

1

Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise

Christopher A. Gallo William K. Thompson Beth E. Lewandowski

NASA Glenn Research Center

Kathleen M. Jagodnik

Baylor College of Medicine

John K. De Witt

KBRwyle

Human Research Program Investigators' Workshop January 24, 2017

Introduction

- The ROCKY exercise device under development for the Multi-Purpose Crew Vehicle (MPCV) is a compact device with a single cable interface.
- The Digital Astronaut Project (DAP) is performing an analysis to estimate differences in kinematics and internal loads between exercises performed with the single cable configuration and Earthbased free weight exercises.
- Results of the analysis will aid in the determination of exercise device efficacy and aid in requirements definition.

Resistive Overload Combined with Kinetic Yo-Yo (ROCKY) Exercise Device (ZIN Technologies)

Data Collection Methods

- Motion capture and ground reaction force data were collected as a subject performed squat exercises on the Hybrid Ultimate Lifting Kit (HULK) prototype exercise device with a single cable configuration and also while performing squats with free weights.
- All data was collected on one day in November, 2016 in the Exercise Countermeasures Lab at the Glenn Research Center.
- The test subject was male with a weight of 150 lbs. (68 kg) and a 68.5 inch (174 cm) stature.
- Squat exercise data was collected using three different load configurations including free weights, single cable T-bar and single cable Yo-Yo harness both interfacing with the HULK.
- Five repetitions at a load magnitude of 115 lbs. and a restricted stance of 13 inches deep by 21 inches wide were performed.

Load Configurations

Free Weight

T-Bar

Harness

Data Collection and Analysis Methods

- Motion capture and force data.
 - Motion capture: BTS Smart-DX[®] (BTS Bioengineering, Brooklyn, NY) 12 camera system, 100 Hz sampling.
 - Ground Reaction Forces (GRF): BTS P-6000 force plates, 100 Hz sampling.
 - Device loads: HULK internal load cells at 200 Hz.
- Motion capture data was processed using the BTS Smart Tracker and Smart Analyzer software.
- Kinematics and internal loads were estimated using the OpenSim biomechanical modeling software from Stanford University.

Procedures for Averaging Repetitions

6

- Normalized and averaged joint angle and joint moment results were calculated with OpenSim.
- The exercise repetitions were normalized and averaged by:
 - Determining the repetition start and stop times from a marker trajectory.
 - Resampling the outcomes onto a normalized time vector from 0.0 to 1.0.
 - Computing the ensemble average (μ) plotted as the thick black line.
 - Computing the standard deviation (σ) plotted as the blue band.

Knee angle vs. time for five cycles

Normalized average of five cycles

Statistical Analysis Methods

- A t-test analysis was performed to determine the significant differences between two sets of data.
- The t-test analysis was a sample by sample comparison between the paired waveforms of the 100 individual normalized samples.
- The t-test results in a p value revealing the probability that the differences observed were due to chance.
- A significant difference is defined when the p value remains less than 0.01 for 10 or more consecutive data samples (0.1 second).
- Tests were performed between the following configurations:
 - T-Bar vs. Y-Harness
 - Y-Harness vs. Free Weight
 - T-Bar vs. Free Weight

Results Verification

- All results are for the right side of the body. The results for the left side are comparable to the right.
- The residual forces and moments calculated from the data analysis were compared to the OpenSim guidelines.

Load Configuration Comparison - 115 lb. load, Restricted Stance

- Recommended residuals should be between +/- 25 N.
- FY and FZ are consistently between +/- 30 N for all trials.
- An investigation will be done to determine why the values are outside the range.

Squat Inverse Kinematics Results

Load Configuration Comparison - 115 lb. load, Restricted Stance

- Harness has the lowest hip adduction angle.
- T-bar results in a lower hip flexion angle than harness but over a wider range of motion.
- This is may be due to the different cable interface with the T-bar and harness and the test subject attempting to balance himself.

Squat Inverse Kinematics Results

Load Configuration Comparison - 115 lb. load, Restricted Stance

 Harness has lower knee and ankle angles because the test subject was not squatting as deep while using the harness.

Squat Inverse Dynamics Results

Load Configuration Comparison - 115 lb. load, Restricted Stance

 Harness has a lower hip flexion moment vs. T-bar and free weight.

11

Squat Inverse Dynamics Results

Load Configuration Comparison - 115 lb. load, Restricted Stance

 Both knee and ankle moment show little difference between the exercises.

Force Plate Ground Reaction Forces

Load Configuration Comparison - 115 lb. load, Restricted Stance

 Harness has a higher shear force due to the test subject pushing back on the force plates to maintain balance while the cable pulls him forward.

Summary and Future Work

- This presentation provides partial results from the analysis performed to explore the differences between exercising with free weights and with a single cable exercise device.
- Differences were estimated for one subject at a single 115 lb. load.
- Use of a harness can allow astronauts to load the body with greater resistance in a safer manner. The test subject occasionally struggled holding the T-bar with a 115 lb. load.
- The OpenSim model used for this analysis has not been fully vetted using DAP project verification and validation methods.
- Future analyses will be performed at other load levels and with additional test subjects to determine consistency of the results.

Summary and Future Work

- Additional future work includes:
 - Obtaining expert opinions on the impact of the differences.
 - Providing the results as input to bone and muscle adaptation models for estimating chronic impact.
 - Supporting training studies performed with the compact exercise devices by providing internal loading estimates for exercises performed during those studies.
 - Aiding harness design requirements and operational exercise protocol development.
 - Investigate possible hardware or other issues responsible for the high residual values.