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A new approach is presented that uses a weighted least squares fit to analyze
wind tunnel strain–gage balance calibration data. The weighted least squares
fit is specifically designed to increase the influence of single–component load-
ings during the regression analysis. The weighted least squares fit also reduces
the impact of calibration load schedule asymmetries on the predicted primary
sensitivities of the balance gages. A weighting factor between zero and one is
assigned to each calibration data point that depends on a simple count of its in-
tentionally loaded load components or gages. The greater the number of a data
point’s intentionally loaded load components or gages is, the smaller its weight-
ing factor becomes. The proposed approach is applicable to both the Iterative
and Non–Iterative Methods that are used for the analysis of strain–gage balance
calibration data in the aerospace testing community. The Iterative Method uses
a reasonable estimate of the tare corrected load set as input for the determina-
tion of the weighting factors. The Non–Iterative Method, on the other hand,
uses gage output differences relative to the natural zeros as input for the deter-
mination of the weighting factors. Machine calibration data of a six–component
force balance is used to illustrate benefits of the proposed weighted least squares
fit. In addition, a detailed derivation of the PRESS residuals associated with
a weighted least squares fit is given in the appendices of the paper as this in-
formation could not be found in the literature. These PRESS residuals may be
needed to evaluate the predictive capabilities of the final regression models that
result from a weighted least squares fit of the balance calibration data.

Nomenclature

A = matrix that has the regressors of an ordinary least squares fit
A = subset of matrix A that is used for the calculation of PRESS residuals
AF = axial force of a strain–gage balance
B = vector that has the responses of an ordinary least squares fit
B = subset of vector B that is used for the calculation of PRESS residuals
c1, c2, . . . , cm = regression coefficients used in connection with an ordinary or weighted least squares fit
c1, c2, . . . , cm = regression coefficients associated with the calculation of PRESS residuals
e = unit basis vector
e = component of unit basis vector
i = index of a data point
I = identity matrix
j = index of a data point
k = index of a data point
l = index of a regressor
m = total number of regressors or regression coefficients
nk = total number of intentionally loaded components of a data point with index k
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n′µ = total number of intentionally loaded components of a load series with index µ
N1, N2 = normal force components of a force balance
p = total number of data points
q = total number of load series of an OFAT type balance calibration data set
Q = vector that has the regressor values of a specific data point
r = response variable
rAF = electrical output of the axial force gage of a strain–gage balance
RM = rolling moment of a strain–gage balance
S1, S2 = side force components of a force balance
U = matrix that has the “weighted” regressors of a “weighted” least squares fit
U = subset of matrix U that is used for the calculation of PRESS residuals
V = vector that has the “weighted” responses of a “weighted” least squares fit
V = subset of vector V that is used for the calculation of PRESS residuals
wk = weighting factor of data point with point index k
wk,µ = weighting factor of data point with point index k and load series index µ
W = diagonal matrix that has the weighting factors of each data point
W = subset of matrix W that is used for the calculation of PRESS residuals
W = diagonal matrix that has the square root of the weighting factors of each data point
W = subset of matrix W that is used for the calculation of PRESS residuals
X = vector that has the regression coefficients of a least squares fit
X = subset of vector X that is used for the calculation of PRESS residuals

∆AF = axial force residual ≡ difference between the tare corrected and fitted load value
∆r = response residual that is obtained after performing a weighted least squares fit
δr = PRESS residual of response
µ = index of a load series
ξl,k = value of a regressor variable (regressor index ≡ l, data point index ≡ k)
ρ = fitted response that is obtained after performing a weighted least squares fit
ρ = fitted response that is needed for the calculation of PRESS residuals
σPRESS = standard deviation of PRESS residuals
ψ = exponent used in authors’ definition of a weighting factor

I. Introduction

Calibration data of a multi–component wind tunnel strain–gage balance is traditionally analyzed using
a multivariate least squares fit so that balance loads can be predicted from measured gage outputs during a
wind tunnel test (see Ref. [1] for more detail). Analysts often do not realize that the traditionally applied
ordinary least squares fit treats every balance calibration point equally. In other words, every data point
has a weighting factor of “one” if an ordinary least squares fit is performed. Consequently, calibration load
schedule design and, in particular, the number of repeat data points, “implicitly” determine the “weight” of
a data point during the regression analysis of the calibration data.

The authors observed over the years that many balance calibration data sets have a relatively small
number of single–component loadings. This calibration load schedule characteristic often results from the
fact that a balance calibration laboratory wants to include as many combined loadings as possible in the
calibration data so that related coefficients of the regression model’s cross–product terms can be estimated
with confidence. Therefore, the true influence of the existing single–component loadings on the final re-
gression coefficient estimates may be too small for some balance calibration data sets considering the fact
that single–component loadings significantly influence the magnitude of the load predictions. In addition,
single–component loadings have a strong impact on the least squares estimates of the gage sensitivities as
the electrical outputs of a strain–gage balance show highly linear behavior when (i) the balance is analyzed
in its design format and (ii) a primary output is plotted versus the related primary load.

Hidden asymmetries in the chosen load schedule design themselves can also impose an unwanted “im-
plicit” weighting on the data points during the regression analysis of the calibration data. A typical example
of this situation is a load schedule design that first uses very few single–component loadings in order to
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apply the axial force over its entire positive and negative load range. Afterwards, only positive axial force
loadings are applied as constant auxiliary loads in order to obtain load combinations that are needed for the
characterization of certain cross–product terms.

The examples discussed above clearly indicate that the ability to assign an “explicit” weighting factor
to each individual data point of a balance calibration data set could be beneficial during the regression
analysis of certain types of calibration data. Therefore, the authors developed a new approach that uses
some very general data point specific information for the definition of a weighted least squares fit in order
(i) to give more weight to single–component loadings and (ii) to reduce the negative impact of load schedule
asymmetries on the regression coefficient estimates.

In the next section, relationships are reviewed that are needed for a basic understanding of a weighted
least squares fit of wind tunnel strain–gage balance calibration data. Then, the authors’ weighting factor
definition is discussed. Afterwards, data from the calibration of a wind tunnel balance is used to illustrate
benefits of the application of a weighted least squares fit to balance calibration data. In addition, it is shown
in the appendices how a weighted least squares fit influences the calculation of PRESS residuals of the outputs
and loads of a balance (the appendices were included in the paper because this important information could
not be found in the existing literature).

II. Weighted Least Squares Approach

In general, wind tunnel strain–gage balance data is analyzed using a multivariate least squares fit that is
described in matrix format (see Refs. [1], [2], and [3] for more details). This approach assembles the regressors
(including the regressor associated with the intercept term) in a rectangular matrix A. The number of rows
of matrix A equals the total number “p” of calibration data points. The number of columns of matrix A,
on the other hand, equals the total number “m” of regressors (i.e., math terms). The responses are also
needed for a complete description of the multivariate least squares problem of the balance calibration data.
They are assembled in a column vector B. The number of rows of vector B equals the total number “p”
of calibration data points. Then, assuming that the Iterative Method described in Ref. [1] is used for the
balance calibration data analysis, the “ordinary” least squares problem of balance calibration data can be
described by the following matrix equation

ordinary least squares problem =⇒ Ap×m · Xm×1 = Bp×1 (1)

where vector X describes a column vector with m rows that has the regression coefficients of the math model
of the calibration data. The general solution of the ordinary least squares problem defined in Eq. (1), i.e.,
the solution of vector X, is known from the literature (see Refs. [2] and [3]). It can be summarized as follows:

solution of ordinary least squares problem =⇒ Xm×1 =
[

A
T

·A
]−1
m×m

·
[

A
T

·B
]
m×1

(2)

The above solution of the ordinary least squares problem assumes that the weighting factors w1, . . . , wp
of all data points are one. This conclusion can be expressed as follows:

ordinary least squares problem =⇒ w1 = w2 = . . . = wp = 1.0 (3)

Sometimes, an analyst of balance calibration data wants to use subject matter knowledge in order
to increase the influence of certain groups of calibration points during the regression analysis. Then, a
“weighted” least squares fit has to be applied to the data that assigns an individual weighting factor to
each data point (see Ref. [3] for a general description of the weighted least squares approach). The matrix
equation of the corresponding weighted least squares problem can easily be obtained from the equation of
an ordinary least squares problem if the diagonal matrix W is introduced. This matrix stores the weighting
factors of the individual data points on its principle diagonal. The matrix W looks as follows:

Wp×p =


w1 0 · · · 0 0
0 w2 · · · 0 0
...

...
...

...
...

0 0 · · · wp−1 0
0 0 · · · 0 wp

 (4)
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The weighting factors are introduced into the equations of the weighted least squares fit by simply
multiplying matrix A and vector B of Eq. (1) with matrix W. Then, the matrix equation of a weighted
least squares problem can be expressed as follows (see also Ref. [3])

weighted least squares problem =⇒ Wp×p · Ap×m · Xm×1 = Wp×p · Bp×1 (5)

where vector X has the regression coefficients that result from the weighted least squares fit. The normal
equations of the weighted least squares problem are obtained by simply multiplying both sides of Eq. (5)
with the transpose of matrix A (see again Ref. [3] for more details). Then, we get:

normal equations =⇒ A
T

m×p · Wp×p · Ap×m · Xm×1 = A
T

m×p · Wp×p · Bp×1 (6)

It is useful to transform the normal equations of the “weighted” least squares problem to the normal
equations of an equivalent ordinary least squares fit. Then, existing computer code can be used to solve the
weighted least squares problem if the code was originally developed to perform an ordinary least squares fit.
Therefore, an auxiliary matrix W is introduced. This matrix is defined as follows:

Wp×p = W
1/2

p×p =



√
w1 0 · · · 0 0
0

√
w2 · · · 0 0

...
...

...
...

...
0 0 · · · √wp−1 0
0 0 · · · 0

√
wp

 (7a)

where
Wp×p = W

1/2

p×p · W
1/2

p×p = Wp×p · Wp×p (7b)

Then, after using the right–hand side of Eq. (7b) in order to substitute the matrix W in Eq. (6), we get
the following transformed normal equations of the weighted least squares problem:

A
T

m×p · Wp×p · Wp×p · Ap×m · Xm×1 = A
T

m×p · Wp×p · Wp×p · Bp×1 (8)

We also know from the operator rules of matrix algebra that WT

=W because W is a diagonal matrix.

In addition, we know that A
TW = [WA]

T

. Consequently, Eq. (8) can also be expressed as follows:

[ Wp×p · Ap×m ]
T

· [ Wp×p · Ap×m ] · Xm×1 = [ Wp×p · Ap×m ]
T

· [ Wp×p · Bp×1 ] (9)

Now, the auxiliary matrix U and the auxiliary vector V are introduced so that Eq. (9) can be expressed
in the format of an ordinary least squares fit. We get:

Up×m = Wp×p · Ap×m (10a)

Vp×1 = Wp×p · Bp×1 (10b)

Then, after using the left–hand sides of Eqs. (10a) and (10b) to replace the contents of the brackets in
Eq. (9), we get the following relationship for the normal equations of the weighted least squares fit:

U
T

m×p · Up×m · Xm×1 = U
T

m×p · Vp×1 (11)

Finally, the solution of the weighted least squares problem, i.e., the solution for the regression coefficients
of the balance calibration data, can be expressed by the following matrix equation:

solution of weighted least squares problem =⇒ Xm×1 =
[

U
T

U
]−1
m×m

·
[

U
T

V
]
m×1

(12)
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It remains to define values for the weighting factors of the data points of a strain–gage balance calibration
data set. The authors’ proposed weighting factor definition is discussed in the next section of the paper.

III. Weighting Factor Definition for Balance Calibration Data

The successful use of a weighted least squares fit during the regression analysis of multivariate experi-
mental data highly depends on a suitable choice of a weighting factor for each data point. An analyst will
quickly find out that the weighting factor selection is often more difficult than initially anticipated. This
problem is explicitly mentioned in the literature. For example, Miller makes the following two statements in
his textbook: “. . . If God or the Devil were willing to tell us the values for . . . [the weights] . . ., the solution
would be . . .” and “. . . Since most of us cannot get help from above or below, we are faced with having to
estimate the unknown weights. . . .” (taken from Ref. [4], p. 210). Consequently, the authors realized from
the start that the definition of a reliable set of weighting factors for the analysis of strain–gage balance
calibration data had to be based on some very general subject matter knowledge about the behavior of a
balance and its calibration process. This approach helps avoid the situation that the chosen weighting factor
definition would only work successfully for one class of balance calibration load schedule designs.

The authors decided to define a weighting factor for each calibration data point such that the overall
influence of points with more complex load combinations is reduced during the regression analysis. Then,
points of single–component loadings would have greater influence on the final regression coefficient set. The
authors’ weighting approach is also supported by two observations that can be made whenever loads are
analyzed in the “design format” of the balance (e.g., a force balance is analyzed in force balance format):
(i) a typical strain–gage balance shows highly linear behavior when it is analyzed in its “design format” and
the primary gage outputs are plotted versus related primary gage loads; (ii) more than 90% of the magnitude
of a regression model’s prediction of an output is determined by regressors that are constructed as a purely
linear function of a single balance load assuming the balance is analyzed using the Iterative Method.

The authors’ weighting factor definition is based on a simple “count” of the number of “intentionally
loaded” load components (or gages) of a data point. The weighting factor is constructed such that an increase
of the number of “intentionally loaded” load components (or gages) decreases the influence of the data point
on the regression coefficient estimates. The authors consider a balance load component of a data point to
be “intentionally loaded” if the magnitude of the load component exceeds the recommended threshold of
20 % of the load capacity. This conservative threshold choice guarantees that data points with small to
moderate load levels always get the highest weighting factor. In addition, in order to improve clarity, the
authors decided to map the weighting factor’s numerical value to the fixed interval between zero and one.
In conclusion, the authors’ weighting factor definition can be summarized as follows . . .

WEIGHTING FACTOR DEFINITION
=⇒ applicable to all load schedules ⇐=

wk =

[
λk

MAX { λ1 , . . . , λp }

]ψ
; 1 ≤ k ≤ p (13a)

where

λk =
MAX { n1 , . . . , np }

nk
(13b)

ψ = 2 (13c)

nk = 0 =⇒ wk = 1.0 (13d)

where (i) wk is the weighting factor of the data point with index k and (ii) nk is the number of intentionally
loaded load components or gages of the data point. The definition above uses the power of a fraction to
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control the strength of the weighting. The exponent choice of ψ = 2 suggested itself because the square root√
wk of the individual weighting factors of each data point is needed to describe the “weighted” least squares

problem in terms of the normal equations of an ordinary least squares problem (see Eq. (7a)). In theory, an
exponent choice of ψ > 2 could also be used for the weighting factor definition. It would simply increase the
strength of the weighting that is applied during the least squares fit of the calibration data. However, the
authors recommend to use an exponent of ψ = 2 for balance calibration data because they did not observe
a noticeable improvement in the quality of the least squares fit when an exponent of ψ > 2 was used.

The definition above, i.e, Eq. (13a), uses information for the calculation of a data point’s weighting
factor that is obtained from its unique loading characteristics. In other words, the weighting factor of a
data point is completely independent of load combinations seen by other data points. Consequently, the
authors’ definition works with all load schedule designs. Sometimes, however, a balance is calibrated using
the so–called One–Factor–At–A–Time (OFAT) approach. This approach uses multiple load series that each
represent one specific load configuration. In addition, the OFAT approach varies only a single load component
within each load series while keeping all other load components at a constant value during the execution of
the load series. Therefore, it is reasonable to assume that all data points of an OFAT load series have a single
common error source. Consequently, the authors developed an alternate weighting factor definition for OFAT
type balance calibration data sets that (i) first determines the maximum number of intentionally loaded load
components or gages of an OFAT type load series, (ii) uses this value in combination with the basic idea
expressed in Eq. (13a) to compute the load series’ weighting factor, and (iii) assigns this weighting factor
to all data points of the OFAT load series. This alternate weighting factor definition can be summarized as
follows . . .

ALTERNATE WEIGHTING FACTOR DEFINITION
=⇒ only applicable to “One–Factor–At–A–Time” type load schedules ⇐=

wk,µ =

[
λ′µ

MAX { λ′1 , . . . , λ′q }

]ψ
; 1 ≤ µ ≤ q (14a)

where

λ′µ =
MAX { n′1 , . . . , n′q }

n′µ
(14b)

ψ = 2 (14c)

n′µ = 0 =⇒ wk,µ = 1.0 (14d)

where wk,µ is the weighting factor of the data point with index k that belongs to the load series with index
µ, and, n′µ is the maximum number of “intentionally loaded” load components or gages of the load series. It
has to be emphasized that the alternate weighting factor definition given in Eq. (14a) is “optional” because
the original weighting factor definition given in Eq. (13a) can also be applied to OFAT type calibration data
sets. Therefore, the authors recommend to apply the two weighting factor definitions separately to a given
OFAT type calibration data set and compare the resulting least squares fits afterwards in order to decide
which approach works best for the specific characteristics of the given calibration data.

It is useful to discuss a simple example to better illustrate the calculation of the weighting factor that
is defined in Eqs. (13a) and (13b). It is assumed, that a 6–component force balance is calibrated in force
balance format. It is also assumed that the final calibration data set consists of 500 data points and that
the maximum number of “intentionally loaded” load components of a data point equals four. Then, we can
summarize the given calibration load schedule characteristics as follows:

total number of data points =⇒ p = 500
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maximum number of intentionally loaded load components =⇒ MAX{n1, . . . , nk, . . . , n500} = 4

possible number of intentionally loaded load components =⇒ 0 ≤ nk ≤ 4

Now, the possible weighting factors of the balance calibration data set can be computed by applying
the weighting factor definition given in Eqs. (13a) and (13b). Table 1 below shows the corresponding values
for each possible number of “intentionally loaded” load components of a data point.

Table 1: Possible weighting factors wk of the balance calibration data example.

nk λk λk/MAX{λk} wk

0 − − Eq. (13d) =⇒ 1.0

1 4/1 = 4.00 4.00/4.00 = 1.00 (1.00)2 = 1.0000

2 4/2 = 2.00 2.00/4.00 = 0.50 (0.50)2 = 0.2500

3 4/3 = 1.33 1.33/4.00 = 0.33 (0.33)2 = 0.1111

4 4/4 = 1.00 1.00/4.00 = 0.25 (0.25)2 = 0.0625

The example above illustrates another property of the weighting factor definition: its application depends
on an analyst’s ability to objectively “count” the number nk of “intentionally loaded” load components (or
gages) of each calibration data point. This task is, in reality, more complicated than it initially appears
because (i) balance loads have to be described relative to the absolute load datum of the balance before the
regression analysis can take place and (ii) fundamental characteristics of the chosen load prediction methods
have to be taken into account. These issues are discussed in more detail in the next section of the paper.

IV. Number of Intentionally Loaded Load Components

A. General Remarks
It was mentioned in the previous section that the determination of the number of applied load compo-

nents of a data point is more complicated than it may initially appear. The successful completion of this task
depends on a good understanding of the importance of the absolute load datum of the balance. In addition,
basic characteristics of the chosen load prediction method need to be taken into account. Two different
methods are used for this purpose in the aerospace testing community. They are called the Iterative Method
and the Non–Iterative Method (see Ref. [5] for more detail). The methods differ in the choice of independent
variables, i.e., factors, that are used to construct the regressors for the least squares fit of the balance cali-
bration data. First, the determination of the number of “intentionally loaded” load components is described
assuming that an analyst applies the Iterative Method to the balance calibration data. Afterwards, the same
task is discussed assuming that an analyst applies the Non–Iterative Method.

B. Iterative Method
The Iterative Method requires two steps in order to predict balance loads from measured gage outputs.

First, the method fits the outputs as a function of the balance loads. In other words, it treats the loads as
the independent variables of the calibration data set and uses them to construct the regressors for the least
squares fit. The balance loads themselves should have been tare corrected, i.e., corrected for loads associated
with the weight of the calibration hardware, before the regression analysis takes place so that all loads are
described relative to the common load datum of zero absolute load. Then, after completion of the least
squares fit of the outputs, a load iteration scheme is constructed from the resulting regression coefficients of
the outputs so that loads can be predicted from the measured outputs during the wind tunnel test.

The description of the Iterative Method above makes one remark that is important when it comes to the
determination of the number “nk” of the “intentionally loaded” load components of a data point: the tare
corrected loads, i.e., loads relative to the load datum of zero absolute load, have to be used to determine
nk. Therefore, an analyst must be able to estimate the magnitude of the tare corrected calibration load set
before the final regression analysis of the calibration data takes place. In addition, the authors recommend
to use a threshold of ±20 % of the capacity of a load component in order to decide whether or not a load
component is considered to be “intentionally loaded.” This recommendation, of course, will assign the value
of nk = 0 to a data point if the magnitude of none of its load components exceeds 20 % of the related load
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capacity. In this case, the condition defined in Eq. (13d) is applied. Consequently, those data points will
always get the highest possible weighting factor of one.

C. Non–Iterative Method
The Non–Iterative Method may also used to predict balance loads from measured strain–gage outputs

during a wind tunnel test. The Non–Iterative Method directly fits the tare corrected balance loads as a
function of the gage outputs that were measured during the calibration. Ideally, the difference between a
gage output and its natural zero, i.e., its output at zero absolute load, should be used to construct the
regressors for the least squares fit of a balance load. Then, no confusion about the output datum associated
with the regression model of the load exists when the regression model is used during a wind tunnel test as,
by design, the output datum associated with output differences is zero.

The description of the Non–Iterative Method above contains one statement that is relevant as far as
the determination of nk, i.e., of the number of “intentionally loaded” load components is concerned: the
difference between a gage output and its natural zero should be used to construct the regressors for the least
squares fit of the balance load. In other words, output differences and not the tare corrected loads are the
independent variables of the least squares fit that the Non–Iterative Method performs. Therefore, an analyst
must “count” the number of “intentionally loaded” gages instead of the number of “intentionally loaded”
load components as the output differences are the electrical representation of the load state of the balance.
In addition, as only “intentionally loaded” gages of a data point are to be used for the determination of nk,
the authors recommend to use a threshold of ±20 % of the maximum output difference of a given gage in
order to decide whether or not a gage is considered to be “intentionally loaded.” This recommendation, of
course, will assign the value of nk = 0 to a data point if the magnitude of none of its output differences
exceeds 20 % of the related maximum output difference. Then, the condition defined in Eq. (13d) is again
applied. Consequently, those data points will always get the highest possible weighting factor of one.

A balance calibration data example is discussed in the next section to better illustrate the application
of the authors’ weighted least squares fit approach to real–world balance calibration data.

V. Discussion of Example

A. General Remarks
Data from a machine calibration of NASA’s MC60E balance is used in this section to illustrate both

application and benefits of a weighted least squares fit of strain–gage balance calibration data. The MC60E
balance is a six–component force balance that was manufactured and originally calibrated by Force Mea-
surement Systems (FMS) in San Diego. It has a diameter of 2.0 inches and measures five forces and one
moment (N1, N2, S1, S2, AF , RM). Table 2 below lists load capacities of the balance:

Table 2: Load capacities of the MC60E balance.

N1, lbs N2, lbs S1, lbs S2, lbs RM , in–lbs AF , lbs

Capacity 2500 2500 1250 1250 5000 700

The chosen machine calibration data set was obtained in 2016 in FMS’ Automatic Balance Calibra-
tion System (ABCS). The data set consisted of 2091 points that were distributed across sixteen load series.
The calibration load set was defined by using a load schedule design for force balances that was origi-
nally developed at NASA Ames Research Center (see Ref. [6], Fig. 3, Fig. 4). This design consists of six
single–component load series, three two–component load series, four three–component load series, one four–
component load series, and two five–component load series. Loadings of the multi–component series are
structured such that all combinations of the components are applied within the limits of their load ranges.
The load ranges are gradually reduced from ±100% to ±33% of capacity as the number of applied load
components of a series increases. This constraint was introduced to decrease the potential peak stress that
the balance may experience during calibration.

The Ames’ load schedule design uses an OFAT calibration approach during six of its sixteen load series.
Consequently, it was only possible to compare results for two different data point weighting methods during
the data analysis (i.e., equally weighted data points and the weighting factor definition that is described in
Eq. (13a)). Characteristics of these two weighting methods are summarized in Table 3 below.
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Table 3: Description of weighting methods that were applied during the calibration data analysis.

Weighting Method Description

Method 1 equal weight of one is applied to all data points (default weighting approach)

Method 2 weight depends on a “count” of the intentionally loaded gages =⇒ Eq. (13a)

Method 1 above can be described as an “implicit” weighting approach as (i) the weighting factors
of all data points are identical and (ii) the calibration load schedule structure alone determines the true
“weight” of each data point. Method 2, on the other hand, can be described as an “explicit” weighting
approach as the weighting factor of each individual data point is determined analytically and assigned on a
point–by–point basis by either an analyst or existing analysis software logic.

B. Results for Implicit Weighting (Method 1)
First, the Iterative Method was applied to the 2091–point machine calibration data set. The six outputs

of the original calibration data set were each fitted using a 28–term math model (28 terms ≡ 27 terms plus
one intercept; no absolute value terms were needed; no near–linear dependencies between the regressors were
introduced by this choice). An ordinary least squares fit was performed during the regression analysis that
assigned a weighting factor of one to all data points (Weighting Method ≡ Method 1). Afterwards, the load
iteration scheme was constructed from the regression models. Finally, the load residuals, i.e., the differences
between tare corrected and fitted loads, were computed for the six load components of the balance.

The authors decided to only discuss the accuracy of the axial force predictions in more detail in the
paper. First, characteristics of the axial force load schedule of the 2091–point data set are reviewed. The
axial force load schedule is shown in Fig. 1a below. It depicts the tare corrected axial forces of the calibration
data when plotted versus the data point index (the alternating gray scale highlights the load series structure).

Fig. 1a - Axial force load schedule used for the 2091–point machine calibration of the MC60E balance.

Figure 1b below shows the axial gage outputs plotted versus the tare corrected axial force for all 2091
calibration points. It is observed that the outputs are highly linear in nature when plotted versus the tare
corrected axial force. Figure 1b also indicates that the calibration points are well distributed across the axial
force range of the balance from −700 [lbs] to +700 [lbs].

Fig. 1b - Axial gage output plotted versus the axial force for the 2091–point machine calibration.
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The axial force residuals of the 2091–point data set were computed after applying the load iteration
scheme of the Iterative Method to the measured outputs. Figure 2 below shows the resulting residuals of the
calibration data when plotted versus the tare corrected axial force. It is observed that the residuals stay
within the 0.25 % threshold that is traditionally used to evaluate load residuals of strain–gage balances.

Fig. 2 - Axial force residuals plotted versus the axial force for the 2091–point machine calibration
data set after weighting Method 1 was applied during the regression analysis of the data.

Now, in order to illustrate the benefit of the weighted least squares fit, an asymmetric load schedule
was generated from the original 2091–point calibration data set. This asymmetric data set was obtained
by simply removing almost all data points from the 2091–point data set that have a negative axial force.
Only axial loadings of load series 6 were left unchanged. Figure 3a below shows the modified axial force load
schedule of the resulting 1210–point subset of the original 2091–point calibration data set.
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Fig. 3a - Axial force load schedule used for the 1210–point subset of the 2091–point machine calibration.

Figure 3b below shows the axial gage outputs of the 1210–point subset when plotted versus the tare
corrected axial forces. It can clearly be seen in Fig. 3b that the 1210–point subset has substantially fewer
negative axial force loadings. Consequently, an ordinary least squares fit is expected to apply too much
“implicit” weight on the positive axial force loadings which may negatively influence the resulting least
squares estimate of the axial gage sensitivity.

873. 

0. 

-873.
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Fig. 3b - Axial gage output plotted versus the axial force for the 1210–point subset.

In the next step, Method 1, i.e., equal weighting of all data points, was chosen for the regression analysis
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of the 1210–point subset of the original calibration data. Again, it was decided to apply the Iterative Method
during the analysis and use the same math model that was selected to process the original 2091–point data
set. The resulting axial force residuals for the 1210–point subset are shown in Fig. 4a below.

Fig. 4a - Axial force residuals plotted versus the axial force for the 1210–point subset after
weighting Method 1 was applied during the regression analysis of the data.

The residuals plotted for the negative axial force range in Fig. 4a above belong to data points of load
series 6 as only load series 6 has negative axial force loadings of significant magnitude (see also Fig. 3a). The
residuals exhibit a distinct “slope” that did not exist when the original 2091–point data set was processed
using Method 1 (compare residuals plotted in Fig. 2 with residuals plotted in Fig. 4a).

C. Results for Explicit Weighting (Method 2)

In the next step, Method 2, i.e., “explicit weighting,” was used during the regression analysis of the
1210–point subset. Therefore, the weighting factor of each data point was computed by using Eq. (13a).
The 1210–point subset also consists of the 16 load series that the original 2091–point calibration data set has
(the chosen load series structure is shown in Ref. [6], Fig. 3, Fig. 4). The first six load series of the subset
have a maximum number of one “intentionally loaded” load component. Therefore, the weighting factor of
all data points from series 1 to series 6 is one. In all other cases, the weighting factors of the data points of
each series will range from the weighting factor that is obtained for the maximum number of “intentionally
loaded” load components of the given load series to the maximum value of one. The final list of the chosen
weighting factor set of each load series of the 1210–point subset is given in Table 4 below.

Table 4: Weighting factors used by Method 2 for the analysis of the MC60E calibration data.

Load Series Maximum Number of Loaded Gages Weighting Factor Set

(see also Ref. [6], Fig. 3, Fig. 4)

1, 2, 3, 4, 5, 6 1 1.0000

7, 8, 9 2 0.2500, 1.000

10, 11, 12, 13 3 0.1111, 0.2500, 1.000

14 4 0.0625, 0.1111, 0.2500, 1.000

15, 16 5 0.0400, 0.0625, 0.1111, 0.2500, 1.000

Again, it was decided to apply the Iterative Method to the calibration data using the same 28–term
math model that was used to analyze the original 2091–point calibration data set. This time, however,
the weighting factor sets listed in Table 4 above were used during the regression analysis of the data. The
resulting axial force residuals for the 1210–point subset are shown in Fig. 4b below.

Fig. 4b - Axial force residuals plotted versus the axial force for the 1210–point subset after
weighting Method 2 was applied during the regression analysis of the data.
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The shown residuals no longer have the “slope” for the negative axial force range that was observed
when the 1210–point subset was analyzed using Method 1 (compare Fig. 4b with Fig. 4a). Therefore, it
appears that the use of Method 2 has made the axial force residuals of the “asymmetric” 1210–point subset
look more like the axial force residuals of the original “symmetric” 2091–point calibration data set (compare
Fig. 4b with Fig. 2). This observation can be quantified by comparing least squares estimates of the axial
gage sensitivity for the three cases that were investigated so far (Case 1 ≡ 2091–point data set & Method 1;
Case 2 ≡ 1210–point subset & Method 1; Case 3 ≡ 1210–point subset & Method 2). The least squares
estimate of the axial gage sensitivity is simply the coefficient of the axial force AF in the regression model
of the axial gage output rAF if the Iterative Method is used to analyze balance calibration data. Table 5
below lists the least squares estimate of the axial gage sensitivity for the three cases that were investigated.

Table 5: Least squares estimates of the axial gage sensitivity of the MC60E.

Case Number Of Weighting Axial Force Axial Gage Sensitivity
Number Data Points Method Residual Plot ∂rAF/∂AF , (µV/V )/lbs

1 2091 Method 1 Fig. 2 1.1700

2 1210 Method 1 Fig. 4a 1.1692

3 1210 Method 2 Fig. 4b 1.1700

The result for Case 3, i.e., the axial gage sensitivity obtained after analyzing the 1210–point subset with
Method 2, shows good agreement with the corresponding value that was obtained during the analysis of the
original 2091–point data set using Method 1 (see Case 1). Therefore, it is confirmed that the use of Method 2
was beneficial during the analysis of the “asymmetric” 1210–point subset. Method 2 was able to compensate
for the negative influence of the partially missing negative axial force loadings on the least squares estimate
of the axial gage sensitivity.

It is important to mention that the intentionally introduced “asymmetries” in the calibration load
schedule of the axial force in the MC60E data set caused a residual shift of about 0.20 % of capacity if
(i) the axial gage was loaded near −100 % of its capacity and (ii) Method 1 instead of Method 2 was applied
during the regression analysis of the calibration data (compare Fig. 4a with Fig. 4b). The authors observed
that load schedule “asymmetries” hidden in “real–world” data sets often resulted in residual shifts that were
much higher than 0.20 % of capacity. Shifts between 0.50 % and 0.75 % near maximum load capacity were
sometimes seen if Method 1 (implicit weighting) instead of Method 2 (explicit weighting) was applied during
the regression analysis of those data sets. In all those cases, a simple switch from Method 1 to Method 2
reduced load residuals at load capacity to values that were equal or less than 0.10 % of capacity.

D. Implicit Weighting with Multiple Repeats

In theory, it is possible to reduce the negative impact of the “asymmetries” of the 1210–point subset on
the least squares estimate of the axial gage sensitivity by adding “repeats” of load series 6 to the 1210–point
subset. This load schedule change is expected to increase the “implicit” weight of points that influence the
estimate of the axial gage sensitivity. Consequently, load residuals of negative axial forces should decrease
and the least squares estimate of the axial gage sensitivity should improve. These conclusions can be
demonstrated by adding, for example, nine “perfect” repeats of load series 6 to the 1210–point subset. The
axial force load schedule of the resulting 1363–point data set is shown in Fig. 5a below.

Fig. 5a - Axial force load schedule used for the 1363–point data set, i.e., the expanded 1210–point subset.
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Differences between the 1210–point and the 1363–point load schedule can be seen by comparing Fig. 3a
with Fig. 5a. In the next step, the 1363–point data set was analyzed by apply the Iterative Method to the
data. The chosen math model was identical to the math model that was used to analyze the 1210–point
subset. In addition, weighting Method 1 was applied during the regression analysis of the data. The final
axial force residuals for the 1363–point data set are shown in Fig. 5b below.

Fig. 5b - Axial force residuals plotted versus the axial force for the 1363–point data set after
weighting Method 1 was applied during the regression analysis of the data.

The residuals of the negative axial forces no longer show the unwanted “slope” that was observed for
the 1210–point subset even though Method 1 was applied (compare Fig. 5b with Fig. 4a). In addition, as
predicted, the residuals of the negative axial forces of the 1363–point data set are smaller than values that were
observed for the 1210–point subset. The computed least squares estimate of the axial gage sensitivity of the
1363–point data set is 1.1704 (µV/V )/lbs. It is larger than the value of 1.1692 (µV/V )/lbs that was computed
for the 1210–point subset (see Table 5, Case 2). However, as expected, the axial gage sensitivity value of the
1363–point subset shows slightly better agreement with the reference sensitivity value of 1.1700 (µV/V )/lbs
that was computed for the original 2091–point machine calibration data set (see Table 5, Case 1).

VI. Summary and Conclusions

A new approach was presented that uses a weighted least squares fit for the analysis of wind tunnel
strain–gage balance calibration data. The weighted least squares fit is specifically designed to increase the
influence of single–component loadings during the regression analysis. A weighting factor between zero and
one is assigned to each calibration data point that depends on a “count” of its “intentionally loaded” load
components or gages. A variation of the authors’ original weighting factor definition was also discussed that
can only be applied to OFAT type balance calibration data set.

The authors’ approach works well with both the Iterative Method and the Non–Iterative Method that
are used for the analysis of strain–gage balance calibration data in the aerospace testing community. The
Iterative Method uses a good estimate of the tare corrected load set as input for the determination of the
weighting factors. The Non–Iterative Method, on the other hand, uses gage output differences relative to
the natural zeros as input for the determination of the weighting factors. Machine calibration data of a
six–component force balance was used to illustrate the application and potential benefits of the proposed
weighted least squares fit. It was shown that the use of a weighted least squares fit during the analysis of
balance calibration data can improve the least squares estimates of the sensitivity of a balance gage whenever
a given calibration load schedule has a highly “asymmetric” distribution of the applied calibration loads.

It was also demonstrated that a load schedule structure change, e.g., the use of multiple repeats of a
single–component load series, can have a positive impact on the “implicit” weighting that is acting during
the regression analysis of balance calibration data. However, it is important to point out that beneficial load
schedule structure changes are often difficult to execute during a “real–world” balance calibration considering
(i) the multivariate nature of strain–gage balance behavior, (ii) calibration hardware and process limitations,
and (iii) calibration schedule constraints and cost. The authors’ weighted least squares fit, on the other hand,
can easily be applied to an existing balance calibration data set as (i) no changes of the original load schedule
need to be made, and, (ii) the “explicit” weighting factors are derived from very general characteristics of
the balance calibration data.
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Appendix 1: Weighted PRESS Residual of a Response

1.1 General Remarks
PRESS residuals of the solution of a least squares fit for a given set of experiments data are important

metrics that may be used for comparison and assessment of the predictive capabilities of different regression
models. In principle, the calculation of PRESS residuals of a given data point requires only a few steps. At
first, the data point is temporarily removed from the original data set. Then, the regression model is fitted
using the remaining data points. In the next step, the regression model is used to predict the response of the
withheld data point. Finally, the difference between the predicted and measured response of the withheld
data point is computed. This difference is the PRESS residual of the response of the data point. A very
detailed derivation of the PRESS residuals of the responses was presented in the appendices of Ref. [7].
However, this derivation assumes that an ordinary least squares fit of experimental data is performed and
that all data points of the experimental data set have a weighting factor of one. Therefore, it became
necessary to develop a more general derivation of the PRESS residuals of the responses that can also be used
in connection with a weighted least squares fit. This derivation is presented for the first time in the three
appendices of this paper.

The present derivation of the PRESS residual associated with a weighted least squares fit is complex.
In principle, it follows a derivation of the PRESS residuals of an ordinary least squares fit that is outlined in
Ref. [3] and discussed in more detail in Ref. [7]. Many intermediate steps and missing proofs of important
auxiliary relationships were added to the present derivation of the PRESS residuals of a weighted least
squares fit. These changes and additions have made the derivation more complete and easier to understand.

The derivation will show that a close connection between the classical response residual of a weighted
least squares fit and the related PRESS residual of a response exists. Therefore, the derivation has two parts.
At first, an equation for the classical weighted response residual is derived. Afterwards, it is shown how the
equation of the weighted response residual is connected to the equation of the weighted PRESS residual.

1.2 Weighted Response Residual
The derivation of the classical weighted response residual starts by defining the regression model of a

set of responses. The regression model is given by the following equation:

REGRESSION MODEL OF A RESPONSE

rk = c1 · 1 + c2 · ξ1,k + c3 · ξ2,k + . . .︸ ︷︷ ︸
m regression coefficients (c1, c2, ..., cm)

; 1 ≤ k ≤ p (15)

The regression model of each point of a given experimental data set can be written in a more compact
format using a matrix and two vectors. In addition, weighting factors can be introduced for each data point
(see Ref. [3], pp.179–183 for more details). Then, we get the following general equation for the weighted
least squares fit (see also Eq. (5) in the body of the text):


w1 0 · · · 0
0 w2 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · wp


︸ ︷︷ ︸

Wp×p

·



1 ξ1,1 ξ2,1 · · ·
1 ξ1,2 ξ2,2 · · ·
...

...
...

...
1 ξ1,k ξ2,k · · ·
...

...
...

...
1 ξ1,p ξ2,p · · ·


︸ ︷︷ ︸

Ap×m

·


c1
c2
c3
...
cm


︸ ︷︷ ︸
Xm×1

=


w1 0 · · · 0
0 w2 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · wp


︸ ︷︷ ︸

Wp×p

·



r1
r2
...
rk
...
rp


︸ ︷︷ ︸
Bp×1

(16a)

Equation (16a) may be written in abbreviated form using the matrix and vector symbols that were
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introduced above. Then, we get for the matrix equation description of the weighted least squares problem
the following expression

weighted least squares problem =⇒ Wp×p · Ap×m · Xm×1 = Wp×p · Bp×1 (16b)

The solution of the weighted least squares problem above was derived in great detail in the body of the
text of the paper (see Eq. (12)). It can be summarized by the following matrix equations:

SOLUTION OF WEIGHTED LEAST SQUARES PROBLEM
(original experimental data set)

Xm×1 =
(
U

T

U
)−1
m×m

·
(
U

T

V
)
m×1

(17a)

Up×m = Wp×p · Ap×m (17b)

Vp×1 = Wp×p · Bp×1 (17c)

where

Wp×p =



√
w1 0 0 · · · 0 0
0

√
w2 0 · · · 0 0

0 0
√
w3 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · √wp−1 0
0 0 0 · · · 0

√
wp


(17d)

It is convenient to define a column vector Q that can be used to write matrix A and its transpose A
T

in
a format that is useful for the derivation of the residuals of a weighted least squares fit. This column vector
and its transpose can be expressed as follows:

[
Qk

]
m×1

=


1
ξ1,k
ξ2,k

...

 (18a)

[
Q

T

k

]
1×m

= [ 1 ξ1,k ξ2,k · · · ] (18b)

Now, after comparing the contents of matrix A shown in Eq. (16a) with the definition of vectors Q and

Q
T

above, we conclude that matrix A and its transpose A
T

can be expressed as follows:

Ap×m =


Q

T

1
...

Q
T

k
...

Q
T

p

 (18c)

A
T

m×p = [ Q1 · · · Qk · · · Qp ] (18d)
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Then, after applying Eq. (18c) to Eq. (17b) and knowing thatWT

=W becauseW is a diagonal matrix,

the matrix U of the weighted least squares problem and its transpose U
T

can be expressed as follows:

Up×m = Wp×p · Ap×m = Wp×p ·


Q

T

1
...

Q
T

k
...

Q
T

p

 (19a)

U
T

m×p = [ Q1 · · · Qk · · · Qp ] · W
T

p×p = [ Q1 · · · Qk · · · Qp ] · Wp×p (19b)

Finally, the weighted response residual of a data point with index k can be expressed as the difference
between the original response rk and the fitted response ρk. We get:

WEIGHTED RESPONSE RESIDUAL
(original experimental data set)

∆rk = rk − ρk (20a)

ρk = Q
T

k · X (20b)

The calculation of response residuals of all data points requires a single matrix inversion as X, i.e., the
solution of the global regression problem given in Eq. (17a) above, exclusively depends on the product of

inverse matrix (U
T

U)
−1

with vector U
T

V.

1.3 Weighted PRESS Residual of Response

The weighted PRESS residual of a data point is closely related to its weighted response residual. Only
one key difference exists. The weighted PRESS residual of a data point has to be computed using the global
regression solution of the modified original experimental data set that has one fewer data point (i.e., the
data point itself). Therefore, vectors and matrices of the original weighted least squares problem of the
experimental data set change. They become a function of the omitted data point.

It is assumed that the omitted data point has the index k. Then, the weighted least squares problem of
the modified, i.e., reduced, original data set can be described using the following equation:

WEIGHTED LEAST SQUARES PROBLEM
(modified experimental data set)[

Uk

]
(p−1)×m

·
[
Xk

]
m×1

=
[
Vk

]
(p−1)×1

(21a)

where
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[
Uk

]
(p−1)×m

= W(p−1)×(p−1) · A(p−1)×m = W(p−1)×(p−1) ·



Q
T

1
...

Q
T

k−1

Q
T

k+1

...

Q
T

p


(p−1)×1

(21b)

[
Xk

]
m×1

=


c1
c2
c3
...
cm


m×1

(21c)

[
Vk

]
(p−1)×1

= W(p−1)×(p−1) · B(p−1)×1 = W(p−1)×(p−1) ·



r1
r2
...

rk−1
rk+1

...
rp


(p−1)×1

(21d)

The weighting factors of the reduced data set are stored in a diagonal matrix W that has one fewer row
and column than the corresponding diagonal matrix W of the original data set. It looks as follows:

W(p−1)×(p−1) =



√
w1 0 · · · 0 0 · · · 0 0
0
√
w2 · · · 0 0 · · · 0 0

...
...

...
...

...
...

...
...

0 0 · · · √wk−1 0 · · · 0 0
0 0 · · · 0

√
wk+1 · · · 0 0

...
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · √wp−1 0
0 0 · · · 0 0 · · · 0

√
wp


(21e)

The solution of the weighted least squares fit of the modified data set can easily be written down using
the normal equations. In this case, similar to Eq. (17a) for the original experimental data set, we get:

SOLUTION OF WEIGHTED LEAST SQUARES PROBLEM
(modified experimental data set)

Xk =

(
U

T

k ·Uk

)−1
·
(

U
T

k ·Vk

)
(22)

The weighted PRESS residual of a response can be computed using an equation that is very similar to
the equation of the classical weighted response residual. Again, the weighted PRESS residual of a response
of a data point with index k can be expressed as the difference between the original weighted response rk
and the fitted response ρk that was computed using the solution of the modified original data set. We get:
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WEIGHTED PRESS RESIDUAL OF A RESPONSE
(modified experimental data set)

δrk = rk − ρk (23a)

ρk = Q
T

k · Xk (23b)

It is interesting to mention that two metrics may be derived from the weighted PRESS residuals of
a given experimental data set. These metrics may be used to assess the predictive capability of different
regression models. The first metric is called the PRESS statistic. It is defined by the following relationship:

PRESS =

p∑
k=1

[δrk]
2

(24)

The PRESS statistic is recommended in the literature for the comparison of different regression models
(see, e.g., Ref. [3], p. 142). A related metric is the standard deviation of the PRESS residuals of all data
points. It may also be used to compare regression models. This metric is defined as:

σPRESS =

√√√√ 1

p − 1

p∑
k=1

[δrk]
2

(25)

It seems, superficially viewed, that the calculation of the weighted PRESS residuals of all data points
of a data set is time consuming as a matrix inversion, i.e.,

(
U

T

k ·Uk

)−1
has to be performed for each data point with index k of the data set (see also the right–hand side of Eq. (22)).
However, it can be shown that the weighted PRESS residual of a data point can directly be computed using
only (1) the original response residual, (2) the inverse matrix used in the weighted least squares fit of the
original data set, and (3) two matrix multiplications. The proof of this surprising fact takes advantage of an
important relationship between the inverse matrix used in Eq. (17a) and the inverse matrix used in Eq. (22).
The relationship is derived in App. 2 of the present paper. It is given by the equation:

RELATIONSHIP BETWEEN INVERSE MATRICES
(see App. 2 for a derivation of the relationship)

(
U

T

k ·Uk

)−1
=

(
U

T

U
)−1

+

(
U

T

U
)−1
·Qk · wk · Q

T

k ·
(
U

T

U
)−1

1 − hk
(26a)

hk = Q
T

k ·
(
U

T

U
)−1
· Qk · wk (26b)

Consequently, after inserting Eq. (26a) into Eq. (22), i.e., the solution of the weighted least squares fit
of the modified experimental data set, and after inserting the result into Eq. (23b), i.e., the equation of the
fitted response ρk, we get the following expression:
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ρk = Q
T

k ·

 (U
T

U
)−1

+

(
U

T

U
)−1
·Qk · wk ·Q

T

k ·
(
U

T

U
)−1

1 − hk

 · (U
T

k ·Vk

)
(27)

Equation (27) can be simplified if (i) brackets on the right–hand side of Eq. (27) are expanded and (ii) a
common denominator is used. Then, we get for the fitted response of the modified experimental data set
the following equation:

ρk =
[ 1 − hk ] · Q

T

k ·
(
U

T

U
)−1

·
(
U

T

k ·Vk

)
1 − hk

+

[
Q

T

k ·
(
U

T

U
)−1
·Qk · wk

]
· Q

T

k ·
(
U

T

U
)−1

·
(
U

T

k ·Vk

)
1 − hk

(28a)

Now, after using Eq. (26b) in order to replace the square bracket of the second fraction on the right–hand
side of Eq. (28a), we get:

ρk =
[ 1 − hk ] ·QT

k ·
(
U

T

U
)−1

·
(
U

T

k ·Vk

)
1 − hk

+
hk · Q

T

k ·
(
U

T

U
)−1

·
(
U

T

k ·Vk

)
1 − hk

(28b)

Equation (28b) can be simplified further if the first fraction is expanded. Then, we can write:

ρk =
Q

T

k ·
(
U

T

U
)−1
·
(
U

T

k ·Uk

)
1 − hk

−
hk · Q

T

k ·
(
U

T

U
)−1

·
(
U

T

k ·Vk

)
1 − hk

+
hk · Q

T

k ·
(
U

T

U
)−1

·
(
U

T

k ·Vk

)
1 − hk

(28c)

The second and third fraction on the right–hand side of Eq. (28c) cancel each other. Then, we get:

ρk =
Q

T

k ·
(
U

T

U
)−1

·
(
U

T

k ·Vk

)
1 − hk

(28d)

In the next step, after using Eq. (28d) to replace the fitted response on the right–hand side of Eq. (23a),
we get for the weighted PRESS residual of the response the following expression:

δrk = rk −
Q

T

k ·
(
U

T

U
)−1

·
(
U

T

k ·Vk

)
1 − hk

=
rk − hk · rk − Q

T

k ·
(
U

T

U
)−1

·
(
U

T

k ·Vk

)
1 − hk

(29)

Now, after using Eq. (26b) in order to replace hk in the numerator of Eq. (29), we get for the weighted
PRESS residual of the response:

δrk =
rk − Q

T

k ·
(
U

T

U
)−1
· [ Qk · wk · rk ] − Q

T

k ·
(
U

T

U
)−1

·
(
U

T

k ·Vk

)
1 − hk

(30)
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Equation (30) can be simplified significantly. From Eqs. (16b), (17c), and (17d) we know that

Wp×p · Bp×1 =



√
w1 · r1√
w2 · r2

...√
wk · rk

...√
wp · rp


(31a)

Consequently, it is concluded that

Wp×p · Bp×1 = Wp×p · Wp×p · Bp×1 =



w1 · r1
w2 · r2

...
wk · rk

...
wp · rp


(31b)

Then, after combining Eq. (19b) with (17c), we can write the product U
T

V in the following form:

U
T

V = [ Q1 · · · Qk · · · Qp ] · Wp×p︸ ︷︷ ︸
from Eq. (19b)

· Wp×p · Bp×1︸ ︷︷ ︸
from Eq. (17c)

= [ Q1 · · · Qk · · · Qp ] · Wp×p · Bp×1︸ ︷︷ ︸
from Eq. (31b)

=

p∑
i=1

Qi · wi · ri

(32a)

Similarly, using Eq. (21b) and (21d), we can write

U
T

k · Vk = [ Q1 · · · Qk−1 Qk+1 · · · Qp ] · W(p−1)×(p−1)︸ ︷︷ ︸
from Eq. (21b)

· W(p−1)×(p−1) · B(p−1)×1︸ ︷︷ ︸
from Eq. (21d)

= [ Q1 · · · Qk−1 Qk+1 · · · Qp ] · W(p−1)×(p−1) · B(p−1)×1

=

[
p∑
i=1

Qi · wi · ri

]
− Qk · wk · rk

(32b)

Then, after inserting Eq. (32a) into Eq. (32b), we get the following relationship:

U
T

k · Vk = U
T

V − Qk · wk · rk (33)

Rearranging terms in Eq. (33), we get:

Qk · wk · rk = U
T

V − U
T

k · Vk (34)

Now, after using the right–hand side of Eq. (34) to replace the contents of the square bracket in the
numerator of Eq. (30) and after simplifying terms, Eq. (30) can be written as follows:

δrk =
rk − Q

T

k ·
(
U

T

U
)−1

· U
T

V

1 − hk
(35)
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We also know, after inserting Eq. (17a) into Eq. (20b), that the fitted response of the weighted least
squares problem of the original experimental data can be written in the following form:

ρk = Q
T

k · X = Q
T

k ·
(
U

T

U
)−1

· U
T

V︸ ︷︷ ︸
from Eq. (17a)

(36)

Inserting Eq. (36) into Eq. (35), we get:

δrk =
rk − ρk
1 − hk

(37)

Finally, after (i) using Eq. (20a) to replace the numerator of Eq. (37) and after (ii) using Eq. (26b) to
replace hk in Eq. (37), we get for the weighted PRESS residual of the response the equation:

WEIGHTED PRESS RESIDUAL OF A RESPONSE

δrk =
∆rk

1 − hk
=

∆rk

1 − Q
T

k ·
(
UTU

)−1 · Qk · wk
(38)

Equation (38) shows that the weighted PRESS residual of the response of a data point is essentially a
scaled value of the corresponding weighted response residual of the data point. The scaling factor depends

on (i) the inverse of matrix U
T

U that is needed to obtain the solution of the original weighted least squares
problem and (ii) a vector Qk defined in Eq. (18a) that is a function of the regressor values of the data point.
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Appendix 2: Derivation of Relationship between Inverse Matrices

An important relationship between two inverse matrices was used in App. 1 in order to derive a formula
for the weighted PRESS residual of a response. The relationship is given by the following set of equations:

RELATIONSHIP BETWEEN INVERSE MATRICES

(
U

T

k ·Uk

)−1
=

(
U

T

U
)−1

+

(
U

T

U
)−1
·Qk · wk · Q

T

k ·
(
U

T

U
)−1

1 − hk
(26a)

hk = Q
T

k ·
(
U

T

U
)−1
· Qk · wk (26b)

The above relationship needs to be proven rigorously. This proof is possible if another relationship
between products of sets of matrices is used. This relationship is given by the following expression:

RELATIONSHIP BETWEEN PRODUCTS OF MATRICES
(see App. 3 for a derivation of the relationship)(

U
T

k · Uk

)
=

(
U

T

U
)
− Qk · wk · Q

T

k (39)

A proof of Eq. (39) can be found in App. 3 of the present paper. For the time being it is assumed that
Eq. (39) is valid so that the proof of Eqs. (26a) and (26b) above can be completed. The proof of Eq. (26a)
and (26b) starts by realizing that the following relationship between a matrix and its inverse applies:

I =

(
U

T

k ·Uk

)−1
·
(

U
T

k ·Uk

)
(40)

Therefore, it is concluded that Eq. (26a) and (26b) can be proven by simply showing that the product
of the right–hand side of Eq. (26a) with the right–hand side of Eq. (39) equals the identity matrix. The
corresponding matrix product can be expressed as follows:

P =

(U
T

U
)−1

+

(
U

T

U
)−1
· Qk · wk · Q

T

k ·
(
U

T

U
)−1

1 − hk


︸ ︷︷ ︸

right−hand side of Eq. (26a)

·
[ (

U
T

U
)
− Qk · wk ·Q

T

k

]
︸ ︷︷ ︸
right−hand side of Eq. (39)

(41)

Brackets on the right–hand side of Eq. (41) can be expanded. Then, we get:

P =
(
U

T

U
)−1
·
(
U

T

U
)
−

(
U

T

U
)−1

· Qk · wk · Q
T

k

+

(
U

T

U
)−1
·Qk · wk · Q

T

k ·
(
U

T

U
)−1
·
(
U

T

U
)

1 − hk

−

(
U

T

U
)−1
· Qk · wk · Q

T

k ·
(
U

T

U
)−1

· Qk · wk ·Q
T

k

1 − hk

(42)
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We also know that

I =
(
U

T

U
)−1
·
(
U

T

U
)

(43)

Then, after using Eq. (43) in order to simplify Eq. (42), we get:

P = I −
(
U

T

U
)−1
·Qk · wk ·Q

T

k +

(
U

T

U
)−1
·Qk · wk ·Q

T

k · I

1 − hk

−

(
U

T

U
)−1
·Qk · wk ·Q

T

k ·
(
U

T

U
)−1
·Qk · wk ·Q

T

k

1 − hk

(44)

Terms in Eq. (44) can be rearranged. Then, Eq. (44) becomes:

P = I −

(
U

T

U
)−1
· Qk · wk · [ 1 − hk ] · Q

T

k

1 − hk
+

(
U

T

U
)−1
·Qk · wk ·Q

T

k

1 − hk

−

(
U

T

U
)−1
·Qk · wk ·

[
Q

T

k ·
(
U

T

U
)−1
· Qk · wk

]
·QT

k

1 − hk

(45)

We also know from Eq. (26b) that the following relationship applies:

hk =

[
Q

T

k ·
(
U

T

U
)−1

· Qkm×1 · wk
]

(46)

Then, after using the left–hand side of Eq. (46) to replace the contents of the square bracket of the
numerator of the third fraction of Eq. (45), we get

P = I −

(
U

T

U
)−1

· Qk · wk · [ 1 − hk ] · Q
T

k

1 − hk

+

(
U

T

U
)−1

· Qk · wk · Q
T

k

1 − hk
−

(
U

T

U
)−1
· Qk · wk · hk · Q

T

k

1 − hk

(47)

Finally, after combining the last two fractions of the right–hand side of Eq. (47), we get:

P = I −

(
U

T

U
)−1

· Qk · wk · [ 1 − hk ] ·QT

k

1 − hk

+

(
U

T

U
)−1

· Qk · wk · [1 − hk] · Q
T

k

1 − hk

(48)

The two fractions on the right–hand side of Eq. (48) cancel each other. Then, we get the final result:

P = I (49)

Therefore, it is proven that Eq. (26a) and (26b) are valid as the product of the right–hand side of
Eq. (26a) with the right–hand side of Eq. (39) equals the identity matrix.
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Appendix 3: Derivation of Relationship between Products of Matrices

An auxiliary relationship between two sets of matrices is proven in this appendix that is urgently needed
for the proof of Eq. (26a) in App. 2. The relationship has the following form:

RELATIONSHIP BETWEEN PRODUCTS OF MATRICES(
U

T

k · Uk

)
m×m

=
(
U

T

U
)
m×m

− Qk · wk · Q
T

k (39)

The proof of Eq. (39) can be accomplished by first showing that the following relationship is valid:

(
U

T

U
)

=

p∑
k=1

Qk · wk · Q
T

k (50)

Matrix U above was defined in Eq. (19a). We know, by inspection, that the following relationship is valid:

Up×m = Wp×p · Ap×m = Wp×p ·



Q
T

1

Q
T

2
...

Q
T

k
...

Q
T

p


p×m

= Wp×p ·

[
p∑
k=1

[ek]p×1 ·
[
Q

T

k

]
1×m

]
(51)

where the unit basis vector ek can be expressed as

[ek]p×1 =



e1
e2
...
eµ
...
ep


p×1

; eµ =

{
0 if µ 6= k
1 if µ = k

(52)

and where vector Q
T

k is given by Eq. (18b) as[
Q

T

k

]
1×m

= [ 1 ξ1,k ξ2,k · · · ]1×m (18b)

We also know, that the transpose of the sum of two matrices equals the sum of the transpose of each
matrix (from Ref. [8], p. 334):

[ C + D ]
T

= C
T

+ D
T

(53a)

The transpose of matrix U may be obtained by simply transposing both sides of Eq. (51). Then, as

WT

=W, we get:

U
T

=

[
W ·

p∑
k=1

ek ·Q
T

k

]T
=

[
p∑
k=1

[
ek ·Q

T

k

]T ]
· W (53b)

The following two theorems for (i) the transpose of a matrix and for (ii) the transpose of the product
of two matrices apply (from Ref. [8], p. 334):
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C =
(
C

T
)T

(54a)

( C D )
T

= D
T

C
T

(54b)

Therefore, Eq. (53b) can also be written as:

U
T

=

[
p∑
k=1

Qk · e
T

k

]
· W (55)

Now, after multiplying the right–hand side of Eq. (55) with the right–hand side of Eq. (51), we get:

(
U

T

U
)

=

[
p∑
i=1

Qi · e
T

i

]
· W · W ·

 p∑
j=1

ej · Q
T

j


=

[
p∑
i=1

Qi · e
T

i

]
· W ·

 p∑
j=1

ej · Q
T

j

 (56a)

The summation sign associated with index j may be moved in front of the term Qi because the three

terms W, Qi, and e
T

i are independent of index j. Then, we get:

(
U

T

U
)

=

p∑
i=1

p∑
j=1

[
Qi · e

T

i · W · ej · Q
T

j

]
(56b)

It is known, by inspection, that the following relationship between the product of two unit basis vectors
with a diagonal matrix is valid:[

e
T

i

]
1×p

· Wp×p · [ej ]p×1 =

{
0 if i 6= j
wi if i = j

(57)

Consequently, a summation term used on the right–hand side of Eq. (56b) only differs from zero if the
summation indices i and j are identical. Therefore, Eq. (56b) becomes:

(
U

T

U
)

=

p∑
i=1

[
Qi · wi · Q

T

i

]
(58)

Now, after expanding the summation on the right–hand side of Eq. (58) and after moving the summation
terms with index k to the left–hand side of the equation, we get:(

U
T

U
)
− Qk · wk · Q

T

k = Q1 · w1 · Q
T

1 + Q2 · w2 · Q
T

2 + . . .

. . . + Qk−1 · wk−1 · Q
T

k−1 + Qk+1 · wk+1 · Q
T

k+1 + . . .

. . . + Qp−1 · wp−1 · Q
T

p−1 + Qp · wp · Q
T

p

(59)

We also know, after applying Eq. (58) to a matrix U that equals matrix U with the k–th row removed,
that the following relationship is valid:(

U
T

k ·Uk

)
= Q1 · w1 · Q

T

1 + Q2 · w2 · Q
T

2 + . . .

. . . + Qk−1 · wk−1 · Q
T

k−1 + Qk+1 · wk+1 · Q
T

k+1 + . . .

. . . + Qp−1 · wp−1 ·Q
T

p−1 + Qp · wp ·Q
T

p

(60)
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It can be seen that the right–hand side of Eq. (59) equals the right–hand side of Eq. (60). Therefore, it
is concluded that the left–hand side of Eq. (59) must equal the left–hand side of Eq. (60). This observation
can be summarized as follows:

U
T

k ·Uk = U
T

U − Qk · wk · Q
T

k (61)

Consequently, knowing that vector Q
T

k is the k–th row of matrix U, it is concluded that the right–hand
side of Eq. (61) equals the matrix product after the k–th row is removed in matrix U.
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Appendix 4: Weighted PRESS Residual of a Balance Load

Strain–gage balances are used in wind tunnel testing to measure forces and moments that act on a wind
tunnel model during a test. A strain–gage balance has to be calibrated so that measured electrical outputs
of the strain–gages can be related to aerodynamic loads that the wind tunnel model experiences during
the test. Typical load combinations are applied during the calibration of the balance and corresponding
strain–gage outputs are recorded. Then, a regression analysis of the calibration data is performed that fits
the measured electrical strain–gage outputs (responses) as a function of the applied calibration loads that
are used to construct the regressors of the multivariate least squares fit. In a final step, the result of the
regression analysis is used to define an iteration equation that makes it possible to directly compute loads,
i.e., the value of the independent calibration variable, from the measured electrical outputs during a wind
tunnel test. This iteration process is unique to the analysis and use of wind tunnel strain–gage balance
calibration data. A more detailed explanation of the strain–gage balance calibration analysis process and
the derivation of an iteration equation that allows for a direct calculation of balance loads from a given set
of responses (measured electrical strain–gage output) is given in Ref. [1].

A calculation of the weighted PRESS residual of a balance load is of great interest to the wind tunnel
testing community as balance loads are often the most important result of wind tunnel tests. Unfortunately,
the weighted PRESS residual is computed for a response value (see App. 1). However, the author realized
that weighted PRESS residuals of the balance loads can be computed in a two step process. This two step
process combines (i) the regression analysis of the modified experimental data set with (ii) an iteration
process for each data point.

The modified experimental data set needed for the calculation of the weighted PRESS residual of a
balance load is identical with the modified data set that is discussed in App. 1. In principle, the calculation
of the weighted PRESS residuals of the balance load needs the solution of the weighted least squares fit and
the load iteration result for the data point if the data point (index k) itself is withheld from the original data
set. The modified data set equals the original data set with the data point itself withheld. Consequently,
matrix U of the regression problem has one fewer row. The regression solution now becomes a function of
the data point (index k) that is omitted for the calculation of the PRESS residuals.

The weighted least squares fit solution for the reduced calibration data set is needed to start the load
iteration for a given data point where the weighted PRESS residual of the balance load is to be computed. It
is assumed, similar to Eq. (21a) in App. 1, that the matrix and vector describing the weighted least squares
problem of the modified data set are given as:

Uk · Xk = Vk (62)

The solution of the weighted least squares problem is simply given by the following:

Xk =

(
U

T

k ·Uk

)−1
·
(

U
T

k ·Vk

)
(63)

It can be seen from Eq. (63) that the solution of the global regression problem of the modified data set
is a function of the following matrices and vectors:

Xk =⇒ F

{ (
U

T

k ·Uk

)−1
; Uk ; Vk

}

It is obvious that the calculation of the inverse matrix on the right–hand side of Eq. (63) is a very
time consuming operation if the solution of the weighted least squares problem has to be found. It appears,
superficially viewed, that the calculation of the solution requires a complete calculation of the inverse matrix
for each data point if the weighted PRESS residuals of all data points are to be determined. Fortunately,
we can take again advantage of Eq. (26a) and (26b) that are derived in App. 2. These equations have the
following form:

28

American Institute of Aeronautics and Astronautics



RELATIONSHIP BETWEEN INVERSE MATRICES

(
U

T

k ·Uk

)−1
=

(
U

T

U
)−1

+

(
U

T

U
)−1
·Qk · wk · Q

T

k ·
(
U

T

U
)−1

1 − hk
(26a)

hk = Q
T

k ·
(
U

T

U
)−1
· Qk · wk (26b)

We get, after inserting Eq. (26a) and (26b) into Eq. (63), the following solution of the global regression
problem of the modified data set:

Xk =

 (U
T

U
)−1

+

(
U

T

U
)−1
· Qk · wk · Q

T

k ·
(
U

T

U
)−1

1 − Q
T

k ·
(
UTU

)−1 · Qk · wk

 · (U
T

k ·Vk

)
(64)

Now, the weighted least squares solution of the modified data set depends on the following matrices, vectors,
and scalars:

Xk =⇒ F
{ (

U
T

U
)−1

; Qk ; Uk ; Vk ; wk

}
The originally required matrix inversion of the modified data set for each data point (1 ≤ k ≤ p), i.e.,(

U
T

k ·Uk

)−1
has been replaced by simple matrix additions and multiplications that use the fixed inverse matrix of the
original regression problem, i.e., (

U
T

U
)−1

The inverse matrix of the original regression problem only has to be computed once for all data points.
Therefore, the time consuming part of the calculation of the weighted PRESS residuals of the balance loads
is not the calculation of the global regression solution of the reduced data set. Instead, it is the iteration
that has to be performed for each data point after the solution of the weighted least squares problem of the
modified data set is obtained. All matrices used in this iteration equation are directly derived for each data
point with index k from the global regression solution Xk of the modified, i.e., reduced, original balance
calibration data set.
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