, the peak at l = 0 is reinforced whereas the autocorrelation at the other lag indices
averages to nearly zero. This e↵ect creates a good approximation to the autocorrelation of
a white noise sequence.
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Tables

Table 1: Summary of single sample records

Characteristic Statistic Matlab Random.org Fourier synthesis

Time history Mean +0.0189 +0.0065 +0.0009
Variance 0.9899 1.1085 1.0000

Normality R2 with N (0, 1) 0.9960 0.9962 0.9983

Autocorrelation Variance r̂vv(0) 0.9886 1.1067 0.9983
Percentage outside 2� 0.4992 2.1631 0.0000

Power spectral density Mean 0.9926 1.1122 0.9991
Variance 0.7887 1.1811 0.0010

Table 2: Summary of ensembles of sample records

Characteristic Statistic Matlab Random.org Fourier Synthesis

Time history Average of mean �0.0014 �0.0002 +0.0002
Scatter of mean 0.0421 0.0420 0.0015

Average of variance 0.9969 0.9957 1.0000
Scatter of variance 0.0544 0.0549 0.0000

Normality Average of R2 with N (0, 1) 0.9948 0.9948 0.9972
Scatter of R2 with N (0, 1) 0.0029 0.0031 0.0013

Autocorrelation Average of variance r̂vv(0) 0.9970 0.9958 0.9983
Scatter of variance r̂vv(0) 0.0544 0.0547 0.0000
Percentage outside 2� 0.0048 0.0032 0.0000

Power spectral density Average of mean 0.9990 0.9972 1.0030
Scatter of mean 0.0712 0.0679 0.0035

Average of variance 0.9991 1.0018 0.0028
Scatter of variance 0.1940 0.1873 0.0002

Pairwise correlations Average of correlation �0.0006 +0.0001 +0.0001
Scatter of correlation 0.0411 0.0408 0.0411
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Table 3: Simulation model parameters for the T-2 aircraft

Parameter Value Unit

V0 128.91 ft/s
Z↵ �2.5394 1/s
Zq �0.0551 –
Z�e �0.2543 1/s
M↵ �36.366 1/s2

Mq �3.1959 1/s
M�e �39.112 1/s2

Lw 500 ft
�w 16.878 ft/s

Table 4: Summary for Parameter estimation

Parameter Statistic Matlab Random.org Fourier synthesis

Z↵ Average of estimate �2.5390 �2.5403 �2.5405
Scatter of estimate 0.0230 0.0237 0.0238

Average of standard error 0.0212 0.0213 0.0217
Scatter of standard error 0.0033 0.0035 0.0021

Zq Average of estimate �0.0557 �0.0552 �0.0549
Scatter of estimate 0.0054 0.0055 0.0046

Average of standard error 0.0048 0.0048 0.0049
Scatter of standard error 0.0007 0.0007 0.0004

Z�e Average of estimate �0.2569 �0.2537 �0.2578
Scatter of estimate 0.0254 0.0257 0.0229

Average of standard error 0.0231 0.0231 0.0235
Scatter of standard error 0.0036 0.0034 0.0020

M↵ Average of estimate �35.8216 �35.8363 �35.8913
Scatter of estimate 0.3226 0.3284 0.2942

Average of standard error 0.4047 0.4064 0.4000
Scatter of standard error 0.0963 0.0829 0.0877

Mq Average of estimate �3.0624 �3.0560 �3.0721
Scatter of estimate 0.1150 0.1061 0.1110

Average of standard error 0.1195 0.1192 0.1186
Scatter of standard error 0.0235 0.0195 0.0175

M�e Average of estimate �37.8299 �37.8128 �37.8970
Scatter of estimate 0.5992 0.5944 0.6122

Average of standard error 0.6225 0.6179 0.6160
Scatter of standard error 0.1283 0.1087 0.0898
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Figure 1: Single sample records from each random number generator
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Figure 7: T-2 airplane (credit: NASA Langley Research Center)
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Figure 11: Vertical gust time histories, single sample records
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