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Agenda

• Risk assessment foundational theory

• Aspects of collision consequence

• Collision debris production basics

• Estimating debris production for a particular satellite collision

• Proposed conjunction remediation threshold alterations for low-

debris collisions

• Orbital corridor protection

• Summary of initial proposed construct for considering collision 

consequence within conjunction assessment (CA)

• Future work
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Risk Assessment Foundational Theory

• Risk assessment approaches based on Kaplan construct (1981)

• Risk is combination of event likelihood and event consequence

– Sometimes treated as product of these two, but this is not always appropriate

• CA has only partially followed this approach

– Large body of work on methods to establish collision likelihood

– Usually static treatment of collision consequence—all satellite collisions 

uniformly considered catastrophes of highest order

• In early days of CA, with relatively few conjunctions, static concept of 

collision consequence acceptable

• In current environment, approach needs re-examination

– Number of conjunctions much larger now

– Deployment of USAF Space Fence radar (September 2018) could increase 

space catalogue by up to a factor of five

– Consideration of consequence could reduce conjunction remediation need
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Aspects of Collision Consequence

• Protection of primary asset

– Some conjunctions could leave primary asset only crippled but still functional

• “Glancing blow” or injury/degradation to part of solar array

– However, with current accuracy levels not possible to predict that a particular 

conjunction would leave only damage of this type

– For any collision, should thus presume complete loss of primary asset

• Protection of orbital corridors and space environment

– Many orbital types significantly enable particular mission types

• e.g., geosynchronous, sun-synchronous, Molniya

– Debris fields from satellite collisions could permanently ruin these corridors

– Satellite collisions do have very different debris-producing potential

– In contended environment, expected debris production can be discriminator

• If not all serious conjunctions can be remediated, debris production potential 

is possible input to choosing which receive remediation

• Can one determine the “debris production potential” of a collision?

– NASA Orbital Debris Program Office (ODPO) provides possible methodology
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Two Collision Types:

Catastrophic and Non-Catastrophic Collisions

• In catastrophic collisions, both satellites are completely fragmented

• In non-catastrophic collisions, the smaller object is fragmented but 

the larger one merely cratered

• Former situation obviously produces more debris

• Undoubtedly there are intermediate cases, but this is the ODPO’s 

basic distinction

• ODPO methodology for distinguishing between cases:  ratio of 

relative kinetic energy of smaller object to mass of larger object

– Presumed formula:  0.5 * m * Vrel2 / M

– If ratio exceeds 40,000 Joules / kg, then collision is catastrophic
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• NASA ODPO EVOLVE 4.0 model contains relationship for number of 

pieces greater than a certain size generated by a collision

– N(Lc) = 0.1(M)0.75Lc
-1.71

– Lc is the characteristic length (in meters) above which one is interested in the 

number of pieces; in a Space Fence era, one might set this to 0.05m

– M is a momentum component of sorts, and its determination is governed by 

whether the collision is catastrophic

• If catastrophic, M is sum of both spacecraft masses (kg)

• If non-catastrophic, M is mass of smaller object (kg) * collision velocity (km/s)

• Question:  what is dynamic range of results for CA from coupling of 

catastrophic / non-catastrophic and debris production equations?

– e.g., will all results be catastrophic and thus high-debris, rendering approach 

unhelpful for distinguishing among conjunctions?

– Profiling activity needed to show viability

Determining Number of Collision Pieces
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Coupled Equation Input Profiling:

Satellite Mass and Conjunction Velocity

• Conjunction velocities from NASA CA 

DB (~1.5M conjunctions) shown at 

right

– For LEO and HEO, great majority exceed 

10,000 m/s

– GEO much slower:  100 to 2000 m/s

• Masses have large range as well

– Primary payload:  up to ~3000km or larger

– Secondary:  from 0.01 kg to payload mass

• Profiling should consider dynamic 

range of both input types

– For this analysis, primary object mass set 

to 3000 kg
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Coupled Equation Input Profiling:

Results

• Catastrophic and non-catastrophic 

regions distinct

– Catastrophic yellow; non-catastrophic 

layered; magenta line is boundary

• As mass of lighter satellite 

approaches that of heavier, more of 

a continuum in debris production 

with relative velocity

– With lighter secondary, discontinuity 

increases

• Even at high collision velocities, 

non-catastrophic collisions quite 

possible for light secondaries

• In short, construct looks promising 

as possible severity discriminator

Primary object mass set to 3000km
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Collision Debris Production Determination:

Estimating Needed Parameters

• Conjunction velocity easily obtained from orbital states

• Primary object mass known

• Secondary object mass must be determined

– For intact payloads and rocket bodies, might be able to obtain actual mass value

– In general (and for debris), mass values will have to be estimated

• Proposal:  estimate mass from ballistic coefficient solution

– Ballistic coefficient given by (could also use solar radiation pressure coefficient):

– If ballistic coefficient, drag coefficient, and frontal area estimated, then satellite 

mass (M) can be further estimated from above relation

– Given imprecisions for many of these parameters, best to define a PDF for each 

and thus generate an estimated mass PDF

• Can be further used to generate a debris piece count PDF

M

A
CB D
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Collision Debris Production:

Estimating Ballistic Coefficient (B)

• Conjunction Data Message (CDM) for particular event gives 

information about B for primary and secondary objects

– Estimate of mean value (Bµ)

– Estimation variance (Bσ) from covariance matrix

• Set of random B values easily generated by N( Bµ, Bσ )

M

A
CDB
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Collision Debris Production:

Estimating Drag Coefficient (CD)

• Because ballistic coefficient usually solved for as a single value, 

relatively less research work directed to CD

– Sustained interest is from atmospheric community, due to attempts to back out 

atmospheric density values from satellite drag solutions

• Early work in 1960s, with follow-up in 1990s, established basic 

principles and rules of thumb

– Snub satellites have typical CD value of 2.2

– Distended satellites with long dimension along velocity vector have larger CD, 

often in range of 3-4

• Recent interest in topic and better models, but are satellite-specific

• For current approach, CD values generated by U(2.1, 3.0)

– Non-stabilized debris unlikely to generate truly large CD values

– Supported by Hubble Space Telescope value of 2.8

M

A
CDB
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Collision Debris Production:

Estimating Satellite Frontal Area (A)

• Possible to estimate satellite areas from sensor signature data

– Focus on radar cross-section (RCS) as opposed to satellite visual magnitude, 

since emphasis here is LEO debris

• RCS has units of area, but only under special circumstances can 

value be roughly equated to satellite physical area

• RCS for sphere illustrates issues with establishing RCS-size 

relationship (next slide)

• ODPO developed Size Estimation Model (SEM) to facilitate mapping

– Exploded satellite in vacuum chamber, determined characteristic dimension of 

each piece, took RCS measurements on each piece, and effected theory-

enabled fit of data

– Intended only for debris smaller than 20cm and to convert entire distributions of 

RCS to distributions of size, and vice versa

• Any other use is “off-label”

– Can be used as starting point for single conversion, with much imprecision

M

A
CDB
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RCS/Size Properties:

Conducting Sphere and NASA SEM

• Sphere:  three regions of response

– Rayleigh—RCS proportional to r4

– Mie—transitional region with oscillating 

behavior (creeping waves)

– Optical—RCS converges to area

• Unfortunately, at S-Band occurs only 

for objects greater than 0.86 – 1.7 m; 

much larger than most debris 

• NASA SEM

– Within envelope of sphere response

– Imposes unique mapping

– Not precise for single-object use, but 

how close is it actually?

• Difficult to evaluate performance 

against debris (no ground truth)

• RORSAT spheres offer one 

opportunity

Rayleigh Mie Optical
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Frontal Area and Mass Estimation:

RORSAT Coolant Spheres

• RORSAT satellite coolant

– Nuclear-powered sats with NaK coolant

– Leaked out of dead sats; formed spheres

– Independent study determined sats spherical 

and 5-6cm in diameter

– Only debris set with established dimensions

• 24 had sufficient data for study

– B and RCS terms

– Calculated projected areas from RCS (using 

SEM) and compared to actual areas

– Performed mass estimation and compared to 

“actual” masses (calculated from established 

sizes and known density)

• Results at right

– Moderate positive bias (typical when working 

with RCS values), but overall error range 

quite small
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Mass Estimation Procedure:

Summary

• Obtain needed orbital and signature information from latest CDM

– Bµ, Bσ, median RCS value

• Create X samples of each input to ballistic coefficient equation

– B from normal distribution defined by Bµ and Bσ

– CD from uniform distribution between 2.1 and 3.0

– A from RCS value fed into SEM, turned into circular area, and used as anchor 

for uniform distribution +/- one order of magnitude (OoM) from anchor

• e.g., if anchor is 0.02 m2, samples for A are [U(0.002, 0.02, X/2); U(0.02, 0.2, 

X/2)]

• Extremely generous error bounds—presumes SEM only good to +/- 1 OoM

• Yields X values for secondary object mass

• Vrel and primary object mass presumed known without error

• By using debris production equations, can generate X estimates of 

amount of debris that collision will produce

• Can break down X estimates by percentile points

– For most situations, issue reduces to whether or not collision is catastrophic
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Debris Production Estimation:

Historical Conjunction Profiling

• Procedure run against portion of NASA conjunction database

– LEO conjunctions from January to June 2016

– 14,000 unique events for which secondary a debris object with established RCS

• CDM with largest Pc taken as event representative

– 100,000 Monte Carlo samples of estimated # of debris pieces, per event

• Summarized by percentile point

– CDF curves for 50th, 75th, 90th, and 95th percentile of each event’s 100,000 

results

• Graph morphology

– Flattened and then suddenly vertical behavior indicates transition to catastrophic 

collision

– 50% of events do this at the 95th percentile; about 30% do at the 90th percentile

– If CD span increased to 2.1 – 4.0, percentages drop from ~8-10%
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Debris Production Estimation:

Historical Conjunction Profiling Results
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Low-Debris-Production Cases:

Pc Threshold Alterations

• 95% threshold seems reasonable starting point for separation

– Conservative—if one-in-twenty chance of large debris production, then treated 

as a large debris case

– About half of profiled events are given this designation, so a good separator of 

events into two types

• Although far from all ever became serious events

• Current Pc remediation thresholds (1-4 E-04) were generated with the 

large-debris situation in mind

– So small-debris situations should show a leniency from this level

• For primaries that have difficulty remediating conjunctions, offset is 

from 0.5 to 1 OoM increased leniency in Pc remediation threshold

– Electric propulsion is good example

• Probably a good initial proposal for low-debris situations

– 0.5 to 1 OoM, with exact value determined by experience and owner/operator 

risk tolerance



Collision Consequence

Page 19

Orbital Corridor Population

• Would seem that satellites in “high-value” corridors deserve 

additional protection

– Geosynchronous, sun-synchronous, Molniya—greatly facilitate certain missions

– Debris population in these orbits would seem more injurious and therefore 

should engender more risk-adverse posture

• Not as straightforward in practice

– Sun-synchronous can be conceived in a variety of ways

– Debris at higher orbits pollute lower ones (both immediately and eventually 

through decay), so this would have to be considered as well

• Although ~100km lower than Fengyun 1C and Iridium-COSMOS, half of A-

Train conjunction events against debris from these two collisions

• “Protected Zones” about orbits would thus need to become excessively large

• Geosynchronous orbit the exception

– Debris in GEO will remain for a very long time and pass a number of payloads 

as it moves toward and librates about one of the two libration points

– Due to persistent threat, should not abate Pc threshold for small-debris cases
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Proposed Consequence Construct

• X is the current Pc remediation threshold (usually ~1E-04)

• X abated by 0.5 to 1 OoM for low-debris collisions in LEO and HEO

– Perhaps 5E-04 to 1E-03

• No corresponding abatement in GEO, due to debris persistence and 

ease of orbital corridor pollution

 LEO/HEO Orbits GEO Orbits 

Catastrophic Collision X X 

Non-Catastrophic Collision X + (0.5 – 1) OoM X 
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Future Work

• Construct is merely CATAC initial proposal

– Will be refined over the next 12 months with additional studies

• Planned future work

– More comprehensive error analysis on satellite frontal area estimation

• Perhaps using cubesats as an additional dataset, since many have known 

dimensions

– More comprehensive error analysis on satellite drag coefficient estimation

• Better understanding of debris shape and area-to-mass distributions for small 

debris

– Further refinement of actual construct to be used for operational CA


