Approach to Modeling Boundary Layer Ingestion using a Fully Coupled Propulsion-RANS Model

> Justin Gray, Charles A. Mader, Gaetan K.W. Kenway, Joaquim R. R. A. Martins

> > January 12th, 2017

UNIVERSITY of MICHIGAN . COLLEGE of ENGINEERING

Boundary Layer Ingestion (BLI) offers between 5% and 12% fuel burn savings

NASA's Starc-ABL configuration applies BLI to a traditional airframe

The BLI propulsor is powered by an electric motor delivering a constant 3500 hp

Turboelectric propulsion system has an electric BLI propulsor powered by generators mounted on the under-wing turbofans

We simplified the configuration to focus on the coupled performance of the BLI propulsor

- Loosely based on 737 fuselage dimensions
- Removed wing, tail, and under-wing engines to simplify the analysis

Modeling

BLI propulsor performance was compared to a podded configuration

Exact same propulsor geometry, including inlet, was used for both BLI and podded configurations

The propulsion analysis was a 1D thermodynamic cycle model

 modeled with pyCycle, a modular propulsion cycle tool built in the OpenMDAO framework

The aerodynamic analysis was a 2D axisymmetric RANS model

Mach contours

- ~170,000 cell mesh
- a single solve takes ~2 minutes

The analyses were coupled via a Gauss-Seidel iteration

- **pyCycle** \rightarrow **ADflow**: fan-exit P_t and T_t and required \dot{m} for 3500 hp
- **ADflow** \rightarrow **pyCycle**: mass-averaged fan-face P_t and T_t
- GS and Broyden iterations implemented with OpenMDAO solvers

For any given FPR the propulsor is resized and the mass-flow across the propulsor is balanced

Fully Coupled Propulsion-Aerodynamic Modeling

Modeling

Performance is examined via net force coefficient

- $C_{F-\text{fuse}}$ should be negative, a decelerating force (i.e. drag)
- $C_{F-\text{prop}}$ should be positive, an accelerating force (i.e. thrust)
- C_{F-x} can be positive or negative

BLI offers 5 to 6 more force counts for the same 3500 hp to the propulsor

Fan Pressure Ratio Trade Study

Fully Coupled Propulsion-Aerodynamic Modeling

Propulsion-aerodynamic interactions cause the boundary layer height to vary with FPR

Fan Pressure Ratio Trade Study

Propulsion-aerodynamic interactions cause the boundary layer height to vary with FPR

Fan Pressure Ratio Trade Study

Fully Coupled Propulsion-Aerodynamic Modeling

Improved propulsor performance accounts for 50-60% of the BLI performance gain

 Of the 5 to 6 total counts of improvement C_{F-x}, 3 counts come from increased C_{F-prop}

Fuselage drag reduction contributed 40-50% of the BLI performance gain

Of the 5 to 6 total counts of improvement C_{F-x},
2 to 3 counts come from smaller C_{F-fuse}

Reduction in $C_{F-\text{fuse}}$ comes from an increased surface static pressure on the aft-fuselage

• the change in surface static pressure profile is a strong function of FPR

The performance gains from BLI come from a combination of propulsion and aerodynamic effects

- Capturing BLI effects requires a coupled simulation
- Aerodynamic effects are strongly influenced by inlet design and throttle setting

The performance gains from BLI come from a combination of propulsion and aerodynamic effects

- Capturing BLI effects requires a coupled simulation
- Aerodynamic effects are strongly influenced by inlet design and throttle setting

Next step is to perform optimization of this configuration with propulsion and shape design variables

Thank you to:

- Transformational Tools and Technologies Project (TTT) for funding the OpenMDAO framework and pyCycle development
- Advanced Aviation Transportation Technologies (AATT) for funding my PhD research
- Jim Felder for his guidance and advice

