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Boundary Layer Ingestion (BLI) offers

between 5% and 12% fuel burn savings
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NASA's Starc-ABL configuration applies

BLI to a traditional airframe

Tube-with-wings configuration
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The BLI propulsor is powered by an

electric motor delivering a constant 3500 hp
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2x 1925 hp generators
(90% transmission efficiency)

Turboelectric propulsion system has an electric BLI propulsor
powered by generators mounted on the under-wing turbofans
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We simplified the configuration to focus on
the coupled performance of the BLI propulsor

@ Loosely based on 737 fuselage dimensions
@ Removed wing, tail, and under-wing engines to simplify the analysis
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BLI propulsor performance was
compared to a podded configuration

Exact same propulsor geometry, including inlet,
was used for both BLI and podded configurations
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The propulsion analysis was a

1D thermodynamic cycle model
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@ modeled with pyCycle, a modular propulsion
cycle tool built in the OpenMDAO framework
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The aerodynamic analysis was a
2D axisymmetric RANS model

Mach contours

@ 7170,000 cell mesh

@ a single solve
takes "2 minutes
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The analyses were coupled via a Gauss-Seidel iteration
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o pyCycle — ADflow: fan-exit P; and T;
and required m for 3500 hp

o ADflow — pyCycle: mass-averaged fan-face P; and T;
@ GS and Broyden iterations implemented with OpenMDAO solvers
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For any given FPR the propulsor is resized

and the mass-flow across the propulsor is balanced
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Performance is examined via net force coefficient

C — 2f
F-x Poo VooAref

o N

CF-fuse CF-prop

@ Cr_fuse should be negative, a decelerating force (i.e. drag)
® Cr_prop should be positive, an accelerating force (i.e. thrust)

@ Cr., can be positive or negative
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BLI offers 5 to 6 more force counts

for the same 3500 hp to the propulsor
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Propulsion-aerodynamic interactions cause the

boundary layer height to vary with FPR
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Propulsion-aerodynamic interactions cause the

boundary layer height to vary with FPR
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Improved propulsor performance accounts

for 50-60% of the BLI performance gain

o Of the 5 to 6 total counts of improvement Cg_y,
3 counts come from increased Cr_prop
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Fuselage drag reduction contributed

40-50% of the BLI performance gain

o Of the 5 to 6 total counts of improvement Cg_y,
2 to 3 counts come from smaller Cr_fee
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Reduction in Cr¢,e comes from an increased

surface static pressure on the aft-fuselage
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@ the change in surface static pressure
profile is a strong function of FPR
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The performance gains from BLI come from a

combination of propulsion and aerodynamic effects

o Capturing BLI effects requires a coupled simulation

@ Aerodynamic effects are strongly influenced by inlet design
and throttle setting
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Next step is to perform optimization of this configuration

with propulsion and shape design variables
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