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NASA EBC and CMC System Development 
− Emphasize temperature capability, performance and long-term durability

• Highly loaded EBC-CMCs - Prime-reliant coatings

• 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings

• 2700°F (1482°C) EBC bond coat technology for supporting next generation
– Recession: <5 mg/cm2 per 1000 h

– Coating and component strength requirements: 15-30 ksi, or 100- 207 MPa

– Resistance to Calcium Magnesium Alumino-Silicate (CMAS), impact and erosion
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Outline

• Advanced 2700°F capable EBC and bond coat developments

- Rare Earth – Silicon, i.e., YbGd-Si (O) and YbGd-Lu-Si (O) and Hafnia-Si 

(HfO2-Si) systems

- Early systems cyclic oxidation results and Si composition optimizations

- Focus on oxidation kinetics studies of selected EB-PVD coatings using TGA

- Oxidation mechanisms and degradation mechanisms

• EBC - CMC system thermomechanical - environment testing, particularly 

using laser rigs

- A Key step and capability for developments, and help composition optimization 

and

• Summary
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NASA Advanced 2700°F Silicide Based Bond Coats – and 

EBC Systems Processing for Various Component Applications
– Advanced coating systems developed for various processing to improve 

Technology Readiness Levels (TRL)
– Composition ranges studied mostly from 50 – 80 atomic% silicon

• PVD-CVD processing, for composition downselects - also helping potentially develop a low cost CVD 
or laser CVD approach

• Compositions initially downselected for selected EB-PVD and APS coating composition processing
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Oxidation Kinetics and Furnace Cyclic Behavior of RESi EBC 

Bond Coats -

Oxidation kinetics
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Oxidation Kinetics and Furnace Cyclic Behavior of RESi EBC 

Bond Coats - Continued

FCT life, Testing in Air at 1500°C, 1 hr cycles

SiC

RESi(O)

RE2Si2O7-x

Transition region 

between Si-rich 

and silicate regions

40 mm

An example of cross-section 

TGA tested specimen

-

– Some early multi-component PVD processed systems showed excellent oxidation 

resistance and furnace cyclic test (FCT) durability at 1500°C

– FCT and steam tests also performed for more advanced RESiO-Hf systems

– FCT durability found to be closely related to temperature capability and oxidation 

resistance of the coating systems

Monosilicides/monosilicates

Di-silicides/disilicates
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Oxidation Resistance of Plasma sprayed Based HfO2-Si
─ TGA weight change measurements in flowing O2

─ Parabolic oxidation kinetics generally observed

─ Solid-state reaction is also involved with the systems, and more complex behavior at 1400 

and 1500°C

─ Improved oxidation resistance through APS plasma spray powder processing optimization 

(AE10219 II; Sulzer/Oerlikon Metco)
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Microstructures of Furnace Cyclic Tested GdYbSi(O) EBC Systems
— Cyclic tested cross-sections of early PVD processed YbGdSi(O) bond coat

— Self-grown rare earth silicate EBCs and with some RE-containing SiO2 rich phase separations

— Relatively good coating adhesion and cyclic durability

1500°C, in air, 500, 1 hr cycles

A
B

B

A

Composition (mol%) spectrum Area #1

SiO2 67.98  

Gd2O3 11.95  

Yb2O3 20.07 

Composition (mol%) spectrum Area #2

SiO2 66.03

Gd2O3 10.07  

Yb2O3 23.9  

- Complex coating architectures 

after the testing

- Designed with EBC like 

compositions – Self-grown 

EBCs
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Microstructures of Cyclic Tested GdYbSi(O) EBC Systems-

Continued

1500°C, in air, 500, 1 hr cycles

Outlined area SpotComposition (mol%)

SiO2 66.72  

Gd2O3 8.62  

Yb2O3 24.66 

Composition (mol%)

SiO2 96.15  

Gd2O3 1.2  

Yb2O3 2.64 

— Cyclic tested cross-sections of early PVD processed YbGdSi(O) bond coat

— Self-grown rare earth silicate EBCs and with some RE-containing SiO2 rich phase separations

— Relatively good coating adhesion and cyclic durability
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Experimental: NASA Yb,Gd,Y Rare Earth Silicate EBCs

— Yb,Gd(Nd),Y (or RE-Silicate) Multi-Component Rare Earth Silicate EBCs

— Sometime using fine alternating HfO2 and the silicates for top coats

— EB-PVD bond coat systems mostly focused on YbGdSi, YbGd-LuSi, and YbNdSi, 

and HfO2-Si

— Initial compositions optimized for the EBC bond coats: RE:Si 1:2; and Hf:Si 1:2 –

1:1

— Coating processed on SiC/SiC ceramic matrix composites for studies

— Processed using Directed Vapor EB-PVD at Directed Vapor Technologies

EBC

Bond Coat

SiC/SiC CMC
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Experimental: Oxidation and Durability Tests

— Test specimens with dimensions 25 mm diameter disc  specimens for 

oxidation, laser heat flux and furnace cyclic test (FCT) – briefly reviewed 

— Thermogravimetric analysis (TGA), using 0.5”x1” CVI SiC/SiC specimens

— Laser long-term thermomechanical fatigue + steam/CMAS water vapor cyclic 

test using 0.5”x6” dogbone specimens

Cooling shower 

head jets

Test specimen

High 

temperature 

extensometer

Laser beam  

delivery optic 

system

High heat flux tensile TMF and rupture testing High heat flux tensile TMF and rupture, with high 

velocity steam testing
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Oxidation Kinetics of EB-PVD Processed YbGdSi(O) Based 

Coating

– Oxidation kinetics obtained at various temperatures in flowing O2 for 

YbGdSi(O) (not necessarily processing optimized)

– Parabolic oxidation kinetics generally observed after initial transient stages

– Activation energy determined 110  kJ/mol

12

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600

1100°C

1200°C

1300°C

1400°C

1500°C

S
p
ec

if
ic

 w
ei

g
h
t 

g
ai

n
, 
m

g
2
/c

m
4

Time, hours

YbGdSi bond coat/YbGdY silicate EBC on SiC/SiC in O
2

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

0.0005 0.00055 0.0006 0.00065 0.0007 0.00075 0.0008

L
n
 K

p

1/T, K-1

Activation energy, 110.6 kJ/mol



National Aeronautics and Space Administration

www.nasa.gov

Oxidation Kinetics Comparisons of Several Advanced EB-PVD 

Processed EBC Systems Compared 

– The EB-PVD Systems showed comparable oxidation rates and good oxidation 

resistance, tested up to 500 h

– Kinetics compared with LuGdSi (O) and HfO2-Si (O) systems

– Further process improvements help improved oxidation resistance and 

durability
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Microstructures of the Advanced EBCs after the Oxidation 

Tests

– RE-Si system:  forming RE silicate “scales”, fully compatible with EBCs 

– Reaction and oxidation mechanisms are being further studied, particularly RE 

containing SiO2 phase stability

– Further process improvements can help improve the oxidation resistance and 

durability

14

EBC layer 1

EBC layer 2

EBC bond coat

SiC/SiC CMC

Cross-section micrograph of 

YbGdSi(O) tested at 1500°C, 500hr

EBC bond coat“scales”

Yb,Gd,Y silicate EBC Layer 2

Yb,Gd silicate scale
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Microstructures of the Advanced EBCs after the 500 hr 

Oxidation Tests in O2- Continued

– HfO2-Si bond coat: forming HfSiOx based scales bond coat, compatible with 

EBCs

– Reaction and stability being studied

– Further process improvements can help improve the oxidation resistance and 

durability

15

EBC bond coat

Cross-section micrograph of HfO2-Si 
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Microstructures of the Advanced EBCs after the Oxidation 

Tests - Continued

– Surface Morphologies of YbGdSi Bond Coat only on CMC after Oxidation at 

1400C, 300 hr

16
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Microstructures of the Advanced EBCs after the Oxidation 

Tests - Continued

17

– Surface Morphologies of YbGdSi Bond Coat only on CMC after Oxidation at 

1400°C, 300hr

– Observed SiO2 rich phase separation with fine rare earth silicate phases

– Solubility of HfO2 and rare earth oxides/silicates also being studied using TEM



National Aeronautics and Space Administration

www.nasa.gov 18

CMAS Resistance for the Rare Earth-Silicon Coatings
– CMAS resistance of Yb-GdSi (O) at 1500°C, 100 hr

– Higher stability and CMAS resistance observed due to its High Melting Point Coating 

Compositions

– Observed the Apatite phase formation

CMAS layer

Coating layer

Coating layer
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High Heat Flux Thermomechanical fatigue Tests of Advanced 

NASA EBC-Bond Coats Systems on CMCs
• Laser High Heat Flux themomechanical fatigue testing of a HfO2-Si and NASA advanced 

EBC baseline with steam at 3 Hz, 2600-2700°F, and 69 MPa maximum stress with stress 

ratio 0.05, completed 500 h testing

• Tsurface = 1500-1600°C

• Tinterface= 1320-1350°C

• Heat Flux = 170 W/cm2

• Specimen had some degradations  
3hz fatigue testing at 10 ksi loading

Completed 500 hr testing

Testing proving vital failure 

mechanisms in a simulated test 

environments 

EBCs

EBCs

Higher Si content HfO2-Si
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High Heat Flux Thermomechanical fatigue Tests of Advanced 

NASA EBC-Bond Coats Systems on CMCs - Continued

- NdYb silicate EBC-RESi bond coat EBC coatings on 3D-architecture CVI-PIP 

SiC-SiC CMC (EB-PVD processing), tested in combined CMAS and steam 

thermomechanical fatigue, completed ~300 h testing 

Steam and CMAS attacked coating 

surface at 2700°F
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High Heat Flux Thermomechanical fatigue Tests of Advanced 

NASA EBC-Bond Coats Systems on CMCs - Continued

- NdYb silicate EBC-RESi bond coat EBC coatings on 3D architecture CVI-PIP 

SiC-SiC CMC (EB-PVD processing), tested in combined CMAS and steam 

thermomechanical fatigue, completed ~300 h testing 

Steam and CMAS attacked coating surface at 

2700°F

SiO2 rich phases separation in CMAS

Nd and Yb dissolutions

Oxide 

Component

Mole

Conc.

Yb2O3 3.90

Nd2O3 6.36

Y2O3 1.00

CaO 2.30

SiO2 84.09

MgO 2.36

100.00
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Summary
• RE - Silicon and HfO2-Si bond coats with multicomponent rare earth silicate 

EBCs processed using EB-PVD, and the oxidation kinetics investigated 

• The coatings generally showed very good oxidation and cyclic resistance for 

CMCs with targeted designed bond coat  compositions, at 1500°C and up to 500 

h tests

• The EBC bond coats grow rare earth silicates or HfSiOx “scales”, compatible with 

the EBC systems

• Stability of RE, Hf containing SiO2 rich phases from the phase separation being 

further evaluated

• Long-term environment durability testing conducted to evaluate the coatings in 

more complex load, CMAS and/or steam environments, simulating turbine airfoil 

conditions

• The results helping further design and processing improved environmental 

barrier coating systems, for achieving more robust, prime-reliant EBC systems
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