

Thermochemistry of CaO-MgO-Al₂O₃-SiO₂ (CMAS) and Advanced Thermal and Environmental Barrier Coating Systems

GUSTAVO COSTA AND DONGMING ZHU

Environmental Effects and Coatings Branch Materials and Structures Division NASA Glenn Research Center, Cleveland, OH 44135 gustavo.costa@nasa.gov

Outline of Presentation

- Thermal and Environmental Barrier Coating Systems
- Experimental
- Sample preparation and reaction with CMAS
- Results
- Thermodynamic modeling of YSZ-CMAS system
- Characterization:
- 1 Pristine NASA composition CMAS by XRD, ICP-OAS and DSC
- 2 CMAS reacted with the hollow tube coating specimens by SEM-EDS and XRD
- Summary

Thermal and Environment Barrier Coating Developments

Baseline ZrO₂-(7-8)wt%Y₂O₃ and Rare Earth Doped-Low Conductivity Thermal Barrier Coating Systems - Continued

Baseline ZrO₂-(7-8) wt%Y₂O₃:

- Relatively low intrinsic thermal conductivity ~2.5 W/m-K
- High thermal expansion to better match superalloy substrates
- Good high temperature stability and mechanical properties
- Additional conductivity reduction by micro-porosity

Low Conductivity Defect Cluster Thermal Barrier Coatings

Multi-component oxide defect clustering approach

e.g.: $ZrO_2/HfO_2-Y_2O_3-Nd_2O_3(Gd_2O_3,Sm_2O_3)-Yb_2O_3(Sc_2O_3)$ systems

Serial Stabilizer Primary stabilizer

Oxide cluster dopants with distinctive ionic sizes

- Defect clusters associated with dopant segregation
- The 5 to 100 nm size defect clusters for significantly reduced thermal conductivity (0.5-1.2 W/m-K) and improved stability
- Advanced TEBC systems for Ceramic Matrix Composites use the low k based compositions

TEBCs-CMAS Degradation is of Concern with Increasing Operating Temperatures

Plasma-sprayed ZrO₂-(Y, Nd,Yb)₂O₃

National Aeronautics and Space Administration

Experimental:sample preparation and heat treatment

- Air plasma sprayed coating (0.030" thickness) specimens on to 1/8" diameter graphite bar substrates then 1500 °C, 5 h sintering, resulting hollow tubes.
- NASA composition CMAS used for reaction at 1300 ° C for 5h.

*(ρgeometric*100/ρHe). **ρgeometric-ρHe.

(1:10 CMAS to sample mass ratio, concentration of 70-150 mg/cm²)

(A) (B) (C) Hollow 12YSZ tube samples: (A) pristine; (B) before heat treatment in which it was half filled with CMAS powder, wrapped and sealed with Pt foil; (C) after heat treatment at 1310 °C for 30 min and unwrapped.

Results: characterization of NASA composition CMAS (as processed) before reaction

www.nasa.gov

Results: SEM cross-section images at low magnification (lower cut section)

ZrO₂-9.0Y₂O₃-4.5Gd₂O₃-4.5Yb₂O₃ ZrO₂-9.6Y₂O₃-2.2Gd₂O₃-2.1Yb₂O₃

 $ZrO_2 \text{--} 3.0Y_2O_3 \text{--} 1.5Sm_2O_3 \text{--} 1.5Yb_2O_3$

 ZrO_2 -3.0 Y_2O_3 -1.5Nd $_2O_3$ -1.5Yb $_2O_3$ -0.3Sc $_2O_3$

SEM cross – sectional electron images of the lower section of the ceramic hollow tube samples reacted with CMAS at 1300 $^{\circ}$ C for 5 h.

National Aeronautics and Space Administration

Results: 12YSZ lower section of the hollow tube reacted with CMAS.

SEM image of (reacted region) at high magnification.

Elemental content from EDS.

National Aeronautics and Space Administration Results: 18YSZ lower section of the hollow tube reacted with CMAS.

National Aeronautics and Space Administration Results: 7DySH lower section of the hollow tube reacted with CMAS.

SEM image at high magnification.

200 -

www.nasa.gov

National Aeronautics and Space Administration

Results Rare Earth Content *versus* apatite phase formation.

 ZrO_2 -18RE₂O₃ (RE = Y, Gd and Yb)

$ZrO_{2}-18Y_{2}O_{3}$

 ZrO_2 -13.9RE₂O₃ (RE = Y, Gd and Yb)

 $ZrO_{2}-12Y_{2}O_{3}$

 $HfO_{2}-6.3Dy_{2}O_{3}$

 ZrO_2 -6.3RE₂O₃ (RE = Y, Nd, Yb and Sc)

 ZrO_2 -6.0RE₂O₃ (RE = Y, Sm and Yb)

XRD patterns of the ground hollow tubes reacted with CMAS at 1310 °C for 5 h (lower cut section).

Results: content of the Rare-earth in the glass/silicate phase.

Depedence of the Rare-earth content in the glass/silicate phase versus Rare-earth content in the coating.

Results: content of the Rare-earth in the glass/silicate phase.

ZrO₂-3.0Y₂O₃-1.5Sm₂O₃-1.5Yb₂O₃

2.5 -

2.0

(%) Mole (%) 1.5

0.5

0.0

ZrO₂-9.6Y₂O₃-2.2Gd₂O₃-2.1Yb₂O₃

www.nasa.gov

Summary

- Thermochemical reactions between CMAS and EBC and TBC materials were studied at 1310 $^{\circ}\mathrm{C}$ for 5h.
- CMAS penetrated the samples at the grain boundaries and dissolved the EBC/TBC material to form silicate glassy and orthosilicate crystalline phases containing the rare-earth elements.
- Apatite crystalline phase was formed in the samples with rare-earth content higher than 12 mole (%) total of Rare-earths in the reaction zone.
- 18YSZ, 7DySH and ZrO_2 -9.5 Y_2O_3 -2.2Gd₂O₃-2.1 Yb_2O_3 samples have lower reactivity or more resistance to CMAS than the other coating compositions of this work.

Acknowledgements

This work was supported by NASA Transformational Tools and Technologies Project, and also partially supported by the NASA-Army Research Laboratory Collaborative High Temperature Functionally Graded Sandphobic Coating and Surface Modification Research Project under NASA-Army Space Act Agreement SAA3-1460-1.